Lenke5型青少年特发性脊柱侧凸有限元模型的建立及手术矫形的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     特发性脊柱侧凸的前路手术因矫形力直接作用于椎体、能提供强大的去旋转力,且融合节段少,有利于保留运动节段,适用于胸腰段或腰段脊柱侧凸,但存在假关节形成和内固定失败等并发症发生率较高的问题。随着内固定器械的革新及三维矫形理论的发展,椎弓根钉技术被广泛运用于侧凸矫形。相对于椎板钩及椎弓根钩,椎弓根螺钉通过前、中、后三柱,能提供更佳矫形力和显著的远端向中线矫正能力,节省融合节段。近年来全节段椎弓根螺钉矫形术被广泛用于胸腰段和腰段脊柱侧凸,取得了很好的疗效。因此目前胸腰段或腰段特发性脊柱侧凸在手术入路、融合节段的选择等问题上仍存在争议。
     有限元法作为一种数字模拟技术,已成为脊柱侧凸生物力学研究的热点。目前侧凸矫形的有限元模拟多集中在后路CD手术,前路手术或前后路手术对比的有限元模拟报道甚少。
     目的
     利用相关的CAE软件(Mimics和HyperMesh)建立基于CT图像的Lenke5型青少年特发性脊柱侧凸(AIS)的三维有限元模型。对模型的材料性质和皮质骨厚度的参数进行优化和模型的有效性进行验证后,再分别模拟Lenke5型AIS的前、后路手术矫形操作,比较不同手术入路的各种不同矫形方案的矫形效果,以及脊椎的应力、应变水平。
     方法
     1三维有限元模型的建立
     对1例女性Lenke5型青少年特发性脊柱侧弯患者,行仰卧位胸1至尾骨的CT扫描,将获得的CT图像导入医学建模软件Mimics10.0,通过一系列模块的处理后获得医学三维仿真模型,对模型进行几何清理。再将清理后的医学仿真模型导入有限元分析软件HyperMesh 8.0,利用软件的前处理工具进行网格划分,定义接触与连接,参照文献定义材质属性,添加椎间盘、各种韧带等,建立Lenke5型AIS患者的三维非线性有限元模型。
     2模型的参数优化和有效性验证
     对建立的有限元模型赋予不同材料属性和皮质骨厚度,模拟左、右侧屈试验,并与临床试验对照,应用SPSS软件按照正交实验设计进行四因素三水平分析,再用直观分析法对正交实验结果进行分析,实现模型材料性质和皮质骨厚度的参数优化。将所建立的有限元模型与原始卧位X线片比较,验证模型的几何外形。通过模拟临床卧位侧屈实验,参照文献在各脊椎节段施加载荷模拟站立,然后提取脊柱的不同节段,将约束加载得到的结果与各自参照的体外实验结果进行比较等,验证模型的有效性。
     3不同矫形方案的手术操作模拟
     在建立的脊柱侧凸有限元模型上构建前、后路手术的钉棒系统有限元模型,根据临床前、后路手术融合节段的不同,设置前路短节段融合、端-端融合和后路下固定椎为下端椎或稳定椎的四种不同矫形方案,模拟各种方案90°去旋转和压缩序贯矫形操作,比较不同方案的位移、冠状面及矢状面成角变化、旋转度变化,手术矫形后脊椎的应力水平。
     结果
     1成功建立了包括全部胸腰椎(T1~L5)、骶尾骨、完整胸廓、椎间盘、脊柱所有韧带及关节的特发性脊柱侧弯有限元模型,采用4种单元类型,14种材料性质;共包含节点数170784,四面体单元633668个,壳单元126636个,线缆单元680个和杆单元132个,建立的模型与该患者的X线的脊柱几何形态相似性非常好。
     2利用材料参数和皮质骨厚度优化后的模型模拟临床侧屈实验、站立实验,其生物力学行为和临床基本符合。分段加载实验验证的结果和与各自参照的体外生物力学实验结果基本吻合。
     3四种不同方案有限元模拟矫形最终的腰椎侧凸Cobb角分别为:22°、23°、26°、26°,胸腰段和腰椎矢状面生理曲度得到维持。前路短节段融合的脊椎应力水平明显较高。而在下端固定椎止于下端椎时,前路单棒固定与后路全节段椎弓根钉固定获得的顶椎旋转的矫正度分别为41.68°和37.79°。
     结论
     1基于个体化的CT图像,利用相关计算机软件建立的Lenke5型AIS的三维有限元模型形态逼真,真实反映了脊柱的形态学特征。
     2进行参数优化的有限元模型顺利通过有效性验证,真实反映了实际个体脊柱的生物力学特性。
     3首次成功实现了前、后路手术的90°去旋转和压缩矫形的序贯有限元模拟。有限元模拟为Lenke5型AIS矫形手术方案的优化和治疗效果的评价提供了理论依据。
     4对柔韧性较差的Lenke5型AIS,前后路手术均可获得满意的矫形效果,但前路短节段融合脊椎应力水平明显较高。在远端融合止于下端椎时,后路全椎弓根螺钉固定可取得与前路单棒固定相同的矫正效果。
Backgrounds
     Anterior instrumentation surgery had been a good choice of treatment for the thoracolumbar and lumbar AIS,because anterior procedures may give greater correction through a direct manipulation of the vertebral body and good coronal correction and apical derotation can be obtained. Furthermore, anterior correction has the potential advantage of preserving additional motion segments by instrumentation of fewer vertebrae.However, complications such as high pseudarthrosis rate and implant failure still have not been resolved.. With the rapid development of internal fixators and 3D correction theory, posterior segmental pedicle screw instrumentation have been widely used in the surgical treatment of thoracolumbar and lumbar AIS. Compared to hook or wire approach, the pedicle screws get a grip with 3-column purchase and offers an enhanced 3-dimensional deformity correction and preservation of motion segments by reducing the extent of fusion. Excellent Correction of thoracolumbar and lumbar AIS was achieved with Segmental pedicle screw instrumentation. For the discussions above, issues of surgical approaches, extent of fusion level of thoracolumbar and lumbar AIS still have been the subject of some debate so far.
