用户名: 密码: 验证码:
超燃冲压发动机燃烧室内增强混合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声速燃烧冲压发动机是一种新型的吸气式动力装置,因其良好的性能和巨大的潜在优势,在未来的军事和民用的航空、航天领域中具有广阔的应用前景。而凹槽作为一种有潜力的火焰稳定器引起了超燃冲压发动机研究领域的广泛关注。本文提出了一种新型的凹槽结构,在稳焰的基础上增强混合效果。通过数值模拟对超燃冲压发动机燃烧室内混合增强机理进行了研究。
     通过采用SSTκ-ω湍流模型对凹槽流场数值模拟结果表明:在采用做了压缩性修正和跨音速修正的SSTκ-ω湍流模型计算凹槽流场精度较高,能够捕捉到凹槽内的漩涡、剪切层的分离和重新附着等现象,计算的凹槽壁面压力和试验结果吻合较好。为了使凹槽有更好的增强混合效果,本文设计了一种人字形凹槽,并对这种凹槽与平凹槽进行了对比研究。研究结果显示在人字形凹槽内部产生了流向涡,而流向涡的产生增强了气体掺混。
     最后在凹槽前喷入氢气模拟结果表明:人字形凹槽比平凹槽在混合效果更好。这是因为与平凹槽相比,人自形凹槽产生了流向涡,把大量空气卷入氢气团内,增强了空气-氢气混合效果,达到了我们的数值模拟目的。
The scramjet is a new type of air-breathing Propulsion device,which has remarkable performance and great potential superiority,and has a good prospect in the field of military aviation in the future. Cavities have gained the attention of this ramjet community as a promising flame holding device; computations are done on the increasing mixture of scramjet.
     Through the use of SSTκ-ωturbulence model of cavity flow numerical simulation results show that: use the SSTκ-ωturbulence model of compression amendments and transonic amendment has a high precision, can get the whirlpool, the shear layer separation and re-attachment, and other phenomena, the calculated pressure of cavity wall in good agreement with experimental results. In order to have a better enhance of the cavity mixed results, in this paper, design a herringbone head cavity, and do lots of comparative study between herringbone head cavity and flat head cavity. The results showed that there is a vortex flow follow flow direction in herringbone head cavity, and increasing air mixture.
     Finally calculated results of injected hydrogen in front of cavity show that: compare with flat head cavity, herringbone head cavity have a better mixture result. This is because there is a vortex flow follows flow direction in herringbone head cavity, and Large quantities of air involved in hydrogen group. Enhanced air - hydrogen mixed results, we reached the numerical simulation purposes.
引文
[1]刘兴洲等;“飞航导弹动力装置(上、下)”;宇航出版社,1992
    [2]刘陵、刘敬华、张棒、唐明;“超声速燃烧与超声速燃烧冲压发动机”;西北工业大学出版社 1993
    [3][苏]朱也夫,B.C、马卡伦,B.C;“冲压和火箭冲压发动机原理”;国防工业出版社,1975,7
    [4]He1ser,W.H、Pratt,D.T; Hypersonic Airbreathing Propulsion; AIAA Education Series,1994
    [5] 贺武生;超燃冲压发动机研究综述; 火箭推进,2005,第 2 期
    [6] 刘小勇;超燃冲压发动机技术;飞航导弹;2003,2
    [7] 乐嘉陵,胡欲立,刘陵;双模态超燃冲压发动机研究进展;流体力学实验与测量;Vol.14,Nol,2000
    [8] R.A..Mercier,T.M.F.Ronald; Hypersonic Technology (HyTech) Program Overview, AIAA-98-1566
    [9] R.C.Rogers,D.P.Capriotti,R.W.Guy; Experimental Supersonic Combustion Research at NASA Langley; AIAA98一2506
    [10] 刘英姿;国外高超音速飞行器研制动态;飞航导弹,1998,第7期
    [11] 航天工业总公司《推进技术》编辑部;冲压/超燃冲压及涡轮冲压发动机在俄罗斯的发展;参考资料,1996
    [12]徐旭,蔡国飘,超燃冲压发动机二维进气道优化设计方法研究,推进技术,Vol.22,No.6,2001.12
    [13]王新月,廉小纯,超声速下颇式进气道/前机身一体化方案设计,推进技术,Vol.23,No.2,2002.4
    [14]陶钢,超音速流在正规反射激波系后的参数优化特性,固体火箭技术,Vol.25,No.1,2002.
