硅酸盐基磷光体的制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅酸盐磷光体是一类重要的光致发光材料,具有优异的化学物理性能和抗紫外辐射性能,成为近年来国内外学者们研究的热点。但是大部分硅酸盐磷光体的发光效率和余辉时间有待改进,故离产业化还有一定的差距,有必要通过研究组成变化进一步提高其发光性能。此外,合成硅酸盐磷光体主要采用的是传统的固相混料高温煅烧法,存在能耗高和因混料带来性能不稳定等固有缺陷,而且合成产物的粒径和形貌有待进一步改善。同时,如何开发非金属离子激活的硅酸盐磷光体,对于拓宽硅酸盐基磷光体的应用范围也具有重要意义。本文通过吸收磷光体材料相关机理和制备技术的最新研究结果,致力于探索组成关系和合成方法,制备出性能优越且形貌可控的硅酸盐磷光体。论文中详细地研究了碱土金属硅酸盐磷光体各组分对其发光性能的影响,开发了不同的湿化学法制备高性能磷光体,探索了温度、催化剂、合成方法及产物形貌等因素与磷光体发光性能的关系,并采用热重-差热分析(TG-DTG)、X-射线衍射(XRD)、荧光光谱(PL)、傅立叶变换红外光谱(FT-IR)、扫描电镜(SEM)、透射电镜(TEM)等表征手段对产物的结构和性质进行了分析。具体研究内容和结果如下:
     1.在基质Sr_2MgSi_2O_7中,RE~(3+)(RE=Ce,Nd,Gd)可有效地把能量传递给发光中心Eu~(2+)。本论文通过系统地研究碱土含镁硅酸盐磷光体的组成关系,探讨了磷光体各组分对其发光性能的影响。结果表明,通过改变SrO与SiO_2的比率,基质组成的变化引起磷光体发射光谱位置和发射峰强度的变化;RE~(3+)(RE=Ce,Nd,Gd)作为共掺杂的稀土离子对磷光体各个方面性能有着积极的影响,来自RE~(3+)的能量传递是提高磷光体发光性能关键所在。这就为研究碱土硅酸盐磷光体在紫外可见激发下的发光机理、改善商用硅酸盐磷光体的发光性能打下了基础。
     2.为了克服传统制备方法带来的固有缺陷,本论文尝试纳米包覆法和共沉淀法合成了碱土金属硅酸盐超细磷光体,并研究了样品的发光性能。研究结果表明:两种方法合成的磷光体在发光强度和余辉性能方面都有明显的提高。采用纳米包覆法制备的前驱物具有核壳结构形貌,对这种特殊结构的形成过程作了推断,并通过多方面分析肯定了这种形貌前驱物对于合成Sr_3MgSi_2O_8:Eu~(2+),Dy~(3+)磷光体在各个方面性能的促进作用;APTES共沉淀法制备的Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)硅酸盐磷光体具有可直接应用的超细颗粒度,而作为制备前驱物的硅源,APTES其特殊的厌水亲油性决定了合成出磷光体的优越性能。
     3.进一步考察了形貌控制对于硅酸盐磷光体发光性能的影响,基于范德华力和氢键作用力的特点,本论文通过改进的溶胶凝胶法,制备了微米级球形磷光体。研究结果表明:微米级球形颗粒可以很有效改善磷光体的发光性能;通过改变制备前驱物中氨水的量可以在一定程度上控制球形颗粒的大小;而继续增加氨水的量,可以实现从Sr_2MgSi_2O_7到Sr_3MgSi_2O_8基质晶格的转变,从而引起了光谱和余辉性能各方面的变化。
     4.为了突破光谱位置方面的局限性,又兼顾硅酸盐磷光体基质的优点,针对硅铝酸盐磷光体材料的研究逐渐成为该领域的热点之一。本论文采用醇盐水解溶胶凝胶法分别制备了SrAl_2Si_2O_8:Eu~(2+),Dy~(3+)磷光体与Sr_2Al_2SiO_7:Ce~(3+),Tb~(3+)磷光体,对比高温固相法合成磷光体,发光性能有显著的提高。特别是Sr_2Al_2SiO_7:Ce~(3+),Tb~(3+)白色磷光体,其颗粒形貌呈准球形,同时可以通过调节浓度观察到Tb~(3+)和Ce~(3+)之间的能量传递。
     5.为了进一步拓宽硅酸盐基磷光体的理论研究深度和应用范围,本论文研究了非金属离子激活的无定型二氧化硅发光球体。提出了一种在碱性条件下合成微米范围内可调控的单分散发光硅球新方法,不需要加入有机或者无机的荧光团:用水热法制备了具有核壳结构的空心发光硅球,这种核壳结构空心球体在紫外光照射下具有蓝色的发射光谱。
Afterglow phosphor is a kind of photoluminescence material which can absorb the excitation energy and slowly release the visible light after shutting down the stimulate source. Because of its unique chemical and physical characteristics, afterglow phosphor has an unexpectedly large field of applications, such as safety exigence, transportation, building anddecorating...... Recently, silicate-based phosphor attracted much attention and became aninteresting topic in the field of afterglow luminescent materials because of their excellent chemical and physical properties and UV radiation resistance. However, compared with aluminate phosphor, silicate phosphor has relatively poor performance in luminescence efficiency and afterglow characteristic. It is necessary to study the relationship between the crystal structure and luminescence properties of silicate-based phosphor to further enhance its luminescent properties. Also, its synthetic route is the traditional solid-state reaction. The shortcomings of this approach are the need for high-temperature and long-time calcination. The unreacted phases appeared easily which reduced greatly its luminescent brightness and afterglow characteristic. Therefore, wet chemical approach to prepare silicate-based phosphor semms to be an attractive alternative. Especially in recent years, well-control over phosphor's particle size and morphology to improve its luminescnt performance through the wet chemical approach became the goal of researchers' studies. Meanwhile, because of its moderate synthetic conditions and controllable luminescence scope, non-metallic ions activated silicate-based phosphor has attracted people's great interest. In the dissertation, with the recently development in synthetic technology and phosphor formation mechanism, we hope to overcome the above motioned question, develop effective silicate phosphor synthesis method, and improve the luminescent properties and morphology control of silicate phosphor. XRD, PL, FT-IR, TG-DTG, TEM, and SEM adsorption were used to characterize the silicate phsophor. The results are listed below:
     1. The relationship between the crystal structure and luminescence properties of silicate-based phosphor was systematic studied to further enhance its luminescent properties. The results showed that different ratio of SrO to SiO_2 in matrix lattice resulted in the variations of emission spectrum and intensity; Because of relatively lower concentration、trap density and depth of luminescence center Eu~(2+), luminescence intensity and afterglow performance is poorer in rich-Sr crystal phase; RE~(3+) (RE = Ce, Nd, Gd) as a co-doping rare earth ions has positive impact on the various aspects of phosphor performance and the persistent energy transfer from RE~(3+) to Eu~(2+) is the key to explain this phenomenon.
     2. Different wet chemical synthesis ways were applied to improve all aspects of alkine earth silicate phosphors' performance. Long afterglow silicate phosphor which prepared by nano-coating method have better luminescence intensity and afterglow characteristic. Its precursor particles had core-shell structure and quasi-spherical morphology. This particular precursor's structure has great influence on the phosphor's performance in all aspects. Long afterglow silicate phosphor was also prepared by (aminopropyl)-triethoxysilane (APTES) co-precipitation method. Effects of synthetic temperature on the crystal characteristics, luminescent properties and afterglow performance of phosphors have been discussed in detail.
     3. By using modified sol-gel method, micron-size spherical Sr_2MgSi_2O_7:Eu~(2+), Dy~(3+) and Sr_3MgSi_2O_8:Eu~(2+), Dy~(3+) phosphor were obtained. With increasing the volume of ammonia in the preparation of the precursor, the phosphor's particle size can be controlled to some extent. Further insceasing the ratio, it can be realized from Sr_2MgSi_2O_7 to Sr_3MgSi_2O_8 matrix lattice changes, which caused a series of changes in spectral properties and decay curves of as-synthesized phosphors.
     4. Rare earth activated silicate aluminate phosphor SrAl_2Si_2O_8:Eu~(2+),Dy~(3+) and Sr_2Al_2SiO_7: Ce~(3+),Tb~(3+) were prepared by the alkoxide sol-gel method. The resluts showed that phosphor prepared by alkoxide sol-gel method can provide more luminescent intensity and better afterglow characteristic compared with the same phosphor prepared by solid-state method. Especially for Sr_2Al_2SiO_7:Ce~(3+),Tb~(3+) white phosphor, the emission spectra of the samples with different doping concentrations showed that the Tb~(3+) emission was dominant because of the persistent energy transfer from Ce~(3+).
     5. Non-metallic ions activation amorphous silicon dioxide luminescent sphere were also studied in this thesis. A new class of monodisperse, luminescent silica spheres were produced upon calcination of hybrid amine-functionalized silica spheres. Silica microcapsules (hollow spheres) were synthesized successfully by combination of CTAB- stabilized water/oil emulsion system with mediated hydrothermal method. More importantly, it is also observed that under ultraviolet light excitation such a hollow core-shell structure spheres would emit blue light.
引文
[1] Donald S M. Luminescence and Spectroscopy. Journal of Luminescence, 2002, 100: 47-55.
    