     As a new technique of digital simulation, finite element method has been a hot topic of scoliosis biomechanics recently. Finite element simulation of correction procedure had been focused on posterior CD surgery, few simulation of anterior correction or comparison of posterior and anterior correction was reported.
     Objectives Using a series of Related CAE software, To develop three dimensional finite element models of the Lenke5 Adolescent Idiopathic scoliotic spine based on quantitative computed tomography scans. After parameters optimization and Validation, the three-dimensional finite element model was used to simulate anterior and posterior correction, investigate the corrective effect of different surgical protocols, and analyse biomechanical stress and strain of the scoliotic spine.
     Methods
     1. Development of the three dimensional Finite element model Obtain CT digital data from T1 to caudal end of a female Lenke5 AIS Patient in the supine position.ImPort The CT digital information into the computer software Mimics, and rebuild a 3-Dimension simulation model with surface mesh by the following steps:orientation, division, erase, draw, erode, dilate, boolen operation, define Polyline,remesh. ImPort the simulation model into the computer software HyperMesh 8.0.Remesh the model From surface mesh into body mesh. Define the surface on different vertebrae, ribs and intervertebral discs. Refer to the literature, present the spine with relative material parameters and append the parenchyma such as ligaments and disc.
     2. Parameters optimization and model validation For parameter optimization, the Emodule of the intervertebral disks and the thickness of the cortices wer emodified based on the clinical bending test. Orthogonal experiment designed by the computer software SPSS is performed and nine groups of experiment plans with three levels and four factors, L 9(34) are adopted to optimize experimental factors. Then data from orthogonal test was treated by Intuitive analysis. For model validation, geometric shape was compared between supine X-ray films and finite element simulation. Bending test and Erect test were simulated. Different segments were extracted from the whole finite element model, and were respectively constrained and loaded referring to historical specimen biomechanical in vitro studies.
     3. Simulation of corrective surgery of different surgical protocols The finite element model of internal fixation devices was developed According to different surgical approach and fusion level, we designed and simulated four surgical strategy with the model of scoliosis. All the main steps including derotation and compression of each strategy were simulated. The stress variation of the spine, different vertebral displacement, as well as rotation and angle changes were compared among the protocols of different surgical approach and fusion level. Results
     1 A Three-dimensional Finite Element Model of the Lenke5 Adolescent Idiopathic scoliotic spine including T1—T12, L1—L5 and sacrum has been developed based on quantitative computed tomography scans. Using 4 mesh types and 14 kinds of material parameters, the model consists of 170784 nodes,633668 tetrahedron elements,126636 shell elements,680 cable elements and 132 rod elements. The three dimensional Finite Element Model of the scoliotic spine showed good geometric similarity with supine X-ray.
     2 Biomachanical bahaviour in simulating Bending test and Erect test was consistentwith clinical practice. The segment simulation results of subsection validation were similar to their references respectively.
     3 Coronary lumbar deformity was corrected to 22°,23°,26°and 26°espectively for all four surgical protocols used in the simulation., physiological saggital configuration was maintained, but higher stress in the anterior short fusion group. A similar apical rotational correction was recorded,41.68°nd 37.79°, between anterior single-rod corrction and posterior segmental pedicle screw fixation when instrumented to the lower end vertabra. Conclusions
     1 Based on CT images, the three-dimensional finite element model of Lenke5 idiopathic scoliosis were well established and validated
     2 The validity of the optimized finite element model was verified successfully, so it was proved to be able to represent the biomechanical behaviour of the actual scoliotic spine.
     3 The model was successfully used to simulate correction procedures including 90°derotation and compression for the first time. Finite element method may provide theoretical basis and guidance for the operation planning and efficacy evaluation.
     4 Simulation of all four surgical protocols obtained excellent correction, but short segment fusion maybe not a good choice because of higher stress. Similar correction can be achieved with segmental pedicle screw fixation compared to anterior single-rod corrction when instrumented to the lower vertabra.
引文
[1]Weinstein SL. Natural history. Spine,1999,24(24):2592-2600.
    [2]Lonstein JE. Scoliosis:Surgical Versus Nonsurgical Treatment. Clin Orthop Relat Res,2006,443:248-259.
    [3]李明,麻文谦,倪春鸿。关于脊柱侧凸的Lenke分型。中国脊柱脊髓杂志,2006,16(3):238-240.
    [4]Brekelmans WA, Poort HW, Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand,1972,43:301-317.
    [5]Rybicki EF, Simonen FA, Weis EB Jr. On the mathematical analysis of stress in the human femur. J Biomech,1972,5:203-215.
    [6]Belytschko T, Finite element stress analysis of an intervertebral disc. J Biomech, 1974,7:277.
    [7]Viviani GR, Ghista DN, Lozada PJ, et al.Biomechanical analysis and simulation of scoliosis surgieal Correetion.Clin Orthop Relat Res.1986(208):40—47.
    [8]汪正宇,刘祖德,王哲等。个体化侧凸躯干骨和骨盆有限元模型的建立。中华实验外科杂志,2008,25(11):1511-1513.
