层状BC_x化合物的合成与第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文综述了近年来层状BCx材料的实验合成和理论计算的研究进展,提出了目前类石墨层状BCx材料研究中存在的问题。
     以石墨和非晶硼粉为原料,采用机械球磨法合成了非晶结构的BCx前驱物。在5.5 GPa压力下,对该前驱物进行了高温高压处理。当温度小于1000℃时,样品中存在结晶较好的、成分不同的BCx (x≥3)颗粒;当温度高于1000℃时,样品中只含有B4C颗粒和纯C颗粒。
     以硼酸和蔗糖为原料,采用化合热解法合成了非晶结构的BCx前驱物。在5.5 GPa压力下,对该前驱物进行了高温高压处理。温度越高,样品的晶化程度越高、电阻率则越小。
     以乙硼烷和甲烷分别作为B源和C源,采用热丝化学气相沉积的方法,制得了成分可调的、乱层石墨结构的BCx粉末。随着气源中B的含量从0增加到5.6 at.%,样品中B的含量也呈近似线性增加趋势,样品中只含有BCx相。当气源中B的含量为5.6 at.%时,合成了乱层石墨结构的BC5化合物。气源中的B含量继续增加,BCx颗粒中的B含量不再增加,而是生成了非晶B相。采用热重法对样品的热氧化行为进行了研究,发现BC5化合物比纯C具有更好的抗氧化性能。
     采用CASTEP计算软件,研究了三种成分的层状BCx化合物BC3、BC5和BC7单层内的原子排布、c轴方向的堆垛顺序、以及能带结构和态密度。BC3-sun结构、BC5-I结构和BC7-VIII结构分别是三种成分的BCx化合物中总能量最低的。形成能的计算表明,BC3、BC5和BC7化合物都是亚稳相。
     采用CASTEP计算软件,研究了O原子在BC5化合物表面上的吸附行为。研究结果发现,相对BC5化合物基表面来说,O原子更倾向于吸附在棱柱曲表面上。除了armchair1表面上的BC-b2吸附位以外,zigzag表面比armchair表面具有更负的吸附能。在本文考虑的所有吸附位中,BC-b2位具有最小的吸附能,因此是最稳定的。对于同一种表面来说,O原子倾向吸附于含有B原子的位置上。通过Mulliken布居数和态密度分析,证实了O原子在BC5化合物表面上的吸附是化学吸附。氧原子吸附于BC5化合物的zigzag表面上时的吸附能,高于在石墨zigzag表面上的。而对于armchair表面,结果却完全相反。而且当替代的B原子越靠近表面时,这种趋势越明显。
     采用DMol3计算软件,研究了O原子在BC5化合物表面上的扩散行为、以及CO分子在BC5化合物表面上的脱附行为。O原子在BC5化合物基表面上的扩散,比在石墨基表面上的扩散更容易。而对于棱柱曲表面,结果却是相反的。CO分子从BC5化合物armchair表面上脱附,要比从石墨armchair表面上更容易一些。相对石墨zigzag表面上的脱附势垒,BC5化合物zigzag1表面上的势垒更大,而zigzag2表面上的势垒则更小。
     采用CASTEP计算软件,建立了BC5和BC23的zigzag和armchair表面模型,比较了替代的B原子对不同表面氧化活性的影响。石墨、BC23和BC5的armchair形表面都比zigzag形表面更稳定。石墨、BC23和BC5的zigzag形表面的氧化活性都大于armchair形表面的。在棱柱曲表面中,armchair形表面要比zigzag形表面占有更大的比例。随着B含量的增加,armchair形表面所占比例逐渐减少,zigzag形表面所占比例逐渐增大。替代的B原子对zigzag形表面是抑制氧化,对armchair形表面是促进氧化。B原子的替代对armchair形表面的促进氧化作用,要大于对zigzag形表面的抑制氧化作用。
In this dissertation, the experiment and computation of the layered BCx materials were reviewed. Some problems in the research of the graphite-like BCx materials were proposed.
     Amorphous BCx precursors were synthesized by mechanical ball milling, in which graphite and amorphous boron powder were used as starting materials. Then the obtained precursor was treated at different temperatures and 5.5 GPa. When the temperature lower than 1000℃, some crystalline BCx grains with different compositions were found. However with the temperature higher than 1000℃, only B4C and pure carbon grains were found.