    [2]徐叙瑢,苏勉曾.发光学与发光材料.北京:化学工业出版社,2004.
    
    [3]罗昔贤,林广旭,肖志强等.长余辉发光材料研究进展.发光学报,2002,23(5):497-502.
    
    [4] Lin Y H, Tang Z L, Zhang Z T et al. Preparation of A New Long Afterglow Blue-emitting Sr_2MgSi_2O_7-based Photoluminescent Phosphor. Journal of Materials Science Letters, 2001,20: 1505-1506.
    
    [5] Jiang L, Chang C K, Mao D L et al. A New Long Persistent Blue-emitting Sr_2ZnSi_2O_7:Eu~(2+), Dy~(3+) Prepared by Sol - gel Method. Materials Letters, 2004, 58: 1825-1829.
    
    [6]李成宇,王淑彬,苏锵等.Eu~(2+),Dy~(3+)共掺杂硼铝锶长余辉玻璃陶瓷.发光学报,2002,23(3): 233-237.
    
    [7]史艳宁,何大伟,梁忠益.Ba_2MgSi_2O_7:RE荧光粉发光性能的研究.光谱学与光谱分析, 2006,26(5):809-811.
    
    [8] Barry L. Luminescent Properties of Eu~(2+) and Eu~(2+), Mn~(2+) Activated BaMg_2Si_2O_7. Journal of TheElectrochemical Society, 1968,117(3): 381-385.
    
    [9] Poort S H M, Meyerink A, Blasse G. Lifetime measurements in Eu~(2+) doped host lattices.Journal of Physics and Chemistry of Solids, 1997,58(9): 1451-1456.
    
    [10] Barry L. Fluorescence of Eu~(2+) Activated Phase in Binary Alkaline Earth OrthosilicateSystems. Journal of The Electrochemical Society, 1968,115(11): 1181-1183.
    
    [11] Barry L. Equilibria and Eu~(2+) Luminescence of Subsolidus Phase Bounded by Ba_3MgSi_2O_8, Sr_3MgSi_2O_8, Ca_3MgSi_2O_8. Journal of The Electrochemical Society, 1968, 115(7):733-738.
    
    [12]周永惠,林君,张洪杰.纳米发光材料研究的若干进展.化学研究与应用,2001,13:117-122.
    
    [13] Lin C K, Yu M, Cheng Z Y et al. Bluish-White Emission from Radical Carbonyl Impurities in Amorphous Al_2O_3 Prepared via the Pechini-Type Sol-Gel Process. Inorganic Chemistry, 2008,47: 49-55.
    
    [14] Hayakawa T, Hiramitsu A, Nogami M. White Light Emission From RadicalCarbonyl-terminations in Al_2O_3-SiO_2 Porous Glasses with High Luminescence QuantumEfficiencies. Applied Physics Letters, 2003,82(18): 2975-2977.
    
    [15] Green W H, Khoa P L, Jonathan G et al. White Phosphors from a Silicate- CarboxylateSol-Gel Precursor That Lack Metal Activator Ions. Science, 1997, 276(20): 1826-1828.
    