    [9]Polikeit A, Ferguson SJ, Nolte LP, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages:finite element analysis. Eur Spine J,2003,12:413-420.
    [10]Pierre-Luc S, Isabelle V, Aubin CE. Finite element modeling of the growth plate in a detailed spine model. Med Bio Eng Comput,2007,45:977-988.
    [11]Burstein AH, Reilly DT, Martens M. Aging of bone tissue:Mechanical properties. J Bone Jiont Surg(Am),1976,58:82-86.
    [12]Shirazi-Adl SA, Shrivastava SC, Ahmed AM. Stress analysis of the lumbar disc-body unit in compression:A three dimensional nonlinear finite element study. Spine,1984,9:120-134.
    [13]Shirazi-Adl A, Ahmed AM, Shirvastava SC. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech, 1986,19:331-350.
    [14]Goel VK,Monroe BT,Gilbertson LQet al. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine,1995,20(6):689-698.
    [15]Stokes IA,Laible JP.Three dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by a symmetric growth. J Biomech,1990, 23(6):589-595.
    [16]Wang JL, Parnianpour M, Shirazi-Adl A, et al. Development and validation of a viscoelastic finite element model of an L2/L3 motion segment. Theor Appl Fract Mech,1997,28:81-93.
    [17]张美超,廖进民,李敏,等.激光三维扫描系统重建下颌骨.第一军医大学学报,2004,24(7):756-757。
    [18]徐明志,王燕一,徐薪,等.应用三维激光扫描技术建立下颌骨固定义齿的三维有限元模型.口腔医学研究,2006,22(2):159-161。
    [19]Liu Yk, Ray G, Hirsch C.The resistance of the lumbar spine to direct shear. Orthop Clin North Am,1975,6(1):33-49.
    [20]Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington dis-traction instrumentation for surgical correction of scoliosis, Spine,1993, (16) 2457-2464.
    [21]Azegami H, Murachi S, Kitoh J, et al. Etiology of idiopathic scoliosis. Com-putational study. Clin Orthop Relat Res.1998;(357):229-36.
    [22]Giguac D,Aubin CE,Dansereau J, et al. Optimization method for 3D bracing correction of scoliosis using a finite element model.Eur Spine J,2000,9 (3): 185-190.
    [23]Perie D, Aubin CE, Petit Y, et al. Boston brace correction in idiopathic scoliosis: a biomechanical study. Spine,2003,28(15):1672—1677.
    [24]Perie D, Aubin CE, Petit Y, et al. Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis. Clin Biomech,2004,19(2):190-195.
    [25]Perie D,Aubin CE,Lacroix M,et al. Biomechanical modelling of orthotic treat-ment of the scoliotic pine including a detailed representation of the brace-torso inter-face. Med Biol Eng Comput,2004,42:339-344.
    [26]Liao YC, Feng CK, Tsai MW,et al. Shape modification of the Boston brace using a finite element method with topology optimization. Spine,2007,32 (26):3014-3019.
    [27]Clin J, Aubin CE, Parent S, et al. Biomechanical modeling of brace design.Stud Health Technol Inform.2006,123:255-260.
    [28]Clin J, Aubin CE, Labelle H.Virtual prototyping of a brace design for the correction of scoliotic deformities. Med Biol Eng. Comput,2007,45:467-473
    [29]Dumas R, Lafage V, Lafon Y. et al. Finite element simulation of spinal deformities correction by in situ contouring technique. Comput Methods Biomech Biomed Engin,2005,8(5):331-337.
    [30]Azlan AM, Mohanunad AR, Ariffin ALI.The HUKM Spinal Instrumentation System for Adolescent Idiopathic scoliosis.A biomechanical comparison study using finite element analysis.Med J Malaysia.2005:60SuPPIC:30-4.
    [31]Rohlmann A, Richter M, Zander T, et al. Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant. Eur Spine J.2006; 15(4):457-464.
    [32]Lalonde NM, Aubin CE, Pannetier R, et al. Finite element modeling of vertebral body stapling applied for the correction of idiopathic scoliosis:preliminary results.Stud Health Technol Inform.2008; 140:111-115.
    [33]Rohlmann A, Zander T, Burra NK,et al.Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine:a finite element analysis of different features of orthobiom. Eur Spine J,2008,17(2):217-23.
    [34]胡明涛,韦兴等,赵红平等。后路椎弓根螺钉系统治疗特发性腰椎侧凸的有限元分析。医用生物力学,2007,22(4):367-372.
    [35]Petit Y, Aubin CE, Labelle H. Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med Biol Eng Comput. 2004;42(1):55-60.
    [36]汪荣鑫.数理统计.西安:西安交通大学出版社,2006:150-160.
    [37]Nachemson A.The load on lumbar discs in different positions of the body. Clin Orthop,1964,45:107-122.
    [38]Schultz A, Andersson G, Ortengren R, et al. Loads on the lumbar spine-validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J Bone Joint Surg Am,1982,64:713-720.
    [39]Busscher I, van Dieen JH, Kingma I, et al. Biomechanical characteristics of different regions of the human spine:an in vitro study on multilevel spinal segments. Spine,2009,34(26):2858-2864.
    [40]Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional Movements of the whole lumbar spine and lumbosacral joint. Spine,1989,14(11):1256-1260.
    [41]Vanderby RJr, Daniele M, Patwardhan A, et al. A method for the identification of in-vivo segmental stiffness properties of the spine. J Biomech Eng.1986; 108 (4): 312-316.