     A chemical pyrolysis process with boron acid and saccharose as starting materials was used to synthesize BC3 precursors. Then the obtained amorphous BC3 precursor was treated at different temperatures and 5.5 GPa. When the higher the temperature is, the higher the crystalline degree of the sample is, and the smaller the resistivity of the sample is.
     Turbostratic BCx powders with different compositions were synthesized by hot filament chemical vapor deposition method, in which diborane and methane were used as gas sources. When the boron concentration in the gas source increases from zero to 5.6 at.%, the boron concentration in the obtained sample also increase approximately linearly with the boron concentration in the gas source. And in this situation, the prepared samples only consist of BCx phases. When the boron concentration in the gas source is larger than 5.6 at.%, the amorphous boron phase appears in the sample. At the condition that the boron concentration in the gas source is 5.6 at.%, a turbostratic BC5 compound was obtained. The TG results indicate that the BC5 compound has higher oxidation resistance than carbon.
     Atomic arrangements in the monolayer, stacking sequences along the c-axis, energy band structures and density of states for BC3, BC5 and BC7 compounds were studied using ab initio pseudopotential density functional method within the local density approximation as implemented in CASTEP code. BC3-sun, BC5-I and BC7-VIII configurations have the lowest total energy in the constructed BC3, BC5 and BC7 structures, respectively. The calculated results of formation energy indicate that all of the BC3, BC5 and BC7 compounds are metastable.
     Adsorption of atomic oxygen on BC5 surface has been investigated using the CASTEP software. Different adsorption sites on periodic basal and prismatic surfaces have been investigated. The BC-b2 site locating on the seat of armchair surface is the most stable among all the investigated sites. Generally, adsorption of atomic oxygen is most preferable on zigzag surface and then armchair and basal surfaces. For the same kind of surface, O atom prefers to bond with B atom than C atom. The nature of adsorbent–adsorbate interactions is a chemisorption. For armchair surface, the adsorption energy on BC5 is lower than that on graphite. However for zigzag surface, the adsorption energy on BC5 is higher than that on graphite. When the more close to the edge the substituted B atom site is, this effect is more visible.
     Diffusion of atomic oxygen and desorption of CO molecule on BC5 surface have been investigated using the DMol3 software. The diffusion of atomic oxygen on BC5 basal surface is easier than on graphite basal surface. But for prismatic surface, the diffusion of atomic oxygen on BC5 is more difficult than on graphite basal surface. The desorption of CO molecule on BC5 armchair surface is easier than on graphite armchair surface. Comparing with the desorption energy barrier of CO molecule on graphite zigzag surface, the energy barrier on BC5 zigzag1 surface is larger, but it is smaller for BC5 zigzag2 surface.
     The role of substitutional boron in carbon oxidation and the oxidation reactivity of different surfaces of BCx materials were studied using the CASTEP software. Armchair surfaces of graphite, BC23 and BC5 are more stable than zigzag surfaces respectively. The oxidation reactivities of zigzag surfaces of graphite, BC23 and BC5 are larger than those of armchair surfaces, respectively. The role of substitutional boron for zigzag surface is inhibiting effect, however for armchair surface it is catalytic effect. The catalytic effect of boron for armchair surface is much larger than the inhibiting effect for zigzag surface.