    [16] Kang K S, Kim J H. Origin of Blue Luminescence from a Hybrid Sol-Gel after ThermalProcessing. The Journal of Physical Chemistry C, 2008,112:6 18-620.
    
    [17] So'nia S N, Lui's M, Rute A S F et al. Energy Transfer and Emission Quantum Yieldsof Organic-Inorganic Hybrids Lacking Metal Activator Centers. The Journal of PhysicalChemistry C, 2007,111: 3275-3284.
    
    [18] Tomoko Y, Takashi U. Photoluminescence Decay Dynamics of Transparent Silica GlassPrepared from Nanometer-sized Silica Particles. Applied Physics Letters, 2005, 87:081904-081906.
    
    [19] Takashi U, Tomoko Y. White Light Emission from Transparent SiO_2 Glass Prepared fromNanometer-sized Silica Particles. Applied Physics Letters, 2004,85(7): 1164-1166.
    
    [20] Tatyana B, VlasoulaB, Panagiotis L. Photoluminescence from Sol-Gel Organic/InorganicHybrid Gels Obtained through Carboxylic Acid Solvolysis. Chemistry of Materials,2003,15: 1855-1859.
    
    [21] Natsuko S, Takashi U. Visible Luminescence from Octadecylsilane Monolayers on SilicaSurfaces: Time-resolved Photoluminescence Characterization. Applied Physics Letters,2005,87: 251923-251925.
    
    [22]李建宇,稀土发光材料及其应用.化学工业出版社出版,2003.
    
    [23]方俊鑫,陆栋,固体物理学(下册).上海科学技术出版社出版,1981.
    
    [24]孙家跃,杜海燕,胡文祥,固体发光材料.化学工业出版社出版,2003.
    
    [25]徐叙珞,发光材料与显示技术.化学工业出版社出版,2003.
    
    [26] Bhargava R N. Physics Review Letter, 1994,72: 416-419.
    
    [27] Blasse G. Luminescent Materials. Berlin-Heidelberg:Springer-Verlag, 1994.
    
    [28] Chen S J, Yu Z, Hong J M et al. Preparation and Characterization of Fine Sr_2CeO_4 BluePhosphor Powders. Solid State Communications, 2004,130: 281-285.
    
    [29] van Dijken A, Vanmaekelbergh D, Meijerink A. The luminescence of Nano-crys tallineZnO particles: the Mechanism of the Ultraviolet and Visible Emission. Journal ofLuminescence, 2000,87-89:454-456.
    
    [30] Yang J, Kong D Y, Liu, Lin J. Y_2O_3:Eu~(3+) Microspheres: Solvothermal Synthesis andLuminescence Properties. Crystal Growth & Design, 2007,7(4): 730-735.
    
    [31] Kang Y C, Park S B. Preparation of Y_2O_3:Eu Phosphor Particles of Filled Morphology atHigh Precursor Concentrations by Spray Pyrolysis. Advanced Materials, 2000,12(6):451-453.
    
    [32] Yoshiyuki K, Takahashi I, Naoto K et al. Synthesis of High-Brightness Sub- micrometerY_2O_2S Red Phosphor Powders by Complex Homogeneous Precipitation Method. Chemistry ofMaterials, 2006,18: 6303-6307.
    
    [33] Lin J H, Dong Y, Park B et al. Does Ce~(4+) Play a Role in the Luminescence of LaPO_4:Ce?Journal of Alloys and Compounds, 1995,225: 124-128.
    
    [34] Felix M, Frank C. Biofunctionalization of Fluorescent Rare-Earth-Doped LanthanumPhosphate Colloidal Nanoparticles. Angewandte Chemie International Edition, 2004,43:5954-5957.
    
    [35] Riwotzki K. Colloidal YVO_4:Eu and YP_(0.95)V_(0.05)O_4:Eu Nanoparticles: Luminescence and EnergyTransfer Processes. The Journal of Physical Chemistry B, 2001,105: 12709-12713.
    