    [15]钟易成,余少志,陈晓,低速来流大攻角侧滑角状态下尖脊进气道气动特性试验研究,航空动力学报,Vol.16,No.1,2001.1
    [16]王国辉,李进贤,蔡体敏,二元混压超声速进气道三维流动数值分析,推进技术,Vol.22,No.2,2001.4
    [17]李进贤,王国辉,高朝辉,蔡体敏,二元混压超音速进气道湍流流场数值模拟,固体火箭技术,Vol.23,N0.2,2000,
    [18]王国辉,李进贤,蔡体敏,空一空导弹用二元混压超声速进气道数值研究,推进技术,Vol.21,No.4,2000.8
    [19]谭慧俊,郭荣伟,刘西鹏,一种双斜切双压缩面进气道地面流态的数值模拟研究,航空学报,Vol.23,No.3,2002.5
    [20]A.Bnardstetter,S.RoeeiDneis,H..PKau,D.RistFlame Stabilization in Supersonie Combustion AIAA 2002-5224
    [21]Adela Ben-Yakar and Ronald K.Hanson,Cavity Flame-Holder for Ignition and Flame Stabilization in Scramjets :An overview. Journal of Propulsion and Power Vo.17,No.1 January-Feburayr2001
    [22] Krishnamurty K. Acoustic radiation from two dimensional cut out in aerodynamic surface[R] . NACA TN 3487 ,1955.
    [23] Rizzetta D P. Numerical simulation of supersonic flow over a three dimensional cavity [J ] . AIAA Journal , 1988 ,26 (7) :799~807.
    [24] Zhang X, Edwards J A. An investigation of supersonic oscillatory cavity flows driven by thick shear layers[J ] . Aeronautical Journal , 1990 : 355~364.
    [25]Rockwell D , Naudascher E. Review2self2sustaining oscillations of flow past cavities[J ]. Journal of Fluids Engineering , 1978 ,100(1) : 152~165.
    [26]Stallings R L Jr , Wilcox F J Jr. Experimental cavity pressure distributions at supersonic speeds [ R ] . NASA TP-2683 ,1987.
    [27] Baurle R A , Gruber M R. A study of recessed cavity flow field for supersonic combustion applications [R] AIAA 98-0938.
    [28] Gruber M R , Baurle R A , Mathur T, et al. Fundamental studies of cavity based flame holder concepts for supersonic combustors[R] . AIAA 99-2248.
    [29] Baysal O , Stallings R L Jr. Computational and experimental investigation of cavity flowfields[J ] . AIAA Journal , 1988 ,26 (1) : 6~8.
    [30] Kumar A , Bushnell D M, Hussaini M Y. Mixing augmentation technique for hypervelocity scramjet [J ] . Journal of Propulsion and Power , 1989 ,5(5) : 514~522.
    [31] Sato N , Imamura R , Shiba S , et al. Advancing mixing control in supersonic airstream with a wall-mounted cavity[R] .AIAA 96-45102CP.
    [32] Yu K H , Gutmark E , Smith R A , et al. Supersonic jet excitation using cavity2actuated forcing[R] . AIAA 94-0185.
    [33] Yu K H , Schadow K C. Role of large coherent structures in turbulent compressible mixing [J ] . Experimental Thermal and Fluid Science , 1997 ,14(1) : 75~84.
    [34] Burnes R , Parr T P , Wilson KJ , et al. Investigation of supersonic mixing control using cavities : Effect of fuel injection location[R] . AIAA 2000-3618.
    [35] Hsu K Y, Carter C , Crafton J , et al. Fuel distribution about a cavity flameholder in supersonic flow [R]. AIAA 2000-3585.