    [42]Ghista DN, Viviani GR, Subbaraj K,et al. Biomechanical basis of optimal scolio-sis surgical correction. J Biomech.1988;21(2):77-88.
    [43]Leborgne P,Skalli W,Lecire C,et al.Simulation of CD surgery on a personalized finite element model:preliminary results.In:Research into spinal deformities 2. Amsterdam:IOS Press,1999; p126-129.
    [44]汪正宇,刘祖德,王哲等。脊柱侧凸有限元模型的建立和参数优化。北京生物医学工程,2008,27(1):28-32
    [45]邹德威,海涌,马华松,等。脊柱侧凸矫形手术治疗远期随访结果。中国脊柱脊髓杂志,2002,12:9-12。
    [46]Helenius I, Remes V, Yrjonen T, et al. Harrington and Cotrel-Dubousset instrumentation in adolescent idiopathic scoliosis:long-term functional and radiographic outcomes. J Bone Jiont Surg,2003,85-A(12):2303-2309.
    [47]Halm H, Niemeyer T, Link T,et al. Segmental pedicle screw instrumentation in idiopathic thora-columbar and lumbar scoliosis. Eur Spine J,2000;9(3):191-197.
    [48]Shufflebarger HL, Geck MJ, Clark CE. The posterior approach for lumbar and thoracolumbar adolescent idiopathic scoliosis:posterior shortening and pedicle screws. Spine,2004;29(3):269-76; discussion 276.
    [49]Wang Y, Fei Q, Qiu G, et al. Anterior spinal fusion versus posterior spinal fusion for moderate lumbar/thoracolumbar adolescent idiopathic scoliosis. Spine,2008; 33(20):2166-72
    [50]邱贵兴,王以朋,费琦,等。前后路矫形融合术治疗胸腰段/腰段青少年特发性脊柱侧凸(PUMC Ⅰb/Ⅰc/Ⅱd1型)。中华骨科杂志,2007,27(10):743-747。
    [51]于斌,王以朋,邱贵兴,等。青少年特发性胸腰段/腰段侧凸前路与后路矫形效果的比较。中华医学杂志,2009,89(37):2621-2621。
    [52]李明,顾苏熙,朱晓东,等。全节段椎弓根螺钉系统矫治青少年特发性胸腰椎/腰椎侧凸的疗效。中国脊柱脊髓杂志,2007,17(4):261-265.
    [53]Aubin C-E, Petit Y, Stokes IAF, Biomechanical modeling of posterior instrumen-tation of the scoliotic spine. Comput Meth Biomech Biomed Eng,2003,6(1): 27-32.
    [54]Majdouline Y, Aubin CE, Sangole A, et al.Computer simulation for the optimiza-tion of instrumentation strategies in adolescent idiopathic scoliosis. Med Biol Eng Comput.2009; 47(11):1143-54.
    [55]唐海,陈浩,罗先正.骨强度的生物力学研究进展.中华创伤杂志,2005,21(12):952-954.
    [56]Lenke LG, Betz RR, Harms J。et al. Adolescent idiopathic scoliosis:a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg(Am), 2001,83:1169-1181.
    [57]Qiu G, Zhang J, Wang Y, et al. A new operative classification of idiopathic scoliesis:a Peking union medical college method. Spine.2005,30:1419-1426.
    [58]Monney G, Kaelin AJ. Short Posterior Fusion for Patients With Thoracolumbar Idiopathic Scoliosis. Clin Orthop,1999, (364):32-39.
    [59]Dwyer AF, Newton NC, Sherwood AA. Anterior approach to scoliosis(A prelimi-nary report). Clin Orth,1969,62:192.
    [60]Dwyer AF, Schafer MF. Anterior approach to scoliosis:results of treatment in 51 cases. J Bone Joint Sury(Sr),1974,56(2):218-224.
    [61]Zielke K, Pellin B, New instruments and implants for supplementation of the Harrington system. Z Orthop lhre Grenzgeb,1976,114(4):534-537.
    [62]周良安,陈之白,等.前路器械内固定手术矫治脊柱侧凸[J].中国矫形外科杂志.1996,3(2):106.
    [63]Luk KD, Leong JC, Reyes L, et al. The comparative results of treatment in idiopathic thoracolumbar and lumbar scoliosis using the Harrington, Dwyer, and Zielke instrumentations. Spine,1989,14:275-280
    [64]Turi M, Johnston II CE, Richards BS. Anterior correction of idiopathic scoliosis using TSRH instrumentation. Spine,1993,18:417-422.
    [65]Kaneda K, Shono Y, Satoh S, et al. New anterior instrumentation for the management of thoracolumbar and lumbar scoliosis. Spine,1996.21(10): 1250-1262.
    [66]Bernstein RM, Hall JE. Solid rod short segmental fusion in thoracolumbar scoliosis. J Ped Orthop Vol B 1998;7:124-31.
    [67]Bitan FD, Neuwirth MG, Kuflik PL, et al. The use of short and rigid anterior instrumentation in the treatment of idiopathic thoracolumbar scoliosis:A Retrospective Review of 24 Case. Spine,2002,27:1553-1557.
    [68]李明,杨洪平,倪春鸿,等。前路Moss Miami器械矫形治疗特发性胸腰段或腰段脊柱侧凸[J]。中国脊柱脊髓杂志,2003,13(11):663-666.
    [69]Hall JE. Millis MB, Snyder BD. Short segment anterior instrumentation for thoracmhmbar scoliosis//Bridwell KH, DeWald RL. The textbook of surgery.2nd ed. Philadelphia:Lippineett Williams&Wilkins.1997:665-674.