引文
1贺福.碳纤维及其应用技术.北京:化学工业出版社, 2004: 78
    2贺福,王茂章.碳纤维及其复合材料.北京:科学出版社, 1995: 153-154
    3陆学东,唐铁滨,周冬梅.浅谈炭材料抗氧化性能的研究.炭素, 2001, 2: 26-28
    4 H. W. Kroto, J. R. Heath, S. C. Brien, R. F. Curl and R. E. Smalley. C60: Buckminsterfullerene. Nature, 1985, 318: 162-163
    5 S. Iijima. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58
    6 B. Gopalakrishnan and S. V. Subramanyam. Many phases of carbon. J. Sci. Education, 2002, 12: 10-19
    7 W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman. Solid C60: A new form of carbon. Nature, 1990, 347: 354-358
    8 N. N.格林伍德, A.厄恩肖著,曹庭礼等译.元素化学.北京:高等教育出版社, 1997: 417-418
    9沈曾民.新型碳材料.北京:化学工业出版社, 2003: 256
    10王光祖,院兴国.超硬材料.郑州:河南科学技术出版社, 1996: 38
    11杨海峰. C/C复合材料的高温抗氧化研究进展.炭素技术, 2000, 111: 22-28
    12王海军,王齐华,顾秀娟.碳/碳复合材料抗氧化行为的研究进展.材料科学与工程, 2003, 21: 117-121
    13 C. E. Lowell. Solid solution of boron in graphite. J. Am. Ceram. Soc., 1967, 50: 142-144
    14 Y. Hishiyama and M. Inagaki. Lattice parameter changes in graphite with boron doping. Carbon, 2001, 39: 150-152
    15 L. E. Jones and P. A. Thrower. The effect of boron on carbon fiber microstructure and reactivity. J. Chim. Phys., 1987, 84: 1431-1438
    16 T. Hagio, M. Nakamizo and K. Kobayashi. Studies on X-ray diffraction and Raman spectra of B-doped natural graphite. Carbon, 1989, 27: 259-263
    17 E. Kim, I. Oh and J. Kwak. Atomic structure of highly ordered pyrolytic graphite doped with boron. Electrochem. Commun., 2001, 3: 608-612
    18 R. Hu and T. C. Chung. Synthesis and characterization of novel B/C materials prepared by 9-chloroborafluorene precursor. Carbon, 1996, 34: 1181-1190
    19 M. Chasmawala and T. C. Chung. Synthesis of B/C materials from boron-containing phenyl acetylides. Carbon, 1997, 35: 641-650
    20 Y. J. Lee and H. Hatori. Effects of heat treatment and B doping in cellulose-derived carbon. Chem. Phys. Lett., 2002, 362: 326-330
    21 Y. Hishiyama, H. Irumano, Y. Kaburagi and Y. Soneda. Structure, Raman scattering, and transport properties of boron-doped graphite. Phys. Rev. B, 2001, 63: 245406
    22 P. Delhaès and A. Marchand. Proprietes electroniques d'un graphite polycristallin dope au bore. Carbon, 1965, 3:125-140
    23 H. Gasparoux, A. Pacault and E. Poquet. Variations thermiques du diamagnetisme et structure cristallographique d'un pyrocarbone dope au bore. Carbon, 1965, 3: 65-72
    24 J. Kouvetakis, R. B. Kaner, M. L. Sattler and N. Bartlett. A novel graphite-like material of composition BC3, and nitrogen–carbon graphites. J. Chem. Soc. Chem. Commun., 1986, 1986: 1758-1759
    25 R. M. Wentzcovitch, M. L. Cohen and S. G. Louie. Comparative study of the density of states of graphite and BC3. Phys. Lett. A, 1988, 131: 457-460
    26 D. L. Fecko, L. E. Jones and P. A. Thrower. The formation and oxidation of BC3, a new graphitelike material. Carbon, 1993, 31: 637-644
    27 M. C. Schouler, M. C. Cheynet, K. Sestier, J. Garden and P. Gadelle. New filamentous deposits in the boron-carbon system. Carbon, 1997, 35: 993-1000
    28 M. Koh and T. Nakajima. Electrochemical behaviors of carbon alloy BCx and of BCx-coated graphite prepared by chemical vapor deposition. Electrochimica Acta, 1999, 44: 1713-1722
    29 F. Saugnac and A. Marchand. C. R. On the vapor phase deposition mechanism of carbon-boron-nitrogen compounds between 800 and 1000 degrees. Acad. Sci. Paris, II, 1990, 310, 187-192
    30 F. Saugnac, F. Teyssandier and A. Marchand. Carbon-boron-nitrogen compounds obtained between 800 and 1000 degrees by low-temperature chemical-vapor-deposition. J. Chim. Phys., 1992, 89, 1453-1468
    31 A. Derré, L. Filipozzi and F. Peron. High-temperature behavior and oxidation resistance of carbon-boron-nitrogen compounds obtained by LPCVD. J. Phys. IV, 1993, 3, 195-202