    [36] Muareen B. Tracy and E. B. plentovich. Cavity Unsteady一Pressure Measurements at Subsonic and Transonic Speeds NASA Technical Paper97-3669
    [37] K. Yu,K. J. Wilson,R. A. Smith,and K. C. Schadow Experimental Investigation on Dual-Purpose Cavity In Supersonic Reacting Flows,AIAA98-0723
    [38] M. R. Gruber,R. A. Baurle and T. Mathur Fundamental Studies of Cavity-Based Flameholder Concepts of Supersonic Combustors. Journal of Propulsion and Power Vo.17,No.1 January-Feburayr2001
    [39] T. Mathur and G. Streby , Supersonic Combustion Experiments with a Cavity-Based Fuel Injector. AIAA99-2102
    [40] Sheryl M. Grace An overview of Computational Aero acoustic Techniques Applied to Cavity Noise Prediction AIAA2001-0510
    [41] A. J. Neely, C. Riley, R. R. Boyce,Hydrocarbon and Hydrogen Fuelled Scramjet Cavity Flame holder performance at High Flight Mach Numbers AIAA 2003-6989
    [42] John D. Anderson,JR Computational Fluid Dynamics: The Basics With Applications
    [43] John M. Seiner S. M. Dash and D. C Kenzakowski Historical Survey on Enhaned Mixing in Scramjet Engines Journal of Propulsion and Power Vo.14,No.4 July-August 1998
    [44] C. Segal,M. G. Owens and S. Tehranian Flame holding Configurations for Kerosene Combustion in a Mach 1.8 Airflow AIAA 97-2888
    [45] Clarence W Rowley,David R. Williams,Control of Forced and self-Sustained Oscillations in The Flow Past a Cavity, AIAA 2003-0008
    [46] M. Samimy, M. Debiasi,E. Caraballo,Development of Closed loop Control for Cavity Flows AIAA 2003-4258
    [47] R. A. Baurle, C. J. Tam, and S. Dasgupta, Analysis of Unsteady Cavity Flows for Scramjet Applications AIAA 2000-3617
    [48] D. R. Eklund, R. A. Baurle Numerical Study of a Scramjet Combustor Fueled by an Aerodynamic Ramp Injector in Dual-Mode Combustion AIAA 2001一0379
    [49] A. Hamed, D. Basu, K. Das,Detached Eddy Simulations of Supersonic Flow Over Cavity, AIAA 2003-0549
    [50] Direct Calculation of High Speed Cavity Flows in a Scramjet Engine by the CESE Method. AIAA 2002
    [51] D. L. Davis,R. D. W. Bowersoc,Stirred Reactor Analysis of Cavity Flame Holders for Scramjets AIAA97-3274
    [52]陈坚强.超声速燃烧流动及漩涡运动的数值模拟.中国空气动力研究与发展中心研究生部博士学位论文,1995.12
    [53] Ferri, A. , “Review of Scramjet Propulsion Technology”, AIAA paper66-826,1966
    [54]White, M. E. . Drummond, J. P. and Kumar, A. , “Evolution and Status of CFD Techniques for Scramjet Applications”,AIAA paper86-0160,1986.
    [55] Waltrup, P. J. ,et al., “Supersonic Combustion Ramjet(Scramjet) Development in the United states”, The 3rd international symposium on Air Breathing Engines, Munich, Germany, March,1976.
    [56] Evans,J. S. and Schexnayder, C. J. , “Critical Influence of Finite Rate Chemistry and Unmixedness on Ignition and Combustion of Supersonic H2-Air Streams” AIAA Paper 79-0355, 1979. [57 ]Drummond,J. P. and Weidner, E.H. , “A Numerical Study of Candiate Transvers Fuel Injector Configuration, in the Langley Scramjet Engine”, 17th JANNAF Combustion Meeting, 1980.
    [58] Markatos, N.C., et al., “Combustion of Hydrogen Injected a Supersonic Air-stream”, NASA CR-2802.
    [59] Drummond, J. P. , “Numerical Investigation of the Perpendicular Injector Flow Field in a Hydrogen Fueled Scramjet”, NASA 79-1482,1979.
    [60] Berman, H. A. and Anderson, J. D. , “Supersonic Flow over a Rearward Facing Step with Transvers Nonteacting Hydrogen Injection”, AIAA Paper82-1002,1982.
    [61] Drummond, J. P. and Weidner, E, H., “Numerical Study of a Scramjet Engine Flow Field”, AIAA Paper81-0186,1981.
    [62] Fluent Inc. Gambit User’s Guider December 2001
    [63] ONERA, France Mixing Enhancement Techniques in a Scramjet AIAA 98-7593
    [64] E. T. Curran ,S. N. B. Murthy, Scramjet Propulsion, progress in Astronautics and Aeronautics, 2001.
    [65] William H. Heiser and David T. Pratt,Hypersonic Airbreathing Propulsion,AIAA Education Series,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700