    [70]Kim YJ, Lenke LG, Cho SK et al. Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine,2004,29:2040-2648.
    [71]李明,刘洋,倪春鸿,等。全椎弓根螺钉技术在脊柱畸形矫治术中应用的疗效分析。脊柱外科杂志,2005,3(4):208-211。
    [72]李明,赵永飞,朱晓东,等。全椎弓根螺钉与钉钩混合系统治疗青少年特发陛脊柱侧凸的疗效分析。中华骨科杂志,2008,26(8):453-458.
    [73]张雪松,王岩,张永刚,等。全节段椎弓根螺钉与椎弓根钉、钩系统矫治单胸弯特发性脊柱侧凸的疗效比较。中国脊柱脊髓杂志,2008,18(3):182-186.
    [74]Suk SI, Lee CK, Min HI, et al. Comparison of Cotrel-Dubousset pedicle screws and hooks in the treatment of idiopathic seoliosis. Int Orthop,1994,18(6): 341-346.
    [75]海涌,陈晓明,陈志明,等。椎弓根螺钉固定系统对特发性脊柱侧凸矫正效果的影响。中国脊柱脊髓杂志,2004,14(4):199-202。
    [76]Suk SI, Lee CK, Kim WJ,et al. Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine.1995; 20(12):1399-405.
    [77]Suk SI, Lee SM, Chung ER, et al. Determination of distal fusion level with segmental pedicle screw fixation in single thoracic idiopathic scoliosis. Spine. 2003;28(5):484-91.
    [78]Hee HT, Yu ZR, Wong HK. Comparison of Segmental Pedicle Screw Instrumen-tation Versus Anterior Instrumentation in Adolescent Idiopathic Thoracolumbar and Lumbar Scoliosis. Spine.2007;32(14):1533-42.
    [79]Li M, Ni J, Fang X, Liu H, et al. Comparison of selective anterior versus posterior screw instrumentation in Lenke5C adolescent idiopathic scoliosis. Spine,2009,34:1162-1166.
    [80]郝定均,贺宝荣,吴起宁,等。前路和后路手术治疗胸腰段特发性脊柱侧凸的临床研究[J]。中国矫形外科杂志,2009,17(13):980-982。
    [81]李明,倪建强,朱晓东,等。选择性前路和后路手术治疗胸腰段或腰段脊柱侧凸的疗效分析。脊柱外科杂志,2007,5(6):330-333。
    [82]Geck MJ, Rinella A, Hawthorne D, et al. Comparison of surgical treatment in Lenke 5C adolescent idiopathic scoliosis:anterior dual rod versus posterior pedicle fixation surgery:a comparison of two practices. Spine.,2009;34(18):1942-51.
    [83]陈伯华译.脊柱侧凸三维矫正的生物力学[M].见:胡有谷主译.脊柱外科学,第1版.北京:人民卫生出版社.2000.158-164.
    [84]Ecker ML,Betz RR,Trent PS,et al. Computer tomography evaluation of Cotrel-
    Dubousset instrumentation in idiopathic scoliosis[J]. Spine,1988,13(10):1114-1144.
    [85]Cundy PJ, Paterson DC, Hillier TM,et al. Cotrel-Dubousset instrumentation and vertebral rotation in adolescent idiopathic scoliosis. J Bone Joint Surg Br.1990 Jul;72(4):670-4.
    [86]Thompson JP, Transfeldt EE, Bradford SS, et al. Decompensation after Cotrel-Dubousset instrumentation of idiopathic scoliosis. Spine,1990,15(9):927-931.
    [87]Lee SM, Suk SI, Chung ER. Direct Vertebral Rotation:A New Technique of Three-Dimensional Deformity Correction With Segmental Pedicle Screw Fixation in Adolescent Idiopathic Scoliosis. Spine,2004,29(3):343-349.
    [88]Apical instrumentation alters the rotational correction in adolescent idiopathic scoliosis. Eur Spine J (2003) 12:124-129
    [89]Comparison of Vertebral Rotation Corrected by Different Techniques and Anchors in Surgical Treatment of Adolescent Thoracic Idiopathic Scoliosis
    [90]Laohacharoensombat W, Jaovisidha S, Wajanavisit W, et al.Apical derotation in the treatment of idiopathic scoliosis. J Med Assoc Thai.2005;88 Suppl 5:S58-64.
    [91]Lafage V, Dubousset J, Lavaste F, et al.3D finite element simulation of Cotrel- Dubousset correction. Comput Aided Surg.2004; 9(1-2):17-25
    [92]Dumas R,Lafage V,Lafon Yet al. Finite element simulation Of spinal deformities correction by in situ contouring technique. Comput Methods Biomech Biomed Engin,2005,8(5):331—337.
    [93]Lafon Y, Steib JP, Skalli W.Intraoperative Three Dimensional Correction During In Situ Contouring Surgery by Using a Numerical Model. Spine,2010,27. [Epub ahead of print]
    [94]汪正宇,刘祖德,王哲等。脊柱侧凸前路去旋转椎体融合手术矫形的生物力学研究。中华实验外科杂志,2007,24(6):669-671.
    [1]Brekelmans WA, Poort HW, Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand,1972,43:301-317.
    [2]Rybicki EF, Simonen FA, Weis EB Jr. On the mathematical analysis of stress in the human femur. J Biomech,1972,5:203-215.
    [3]Belytschko T, Finite element stress analysis of an intervertebral disc. J Biomech,1974,7:277.