    32 L. Filipozzi, A. Derré, J. Conard, L. Piraux and A. Marchand. Local order and electrical properties of boron carbonitride films. Carbon, 1995, 33, 1747-1757
    33 B. Ottaviani, A. Derré, E. Grivei, O. A. Mohamed Mahmoud, M. F. Guimon, S. Flandrois and P. Delhaès. Boronated carbons: structural characterization and low temperature physical properties of disordered solids. J. Mater. Chem., 1998, 8: 197-203
    34 S. Jacques, A. Guette, X. Bourrat, F. Langlais, C. Guimon and C. Labrugere. Lpcvd and characterization of boron-containing pyrocarbon materials. Carbon, 1996, 34: 1135-1143
    35 H. Tanaka, Y. Kawamata, H. Simizu, T. Fujita, H. Yanagisawa, S. Otanic and C. Oshima. Novel macroscopic BC3 honeycomb sheet. Solid State Commun., 2005, 136: 22-25
    36 H. Yanagisawa, T. Tanaka, Y. Ishida, M. Matsue, E. Rokuta, S. Otani and C. Oshima. Phonon dispersion curves of a BC3 honeycomb epitaxial sheet. Phys. Rev. Lett., 2004, 93: 177003
    37 R. Magri. Ordering in BxC1–x compounds with the graphite structure. Phys. Rev. B, 1994, 49: 2805-2812
    38 B. M. Way, J. R. Dahn, T. Tiedje, K. Myrtle and M. Kasrai. Preparation and characterization of BxC1–x thin films with the graphite structure. Phys. Rev. B, 1992, 46: 1697-1702
    39 C. T. Hach, L. E. Jones, C. Crossland and P. A. Thrower. An investigation of vapor deposited boron rich carbon– a novel graphite-like material– partΙ: the structure of BCx (C6B) thin films. Carbon, 1999, 37: 221-230
    40 W. Cermignani, T. E. Paulson, C. Onneby and C. G. Pantano. Synthesis and characterization of boron-doped carbons. Carbon, 1995, 33: 367-374
    41 G. G. Fuentes, E. Borowiak-Palen, M. Knupfer, T. Pichler, J. Fink, L. Wirtz and A. Rubio. Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes. Phys. Rev. B, 2004, 69: 245403
    42 T. Shirasaki, A. Derré, K. Guérin and S. Flandrois. Chemical and electrochemical intercalation of lithium into boronated carbons. Carbon, 1999, 37:1961-1964
    43 J. Y. Howe and L. E. Jones. Influence of boron on structure and oxidation behavior of graphite fiber, P120. Carbon, 2004, 42:461-467
    44 D. Tománek, R. M. Wentzcovitch, S. G. Louie and M. L. Cohen. Calculation of electronic and structural properties of BC3. Phys. Rev. B, 1988, 37: 3134-3136
    45 Q. Wang, L. Q. Chen and J. F. Annett. Stability and charge transfer of C3B ordered structures. Phys. Rev. B, 1996, 54: 2271-2275
    46 Q. Wang, L. Q. Chen and J. F. Annett. Ab initio calculation of structural properties of C3B and C5B compounds. Phys. Rev. B, 1997, 55: 8-10
    47 J. G. Naeini, B. M. Way, J. R. Dahn and J. C. Irwin. Raman scattering from boron-substituted carbon films. Phys. Rev. B, 1996, 54: 144-151
    48 J. E. Lowther. Potential super-hard phases and the stability of diamond-like boron–carbon structures. J. Phys.: Condens. Matter, 2005, 17: 3221-3229
    49 Z. Liu, J. He, J. Yang, X. Guo, H. Sun, H.-T. Wang, E. Wu, Y. Tian. Prediction of a sandwichlike conducting superhard boron carbide: First-principles calculations. Phys. Rev. B, 2006, 73: 172101
    50 Y. Ferro, A. Allouche, F. Marinelli and C. Brosset. Theoretical study of oxygen adsorption on boron-doped graphite. Surf. Sci., 2004, 559: 158-168
    51 X. Ma, Q. Wang, L. Q. Chen, W. Cermignani, H. H. Schobert and C. G. Pantano. Semi-empirical studies on electronic structures of a boron-doped graphene layer– implications on the oxidation mechanism. Carbon, 1997, 35: 1517-1525
    52 X. Ma, Q. Wang, L. Q. Chen, W. Cermignani and C. G. Pantano. Effect of boron on graphite oxidation– a theoretical study. Carbon, 1997, 35: 307-313
    53 Y. Ferro, F. Marinelli, A. Jelea and A. Allouche. Adsorption, diffusion, and recombination of hydrogen on pure and boron-doped graphite surfaces. J. Chem. Phys., 2004, 120: 11882-11888