    [36] Wang F, Liu X G. Multicolor Tuning of (Ln, P)-Doped YVO_4 Nanoparticles by Single-Wavelength Excitation. Angewandte Chemie International Edition, 2007,46: 1-5.
    
    [37] Dexter D L, Theory of concentration quenching in inorganic phosphors. The Journal of Chemical Physics, 1954,22(6): 1063-1070.
    
    [38]林元华,张中太等.掺杂稀土的xSrO·yAl_2O_3系长余辉发光材料的制备及其光学性能.功能材料, 2001,32(3):325-327.
    
    [39] Machida K. Luminescence properties of Eu(II)-borates and Eu~(2+)- activated Sr- Borates.Journal of Luminescence, 1979,21(1): 101-110.
    
    [40] Aitasalo T, Jungner H, Lastusaari M. Thermoluminescence Study of PersistentLuminescence Materials: Eu~(2+)- and R~(3+)-Doped Calcium Aluminates, CaAl_2O_4:Eu~(2+),R~(3+). TheJournal of Physical Chemistry B, 2006,110: 4589-4598.
    
    [41] Aitasalo T, Jungner H, Krupa J C et al. Persistent Luminescence Phenomena in MaterialsDoped with Rare Earth Ions. Journal of Solid State Chemistry, 2003,171: 114-122.
    
    [42] Palilla F C, Tomkus M R. Fluorescent Properties of Alkaline Earth Aluminates of theType MAl_2O_4: Activated by Divalent Europium. Journal of The Electrochemical Society,1968,115(5): 642-645.
    
    [43] Katsumata T, Sasajima K, Komuro S. Effects of Composition on the Long PhosphorescentSrAl_2O_4:Eu~(2+),Dy~(3+) Phosphor Crystals. Journal of The Electrochemical Society, 1997,144:L243-L245.
    
    [44]宋庆梅,陈暨跃,铝酸锶铕的合成与发光研究.发光学报,1991,12(2):144-148.
    
    [45]Lin Y H, Zhang ZT. Anormalous Luminescence in Sr_4Al_(14)O_(25):Eu, Dy Phosphors. Applied PhysicsLetters, 2002,81(6): 996-999.
    
    [46] Matsuzawa T, Takeuchi N, Murayama Y. A New Long Phosphorescent Phosphor with High Brightness, SrAl_2O_4:Eu~(2+),Dy~(3+). Journal of The Electrochemical Society, 1996,143 (8): 2670-2673.
    
    [47] Katsumata T, Sasajima K, Matsuzawa T. Growth and Characteristics of Long PersistentSrAl_2O_4 and CaAl_2O_4-based Phosphor Crystals by a Floating Zone Technique. Journal ofCrystal Growth, 1998,183: 361-365.
    
    [48] Phaedon A. A Tunneling Model for the Decay of Luminescence in Inroganic Phosphors:The Case of Zn_2SiO_4:Mn. Journal of Chemical Physics, 1981,74(8): 4347 -4355.
    
    [49] Chang I F. Treatment of Thermostimulated Luminescence, Phosphorescence, andPhotostimulated Luminescence with a Tunneling Theory. Journal of Applied Physics,1982,53(8): 5873-5875.
    
    [50] Tuomas A, Jungner H, Lastusaari M. Mechanisms of Persistent Luminescence in Eu~(2+),RE~(3+)doped Alkaline Earth Aluminates. Journal of Luminescence, 2001,94-95: 59-63.
    
    [51]施朝淑,戚泽明.长余辉(寿命)发光材料研究的最新进展.无机材料学报,2004.19(5): 961-964.
    
    [52] Jia D D. Enhanced V_K~(3+) Center Afterglow in MgAl_2O_4 by Doping with Ce~(3+). Journal ofLuminescence, 2003,101: 115-121.
    
    [53] Justel T, Ronda C, New Developments in the Field of Luminescent Materials for Lightingand Displays. Angewandte Chemie International Edition, 1998,37: 3084-3103.
    
    [54] Lin Y H, Zhang Z T, Tang Z L et al. Luminescent Properties of a New Long AfterglowEu~(2+) and Dy~(3+) Activated Ca_3MgSi_2O_8 Phosphor. Journal of The European Ceramic Society,2001,21: 683-685.
    