    [4]Liu Yk, Ray G, HIRSCH C.The resistance of the lumbar spine to direct shear.OrthoP Clin north Am,1975,6(1):33-49.
    [5]Viviani, GR.etal.Biomechanical analysis and simulation of scoliosis surgieal Correetion.Clin Orthop Relat Res.1986(208):40—47.
    [6]张美超,廖进民,李敏,等.激光三维扫描系统重建下颌骨.第一军医大学学报,2004,24(7):756-757。
    [7]徐明志,王燕一,徐薪,等.应用三维激光扫描技术建立下颌骨固定义齿的三维有限元模型.口腔医学研究,2006,22(2):159-161。
    [8]Lafage V, Dubousset J, Lavaste F, et al.3D finite element simulation of Cotrel-Dubousset correction. Comput Aided Surg.2004; 9(1-2):17-25
    [9]Petit Y, Aubin CE, Labelle H. Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med Biol Eng Comput,2004,42(1):55-60.
    [10]汪正宇,刘祖德等。脊柱侧凸有限元模型的建立和参数优化。北京生物医学工程,2008,27(1):28-32
    [11]Shirazi-Adl A. Parnianpour M. Nonlinear response analysis of the human ligamentous lumbar spine in compression on mechanisms affecting the postural stability. Spine,1993,18:147-158.
    [12]Goel VK, Kong W, Han JS,et al. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine,1993; 18:1531
    [13]Rohlmann A, Bauer L, ZanderT, et a.l Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. J Biomech,2006,39(6):981-989.
    [14]Yamamoto S, Tanaka E, Mihara K,et al. Finite element evaluation of spondylolysis taking account of non-linear mechanical properties of ligaments and annulus fibrosis. Japan Soc Mech Engrs Int J Ser C,1999,42:521
    [15]Konz RJ, Goel VK, Grobler kJ, et al. The pathomeehainsom of spondylolytie spondylolisthesis in immature primate lumbar spines in vitro and finite element assessments. SPine,2001,26(4):E38—FA9
    [16]Sairyo K, Katoh S, Sasa T, et al. Athletes with unilateral spondylolysis are at risk of stress fracture at the contralateral pedicle and pars interarticularis:a clinical and biomechanical study. Am J Sports Med,2005,33(4):583-590.
    [17]Sairyo K, Goel VK, Masuda A, et al. Three-dimensional finite element analysis of the pediatric lumbar spine. Part Ⅰ:pathomechanism of apophyseal bony ring fracture. Eur Spine J,2006,15(6):923-929.
    [18]Chen CS, Cheng CK,Liu CL,et al.Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng phys,2001,23(7):483~491.
    [19]Pitzen T,Geisler FH,Matthis D,Muller-Storz H, et al. Motion of threaded cages in posterior lumbar interbody fusion. Eur Spine J,2000,9(6):571-576.
    [20]Kim Y. Prediction of mechanical behaviors at interfaces between bone and two interbody cages of lumbar spine segments. Spine,2001,26(13):1437-1442.
    [21]Polikeit, A, Ferguson SJ, Nolte LP, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages:finite element analysis. Eur Spine J.2003;12:413—420
    [22]Chen SH, Tai CL, Lin CY,et al.Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques-a three-dimensional finite element analysis. BMC Musculoskelet Disord.2008,18 (9):88.
    [23]张德盛,宋跃明。下腰椎不同融合方式的有限元研究。中国修复重建外科杂志,2006,20(4):400-403.
    [24]Goel VK, et al. An analytical investigation of the mechanics of spinal instrumentation.J Orthop Trauma 1988;2(3):195-201.
    [25]Skalli W,Robin S,Lavasta F,Dubousset J. A biomechanical analysis of short segment spinal fixation using a three-dimensional geometric and mechanical model.Spine 1993;18 (5):536-545.
    [26]Lim TH,GoelV K.Load sharing characteristics in the stabilized lumbar motion segment:A finite element study.J Musculoskel Res 1998;2 (1):55-64.
    [27]Lim TH。Eek JC, An HS,'et al. Biomechanies of transfixation in pediele screw instrumentation. Spine,1996,21:2224—9
    [28]Lim TH. Kim JG, Fujiwara A, et al. Biomechanieal evaluation of diagonal fixation in pediele screw instrumentation. Spine,2001,26:2498—503
    [29]Kim Y.Finite element analysis of anterior lumbar interbody fusion:threaded cylindrical cage and pedicle screw fixation. Spine,2007,32:2558—2568.
    [30]马辉,赵杰,连小峰等。腰椎滑脱后路不同融合术式固定节段的稳定性。中华骨科杂志,2007,27(4):282-286.
    [31]敖俊,方国芳,冯伟,等.以三维有限元模型分析短节段腰椎椎弓根螺钉系统固定后螺钉应力的分布.中国组织工程研究与临床康复,2008,12(39):7601-7604.
    [32]Ahn YH, Chen WM, Lee KY, et al.Comparison of the load-sharing characteristics between pedicle-based dynamic and rigid rod devices.Biomed Mater.2008 Dec;3 (4):44101
    [33]Tsuang YH, Chiang YF, Hung CY,et al. Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation-a finite element study. Med Eng Phys.2009,31(5):565-70.
    [34]Dooris AP,Goel VK,Grosland NM,et al. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine,2001,26(6):122-129.
    [35]Saito T, Tarnatouro T, Shikara J, et al. Analysia and prevention of spinal column deformity following cervical laminectomy, pathogenic analysis of post laminectomy deformities. Spine,1991,16(6):494-502.