    54 J. Kortus, I. Mazin, K. Belashchenko, V. Antropov and L. Boyer. Superconductivity of Metallic Boron in MgB2. Phys. Rev. Lett., 2001, 86: 4656-4659
    55 J. An and W. Pickett. Superconductivity of MgB2: Covalent Bonds Driven Metallic. Phys. Rev. Lett., 2001, 86: 4366-4369
    56 K.-P. Bohnen, R. Heid and B. Renker. Phonon Dispersion and Electron-Phonon Coupling in MgB2 and AlB2. Phys. Rev. Lett., 2001, 86: 5771-5774
    57 H. J. Choi, D. Roundy, H. Sun, M. L. Cohen and S. G. Louie. First-principles calculation of the superconducting transition in MgB2 within the anisotropic Eliashberg formalism. Phys. Rev. B, 2002, 66: 020513
    58 F. J. Ribeiro and M. L. Cohen. Possible superconductivity in hole-doped BC3. Phys. Rev. B, 2004, 69: 212507
    59 R. A. Jishi, M. Benkraouda and J. Braginc. Possibility of superconductivity in Mg2BC3. Phys. Lett. A, 2003, 306: 358-362
    60熊家炯.材料设计.天津:天津大学出版社, 2000: 2-31
    61廖沐真,吴国是,刘洪霖.量子化学从头计算方法.北京:清华大学出版社, 1984: 1-32
    62 M. Born and K. Huang. Dynamical Theory of Crystal Lattices. Oxford: Oxford University Press, 1954: 10-22
    63 L. H. Thomas. The calculation of atomic fields. Proc. Camb. Phil. Soc., 1927, 23: 542-548
    64 E. Fermi. Un methodo statistico per la determinazione di alcuni proprieta dellatomo. Rend. Accad. Lincei, 1927, 6: 602-607
    65 E. Fermi. A statistical method for the determination of some properties of atoms. II. Application to the periodic system of the elements. Z. Phys., 1928, 48: 73-79
    66 E. Fermi. Sulla deduzione statistica di alcune proprietádell'atomo. Applicazione alla teoria del sistema periodico degli elementi. Rend. Accad. Lincei, 1928, 7:342-346
    67 P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev., 1964, 136(3B): B864-B871
    68 W. Kohn and L. J. Sham. Self-consistent Equations Including Exchange and Correlation Effects. Phys. Rev.,1965, 140(4A): A1133-A1138
    69 J. C. Slate. Quantum theory of molecular and solid. Vol. 4.The self-Consistent Field for molecular and solids Mcgraw-Hill: New York, 1974
    70 D. R. Salahub and M. C. Zerner. The challenge of d and f electrons, ACS: Washington, D. C., 1989
    71 R. G. Parr and W. Yang. Density-functional theory of atoms and molecules. Oxford Univ. Press: Oxford, 1989
    72 J. A. Pople, P. M. W. Gill and B. G. Johnson. Kohn-Sham density-functional theory within a finite basis set. Chem. Phys. Lett., 1992, 199: 557-560
    73 B. G. Johnson and M. J. Frisch. An implementation of analytic second derivatives of the gradient-corrected density functional energy. J. Chem. Phys., 1994, 100: 7429-7432
    74 J. K. Labanowski and J. W. Andzelm. Density functional methods in chemistry. Springer-Verlag: New York, 1991
    75 D. C. Langreth and J. P. Perdew. Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works. Phys. Rev. B, 1980, 21: 5469-5493
    76 J. P. Perdew and Y. Wang. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. B, 1986, 33: 8800-8802
    77 A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38: 3098-3100
    78 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992, 46: 6671-6687
    79 J. P. Perdew, K. Burke and M. Ernzerhof. Generalized Gradient Approximation Made Simple Phys. Rev. Lett., 1996, 77: 3865-3868
    80 F. A. Hamprecht, A. J. Cohen, D. J. Tozer and N. C. Handy. Development and assessment of new exchange-correlation functions. J. Chem. Phys., 1998, 109: 6264-6271
    81 D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990, 41: 7892-7895
    82 L. R. Radovic, M. Karra, K. Skokova and P. A. Thrower. The role of substitutional boron in carbon oxidation. Carbon, 1998, 36: 1841-1854