    [55] Wu Z C, Wang J, Gong M L et al. Synthesis and Luminescent Properties of Sr_4Al_(14)O_(25):Eu~(2+)Blue-green Emitting Phosphor for White Light-Emitting Diodes (LEDs). Journal ofMaterial Science: Material Electron, 2008,19: 339-342.
    
    [56] Kuang J Y, Zhang J X, White-light-emitting Long-lasting Phosphorescence in Dy~(3+)-dopedSrSiO_3. Journal of Solid State Chemistry, 2006,179: 266-269.
    
    [57] Kim J S, Park Y H, Choi J C et al. Luminescent and Thermal Properties of Full-colorEmitting X_3MgSi_2O_8:Eu~(2+),Mn~(2+) (X =Ba,Sr,Ca) Phosphors for White LED. Journal ofLuminescence, 2007,122-123: 583-586.
    
    [58]徐如人,庞文琴,无机合成与制备化学.北京:高等教育出版社,2001,6.
    
    [59] Yu M, Zhou Y H, Wang S B et al. Sol-gel Deposition and Luminescent Properties of Oxyapatite Ca_2(Y, Gd)_8(SiO_4)_6O_2 Phosphor Films Doped with Rare Earth and Lead Ions. Journal of Materials Chemistry, 2002,12: 86-91.
    
    [60]朱维波,宁桂玲,林源等.Sol-Gel纳米包覆技术合成SrAl_2O_4:Eu~(2+),Dy~(3+)磷光体研究.大连理 工大学学报,2004,44(1):48-50.
    
    [61] Tuomas A, Jungner H, Lastusaari M. Sol-gel Processed Eu~(2+) Doped Alkaline EarthAluminates. Journal of Alloys and Compounds, 2002,341: 76-78.
    
    [62] Lu Y Q, Xiong Y H, Wang D, Yin Q R. SrAl_2O_4:Eu~(2+), Dy~(3+) Phosphors Derived From a New Sol - gelRoute. Microelectronics Journal, 2004,35: 379-382.
    
    [63] Jiang L, Mao D L, Zhang B. A New Long Persistent Blue-emitting Sr_2ZnSi_2O_7:Eu~(2+), Dy~(3+)Prepared by Sol - gel Method. Materials Letters, 2004,58: 1825-1829.
    
    [64] Ji H M, Lv Y, Lu H X, A New Phosphor with Flower-like Structure and LuminescentProperties of Sr_2MgSi_2O_7: Eu~(2+), Dy~(3+) Long Afterglow Materials by Sol - gel Method. Journalof Sol-Gel Science Technology, 2007,44: 133-137.
    
    [65]张希艳,王晓春,溶胶-凝胶法制备SrAl_2O_4:Eu~(2+),Dy~(3+)纳米发光材料.硅酸盐学报,2003,31: 268-271.
    
    [66] Chen Q W, An L Q, Wang S W et al. A Novel Co-precipitation Synthesis of A New Phosphor Lu_2O_3:Eu~(3+). Journal of the European Ceramic Society, 2007,27: 191-197.
    
    [67] Yuan F L, Ce-doped YAG Phosphor Powders Prepared by Co-precipitation and Heterogeneous Precipitation. Materials Science and Engineering B, 2004,107: 14-18.
    
    [68] Yan B, Chemical Co-precipitation Composition of Hybrid Precursors to SynthesizeY_(0.5-x)Dy_xLi_(1.5)VO_4 Microcrystalline Phosphors. Materials Letters, 2007,61: 482-484.
    
    [69] Chang C K, Jiang L, Mao D L et al. Luminescence of Long-lasting CaAl_2O_4:Eu~(2+), Nd~(3+) Phosphorby Co-precipitation Method. Materials Chemistry and Physics, 2006,98: 509-513.
    
    [70] Sun Y, Lee M, Lee B I et al. Photoluminescent Properties of Y_2O_3:Eu~(3+) Phosphors Preparedvia Urea Precipitation in Non-aqueous Solution. Journal of Luminescence, 2004,109:85-91.
    