    [36]Kleinberger M. Application of finite element technique to the study of cervical spine mechanics [R]. Proceedings of the 37th Stepped Car Crash Conference, San Antonio Texas,1993.
    [37]Bozic KJ, Keyak JH, Skinner HB, et al. Three-dimensional finite element mod eling of a cervical vertebra:an investigation of burst fracture mechanism. Spinal Disorders,1994,7(2):102-110.
    [38]Yoganandan N,Kumaresan S,Voo L,et al. Finite element modeling of the CA-C6 cervical spine unit. Med Eng Phys,1996,18(7):569-574.
    [39]Voo LM,Kumaresan S,Yoganan dan N,et al. Finite element analysis of cervical facete-ctomy. Spine,1997,22(9):964—969.
    [40]陈伯华,孙鹏,Natarajan N,等.颈椎三维有限元模型的建立及意义.中国脊柱脊髓杂志,2002,12(2):105-108.
    [41]Greaves CY, Gadala MS, Oxland TR.et al.A three-dimensional finite element model of the cervical spine with spinal cord:an investigation of three injury mechanisms.Ann Biomed Eng.2008,36(3):396-405.
    [42]李雪迎,王春明,殷秀珍,等.颈椎牵引过程的三维有限元分析.中华理疗杂志,1999,22(6):53-56.
    [43]Teo EC, Paul JP, Evans JH. Finite element s tres s analys is of a cadaver second cervical vertebra.Med Biol Eng Comput 1994;32 (2):236-238.
    [44]Teo EC, Ng HW. Firs t cervical vertebra (atlas) fracture mechanisms tudies using finite element method.J Biomech 2001;34(1):13-21
    [45]Bozkus H, Karakas A, Hanci M, et al. Finite element model of the Jefferson fracture:comparison with a cadaver model.Eur Spine J,2001;10(3):257-263.
    [46]夏虹,张美超,赵卫东,等.寰椎三维有限元模型的建立及其骨折机制.中华创伤杂志,2004,20(4):209-212.
    [47]Puttlitz CM,Goel VK,Traynelis VC,et al. A finite element investigation of upper cervical instrumentation. Spine,2001,26:2449-2455.
    [48]Puttlitz CM,Goel VK, Clark CR, et a.l Biome-chanical rationale for the pathology of rheumatoid arthritis in the craniovertebral junction. Spine,2000,25: 1607-1616.
    [49]Brolin K, Halldin P, Development of a Finite Element Model of the Upper Cervical Spine and a Parameter Study of Ligament Characteristics. Spine,2004, 29(4):376-385.
    [50]Zhang QH. Teo EC. Ng Hw. et al. Finite element analysis of moment-rotation relation-ships for human cervical spine. J Biomcch 2006; 39(1):189-93
    [51]Zhang H, Bai J. Development and validation of a finite element model of the occipito_atlantoaxial complex under physiologic loads.Spine,2007,32(9):968-974.
    [52]廖穗祥,夏虹,昌耘冰,等.上颈椎三维有限元模型的建立.中国组织工程研究与临床康复,2007,11(27):5269-5272.
    [53]廖穗祥,夏虹,昌耘冰,等.利用螺旋CT数据建立上颈椎三维有限元模型.实用医学杂志,2007,23(12):1779-1781.
    [54]任中武倪斌张美超,等。上颈椎三维非线性有限元模型的建立及其有效性验证.脊柱外科杂志,2007,5(3):159-162.
    [55]Kumaresan S, Yoganandan N, Pintar FA, et al. Finite element modeling of cervical laminectomy with graded facetectomy. J Spinal Disord,1997; 10(1) 40-46
    [56]Kumaresan S, Yoganadan N, Pintar FA. Finite element analysis of anterior cervical spine interbody fusion. Bio-Med Material Eng,1997,7(4):221—230.
    [57]Lim TH,Kwon H,Jeon CH,et al. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion, spine,2001,26(8):951-956.
    [58]Natarajan RN,Chen BH,An HS, et al. Anterior cervical fusion:a finite element model study on motion segment stability including the effect of osteoporosis. Spine,2000,25(8):955-961.
    [59]TEO E C,YANG K, FUSS F K, et a.l Effects of cervical cages on load distribution of cancellous core:a finite element analysis. J Spinal Disorders and Techniques,2004,17(3):226-231.
    [60]Galbusera F, Bellini CM, Costa F,et al.Anterior cervical fusion:a biomechanical comparison of 4 techniques. Laboratory investigation. J Neurosurg Spine.2008,9 (5):444-449
    [61]程永耿,王新伟,袁文。颈椎前路分节段减压融合术三维有限元分析.脊柱外科杂志,2008,6(6):356-359.
    [62]张美超,黄文华,王柏川,等.应用有限元法评价颈前路碟形钢板的力学性能.第一军医大学学报,2001,21(10):740-742.
    [63]张美超,周海涛,王超,等.对寰楸椎侧块螺钉钛板固定装置的力学性能评价.中国脊梓脊髓杂志,2006,16(9):685-687。
    [64]张昊.白净.谭明乍,等.寰椎后路椎弓根螺钉及侧块螺钉的生物力学分析.清华大学学报:自然科学版.2008,48(3):422-425
    [65]Stokes IA. Laible JP. Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J Biomech.1990,
    23(6):589—595.
    [66]Stokes IA. Gardner-Morse M. Analysis of the interaction between vertebral later-al deviation and axial rotation in scoliosis. J Biomech,1991,24(8):753-759.
    [67]Azngami H, Muraehi S, Kitoh J, et al. Etiology of idiopathic scoliosis compu-tational study. Clinjeal Orthopaedics & Related Research,1998,(357):229—36.