    83 Y. J. Lee, Y. Uchiyama and L. R. Radovic. Effect of boron doping in low- and high-surface-area carbon powders. Carbon, 2004, 42: 2233-2244
    84 D. J. Allardice, Jr. P. L. Walker. The effect of substitutional boron on the kinetics of the carbon–oxygen reaction. Carbon, 1970; 8: 375-385
    85 Y. J. Lee, H. J. Joo and L. R. Radovic. Preferential distribution and oxidation inhibiting/catalytic effects of boron in carbon fiber reinforced carbon (CFRC) composites. Carbon, 2003; 41: 2591-2600
    86 D. H. Zhong, H. Sano, Y. Uchiyama and K. Kobayashi. Effect of low-level boron doping on oxidation behavior of polyimide-derived carbon films. Carbon, 2000, 38: 1199-1206
    87 J. S. Benjamin. Dispersion strengthened superalloys by mechanical alloying. Metall. Trans. A, 1970, 1: 2943-2951
    88 C. C. Koch, O. B. Calvin and C. G. Mechamey. Preparation of amorphous Ni60Nb by mechanical alloying. Appl. Phys. Lett., 1983, 43: 1017-1019
    89王成国,亓永新,彭其凤.机械合金化法在制造ODS/CDS合金中的作用.粉末冶金技术, 1994, 12(3): 225-231
    90席生歧,周敬恩,张东文.高能球磨Al-Cu合金固态合成反应研究.兵器材料科学与工程, 1996, 19(3):3-7
    91王军民,王夏冰.球磨过程中粉末的行为变化.甘肃工业大学学报, 1999, 25(1):26-30
    92 B. Yao, L. Liu and W. H. Su. Formation, characterization, and properties of a new boron-carbon-nitrogen crystal. J. Appl. Phys., 1999, 86: 2464-2467
    93朱康英.机械化学置换反应合成碳化钛和二硼化钛.稀有金属学报, 2003, 4: 21-22
    94 M. Hubá?ek and T Sato. Preparation and properties of a compound in the B-C-N system. J. Solid State Chem., 1995, 114: 258-264
    95 S. Virginie, B. Rik, S. Andrew, K. Yolande, A. Otmane, M. Bertrand and D. Alain. Evidence for the solubility of boron in graphite by electron energy loss spectroscopy. Carbon, 2000, 38: 547-554
    96 K. M. Krishnan. Structure of newly synthesized BC3 films. Appl. Phys. Lett., 1991, 58: 1857- 1859
    97 J. Y. Huang. HRTEM and EELS studies of defects structure and amorphous-like graphite induced by ball milling. Acta Mater., 1999, 47: 1801-1808
    98 O. Stéphan, P. M. Ajayan, C. Colliex, F. Cyrot-Lackmann andé. Sandré. Curvature-induced bonding changes in carbon nanotubes investigated by electron energy-loss spectrometry. Phys. Rev. B, 1996, 53: 13824-13829
    99 D. G. McCulloch and R. Brydson. Carbon K-shell near-edge structure calculations for graphite using the multiple-scattering approach. J. Phys.: Condensed. Matter., 1996, 8: 3835-3841
    100 L. A. J. Garvie, A. J. Craven and R. Brydson. Parallel electron energy-loss spectroscopy (PEELS) study of B in minerals: The electron energy-loss near-edge structure (ELNES) of the B K edge. Amer. Mineralogist, 1995, 80: 1132-1134
    101 L. A. J. Garvie, A. J. Craven and R. Brydson. Use of electron-energy loss near-edge fine structure in the study of minerals. Amer. Mineralogist, 1994, 79: 411-425
    102 P. H. Redlich, J. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger and M. Rühle. B-C-N nanotubes and boron doping of carbon nanotubes. Chem. Phys. Lett., 1996, 260: 465-470
    103 M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark and M. C. Payne. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter, 2002, 14: 2717-2744
    104 H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13: 5188-5192
    105 T. H. Fischer and J. Almlof. General methods for geometry and wave function optimization. J. Phys. Chem., 1992, 96: 9768-9774
    106 D. M. Ceperley and B. J. Alder. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett., 1980, 45: 566-569
    107 J. P. Perdew and A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 1981, 23: 5048-5079
    108 A. Janotti, S. -H. Wei and D. J. Singh. First-principles study of the stability of BN and C. Phys. Rev. B, 2001, 64: 174107