    [71] Li Y Z, Zhang Z H, Liu W J, Precipitation Synthesis of Sr_2MgSi_2O_7:Eu~(2+) Phosphor and ItsLuminescent Properties under Vacuum Ultraviolet Excitation. Electrochemical andSolid-State Letters, 2006,9(10): J37-J39.
    
    [72] Lu S W, Lee B I, Tong W et al. Synthesis and Luminescent Properties of Mn~(2+) Doped Zn_2SiO_4Phosphors by A Hydrothermal Method. Journal of Physics and Chemistry of Solids, 2001, 62:777-781.
    
    [73] Wan J X, Chen X Y, Qian Y T et al. Shape-Induced Enhanced Luminescent Properties ofRed Phosphors: Sr_2MgSi_2O_7:Eu~(3+) Nanotubes. European Journal of Inorganic Chemistry, 2005:4031-4034.
    
    [74] Peng T Y, Pu X L, Hu B et al. Combustion Synthesis and Photoluminescence of SrAl_2O_4:Eu, DyPhosphor Nanoparticles. Materials Letters, 2004. 58: 352-356.
    
    [75] Qiu Z F, Lu M K, Zhang A Y, Ma Q, Combustion Synthesis of Long-persistent LuminescentMAl_2O_4:Eu~(2+), R~(3+) (M = Sr, Ba, Ca, R = Dy, Nd and La) Nanoparticles and LuminescenceMechanism Research. Acta Materialia, 2007,55: 2615-2620.
    
    [76] Bhatkar V B, Moharil S V. Combustion Synthesis of Silicate Phosphors. Optical Materials,2007,29: 1066-1070.
    
    [77]宋庆梅,黄锦斐,吴茂钧,铝酸锶铕的合成与发光的研究.发光学报,1991,12(2):144-149.
    
    [78]松尺隆嗣,日本第248回荧光体同学会讲演稿,1993.
    
    [79] Song Q M, Wu Y Z, A Study on Luminescence of Mg Doped SrAl_2O_4:Eu Phosphors. Journal of Fudan University (Natural Science), 1995,34(1): 103-106.
    
    [80]肖志国编著,蓄光型发光材料及其制品.北京:化学工业出版社,2002.
    
    [81] Zhao C L, Synthesis of CaA1204:Eu, Nd Long Persistent Phosphor by Combustion Processesand Its Optical Properties. Materials Letters, 2007,61: 3673-3675.
    
    [82] Yamamoto H, Mechanism of long phosphorescence of SrAl_2O_4:Eu~(2+), Dy~(3+) and CaAl_2O_4:Eu~(2+), Nd~(3+).Journal of Luminescence, 1997,72-74: 287-289.
    
    [83] Yuan Z X, Mao D L, Ying W J, Effect of Composition on The Luminescent Properties ofSr_4Al_(14)O_(25): Eu~(2+), Dy~(3+) Phosphors. Journal of Alloys and Compounds, 2004,377: 268-271.
    
    [84] Zhao C L, Yuan Y H, Wu M, Synthesis of Sr_4Al_(14)O_(25):Eu~(2+),Dy~(3+) Phosphor Nanometer Powdersby Combustion Processes and Its Optical Properties. Materials Science and EngineeringB, 2006,133: 200-204.
    
    [85] Tang Z L, Zhang Z T, Lin Y H et al. Luminescent Properties of SrAl_2O_4: Eu, Dy MaterialPrepared by the Gel Method. Journal of the European Ceramic Society, 2000, 20:2129-2132.
    
    [86] Niittykoski J, H(?)ls(?) J, Jungner H. Effect of Boron Substitution on the Preparationand Luminescence of Eu~(2+) Doped Strontium Aluminates. Journal of Alloys and Compounds,2004,374: 108-111.
    
    [87] ZhongRX, Zhang X, Lu S Z, Wang X J, Energy Transfer and Red Phosphorescence in StrontiumAluminates Co-doped with Cr~(3+), Eu~(2+) and Dy~(3+). Journal of Luminescence, 2006,119-120:327-331.
    
    [88] He Z Y, Yen W M. Investigation on Charging Processes and Phosphorescent Efficiencyof SrAl_2O_4:Eu,Dy. Journal of Luminescence, 2006,119-120: 309-313.
    