    [68]GotoM, KawakamiN, AzegamiH, et a.l Buckling and bonemod-eling as factors in the development of idiopathic scoliosis.Spine,2003,28(4):364-371.
    [69]Villemure I, Aubin CE, Dansereau J,et al.Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses.Eur Spine J,2004,13(1):83-90.
    [70]Clayton JA, Geoffrey NA, Mark JP, et al. Gravity-Induced Torque and Intra vertebr-al Rotation in Idiopathic Scoliosis. Spine,2008,33(2):30-37.
    [71]Grealou L. Aubin CE. Labelle H. Rib cage surgery for the treatment of scoliosis: a biomechanical study of corection mechanisms. J Orthop Res,2002,20(5): 1121-1128
    [72]Plaats AV, Veldhuizen AG, Verkerke GJ.Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis. Ann Biomed Eng.2007; 35 (7):1206-1215.
    [73]Huynh AM, Aubin CE, Rajwani T, et al.Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis:a biomechanical study. Eur Spine J,2007,16 (4): 523-529.
    [74]Mehlman CT, Araghi A, Roy DR, et al. Hyphenated history:the Hueter-Volkmann law. Am J Orthop,1997,26(11):798-800.
    [75]Driscoll M, Aubin CE, Moreau A, et al. The role of spinal concave-convex biases in the progression of idiopathic scoliosis. Eur Spine J,2009,18(2):180-187.
    [76]Andriacchi TP, Schultz AB, Belytschko TB, et al. Milwaukee brace correction of idiopathic scoliosis. A biomechanical analysis and a restrospective study.J Bone Joint Surg Am,1976,58(6):806-815.
    [77]Giguac D,Aubin CE,Dansereau J, et al. Optimization method for 3D bracing correction of scoliosis using a finite element model.Eur Spine J,2000,9 (3): 185-190.
    [78]Perie D, Aubin CE, Petit Y, et al. Boston brace cOrection in idiopathic scoliosis In biomechanical study. Spine,2003,28(15):1672—1677.
    [79]Perie D, Aubin CE, Petit Y, et al. Personalized biomechanieal simulations of orthotic treatment in idiopathic scoliosis. Clin Biomech,2004,19(2):190-195.
    [80]Perie D,Aubin CE,Lacroix M,et al. Biomechanical modelling of orthotic treatment of the scoliotic pine including a detailed representation of the brace—torso interface. Med Biol Eng Comput,2004,42:339—344.
    [81]Liao YC, Feng CK, Tsai MW,et al.Shape modification of the Boston brace using a finite-element method with topology optimization. Spine,2007,32 (26):3014-3019.
    [82]Clin J, Aubin CE, Parent S, et al.Biomechanical modeling of brace design.Stud Health Technol Inform.2006,123:255-260.
    [83]Clin J, Aubin CE, Labelle H.Virtual prototyping of a brace design for the correction of scoliotic deformities. Med Biol Eng. Comput,2007,45:467-473
    [84]Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis, Spine,1993, (16): 2457-2464.
    [85]Dumas R,Lafage V,Lafon Y.et al. Finite element simulation of spinal deformities correction by in situ contouring technique. Comput Methods Biomech Biomed Engin,2005,8(5):331—337.
    [86]Azlan AM, Mohanunad AR, Ariffin ALI.The HUKM Spinal Instrumentation System for Adolescent idioPathic scoliosis.A biomechanical comparison study using finite element analysis.Med J Malaysia.2005:60SuPPIC:30-34.
    [87]Rohlmann A, Richter M, Zander T, et al. Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant. Eur Spine J.2006; 15(4):457-464.
    [88]Lalonde NM, Aubin CE, Pannetier R, et al.Finite element modeling of vertebral body stapling applied for the correction of idiopathic scoliosis:preliminary results.Stud Health Technol Inform.2008; 140:111-115.
    [89]Rohlmann A, Zander T, Burra NK,et al.Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine:a finite element analysis of different features of orthobiom.Eur Spine J,2008,17(2):217-223.
    [90]Lafon Y, Steib JP, Skalli W.Intraoperative Three Dimensional Correction During In Situ Contouring Surgery by Using a Numerical Model. Spine,2010,27. [Epub ahead of print].
    [91]Torell G,Nachemson A,Haderspeck-Grib K,et al. Standing and supine Cobb Measures in girls with idiopathic scoliosis.Spine 1985.10(5),425-427.
    [92]Klepps SJ, Lenke LG,Bridwell KH, et al. Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine.2001; 26(21), E74-E79.
    [93]Behairy Y, Hauser D, Hill D, et al. Partial correction of Cobb angle prior to posterior spinal instrumentation. Ann. Saudi Med.2000; 20(5-6),398-401.
    [94]Delorme S, Labelle H, Poitras B, et al. Pre-, intra-, and postoperative three-dimensional evaluation of adolescent idiopathic scoliosis. J Spinal Disord.2000; 13(2),93-101.
    [95]Duke K, Aubin CE, Dansereau J, et al.Computer simulation for the optimization of patient positioning in spinal deformity instrumentation surgery. Med Biol Eng Comput,2008,46(1):33-41.
    [96]汪正宇,刘祖德,王哲等。个体化侧凸躯干骨和骨盆有限元模型的建立。中华实验外科杂志,2008,25(11):1511-1513.
    [97]汪正宇,刘祖德,王哲等。脊柱侧凸前路去旋转椎体融合手术矫形的生物力学研究。中华实验外科杂志,2007,24(6):669-671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700