    109 H. Rydberg, M. Dion, N. Jacobson, E. Schr?der, P. Hyldgaard, S. I. Simak, D. C. Langreth and B. I. Lundqvist. Van der Waals Density Functional for Layered Structures. Phys. Rev. Lett., 2003, 91: 126402
    110 H. Sun, F. J. Ribeiro, J. -L. Li, D. Roundy, M. L. Cohen and S. G. Louie. Ab initio pseudopotential studies of equilibrium lattice structures and phonon modes of bulk BC3. Phys. Rev. B, 2004, 69: 024110
    111 K. Albe. Theoretical study of boron nitride modifications at hydrostatic pressures. Phys. Rev. B, 1997, 55: 6203-6210
    112 W. J. Yu, W. M. Lau, S. P. Chan, Z. F. Liu and Q. Q. Zheng. Ab initio study of phase transformations in boron nitride. Phys. Rev. B, 2003, 67: 014108
    113 G. Kern, G. Kresse and J. Hafner. Ab initio calculation of the lattice dynamics and phase diagram of boron nitride. Phys. Rev. B, 1999, 59: 8551-8559
    114 Y. Baskin and L. Mayer. Lattice constants of graphite at low temperatures. Phys. Rev., 1955, 100: 544-544
    115 V. L. Solozhenko, G. Will and F. Elf. Isothermal compression of hexagonal graphite-like boron nitride up to 12 GPa. Solid State Commun., 1995, 96: 1-3
    116 Y. -N. Xu and W. Y. Ching. Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B, 1991, 44: 7787-7798
    117何巨龙. B-C-N新材料的实验合成与相关材料的第一性原理研究.燕山大学工学博士学位论文, 2003
    118 D. W. Mckee, C. L. Spiro and E. J. Lamby. The effects of boron additives on the oxidation behavior of carbons. Carbon, 1984, 22(6): 507-511
    119 L. E. Jones and P. A. Thrower. Influence of boron on carbon fiber microstructure, physical properties, and oxidation behavior. Carbon, 1991, 29(2): 251-269
    120 R. S. Mulliken. Electronic population analysis on LCAO-MO molecular wave functions. J. Chem. Phys., 1955, 23: 1833-1840
    121 M. D. Segall, R. Shah, C. J. Pickard and M. C. Payne. Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B, 1996, 54: 16317-16320
    122 B. Delley. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys., 1990, 92: 508-517
    123 B. Delley. From molecules to solids with the DMol3 approach. J. Chem. Phys., 2000, 113: 7756-7764
    124 J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45: 13244-13249
    125 B. Delley. Hardness conserving semilocal pseudopotentials Phys. Rev. B, 2002, 66: 155125- 155133
    126 D. R. Hamann, M. Schluter and C. Chiang. Norm-conserving pseudopotentials. Phys. Rev. Lett., 1979, 43: 1494-1497
    127 P. Pulay. Convergence acceleration of iterative sequences the case of scf iteration. Chem. Phys. Lett., 1980, 73: 393-398
    128 D. Lamoen and B. N. J. Persson. Adsorption of potassium and oxygen on graphite: a theoretical study. J. Chem. Phys., 1998, 108: 3332-3341
    129 P. Giannozzi, R. Car and G. Scoles. Oxygen adsorption on graphite and nanotubes. J. Chem. Phys., 2003, 118: 1003-1006
    130 Z. H. Zhu, L. R. Radovic, G. Q. Lu and X. X. Wu. Computational chemistry of zigzag and armchair sites in carbon oxidation. 25th biennial conference on carbon. Lexington: American carbon society, 2001
    131 X. Y. Zhu, S. M. Lee, Y. H. Lee and T. Frauenheim. Adsorption and desorption of an O2 molecule on carbon nanotubes. Phys. Rev. Lett., 2000, 85: 2757-2760
    132 X. X. Wu and L. R. Radovic. Catalytic oxidation of carbon/carbon composite materials in the presence of potassium and calcium acetates. Carbon, 2005, 43: 333-344.
    133 J. M. Thomas and C. Roscoe. The influence of boron on the reactivity of the graphite crystals. In: 2nd conference on carbon and graphite, London: Society of chemical industry; 1965, 249-257
    134 M. Karra, R. J. Zaldivar, G. S. Rellick, P. A. Thrower and L. R. Radovic. Substitutional B in carbon oxidation: inhibitor or catalyst. In 22nd Biennial conference on carbon, UC San Diego. California, USA: American carbon society; 1995, 646-647

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700