    [89] Wu S L, Yang J Z, Influence of Microwave Process on Photoluminescence of Europium-dopedStrontium Aluminate Phosphor Prepared by a Novel Sol-gel-microwave Process. MaterialsChemistry and Physics, 2007,102: 80-85.
    
    [90] Liu Y. Influence of Calcining Temperature on Photoluminescence and Triboluminescence of Europium-Doped Strontium Aluminate Particles Prepared by Sol-Gel Process. The Journal of Physical Chemistry B, 2003,107(17): 3991-3995.
    
    [91] Clabau F, Jobic S, Deniard P et al. Mechanism of Phosphorescence Appropriate for theLong-Lasting Phosphors Eu~(2+)-Doped SrAl_2O_4 with Codopants Dy~(3+) and B~(3+). Chemistry ofMaterials, 2005,17: 3904-3912.
    
    [92] Alexander O J. The Excitation Spectra of Various Silicate Phosphor. Journal of TheElectrochemical Society, 1952,99: 159-163.
    
    [93] Lin Y H, Zhang Z T, Zhang Z L et al. Luminescence of Eu~(2+) and Dy~(3+) Activated R_3MgSi_2O_8-based(R=Ca,Sr,Ba) Phosphor. Journal of Alloys and Compounds, 2003. 348: 76-79.
    
    [94]罗昔贤,林广旭,肖志国等.新型硅酸盐长余辉发光材料.发光学报,2003,24(2):165-170.
    
    [95]翟永清,刘红梅,王德龙等.新型铝硅酸盐磷光体的结构及性能研究.人工晶体学报, 2008,37(1):141-146.
    
    [96] Tanii M Y, Mechanism of Long-lasting Phosphorescence Process of Ce~(3+)-doped Ca_2Al_2SiO_7Melilite Crystals. Physical Review B, 2002, 65: 235108-235111.
    
    [97] Jiang L, Mao D L, Feng C, Luminescent Properties of CaMgSi_2O_6-based Phosphors Co-dopedWith Different Rare Earth Ions. Journal of Alloys and Compounds, 2004,377: 211-215.
    
    [98] Lin Y H, Zhou X S, Wu J B et al. Preparation and Characterization of Long AfterglowM_2MgSi_2O_7-based (M: Ca, Sr, Ba) Photoluminescent Phosphors. Materials Chemistry andPhysics, 2003,82: 860-863.
    
    [99] Smith A L. Journal of The Electrochemical Society, 1949,96: 287.
    
    [100] Blasse G, Bril A. Fluorescence of Eu~(2+)activated silicates. Philips Research Reports, 1968,23: 189.
    
    [101] Blasse G. Philips Technical Review, 1970,31: 304.
    
    [102] Barry T L. Fluorescence of Eu~(2+) activated phases in binary alkaline earth orthosilicatesystems. Journal of The Electrochemical Society, 1968,115: 1181-1182.
    
    [103] Barry T L. Equilibria and Eu~(2+)luminescence of subsolidus phase bounded byBa_3MgSi_2O_8:Eu~(2+),Dy~(3+), Sr_3MgSi_2O_8:Eu~(2+),Dy~(3+), Ca_3MgSi_2O_8:Eu~(2+),Dy~(3+). Journal of TheElectrochemical Society, 1968,115: 733-735.
    
    [104] Barry T L. Journal of The Electrochemical Society, 1970,117: 381.
    
    [105] Lehman W. Inorganic Phosphors, 2004. edited by Yen W M and Weber M J, CRC, Boca Raton.
    
    [106] Xiao Z Z. U.S. Patent. No. 6-093-346: Jul. 25, 2000.
    
    [107]肖志国,肖志强,硅酸盐长余辉发光材料及其制造方法.中国专利.ZL98105078.
    
    [108]姚光庆,张亮,苏勉曾,Eu~(2+)和Mn~(2+)在Sr_3MgSi_2O_8中的光致发光研究.高等学校化学学报, 1997,18(1):1-5.
    
    [109] Kim J S, Park Y H, Choi J C et al. White-light-emitting Eu~(2+) and Mn~(2+) Codoped SilicatePhosphors Synthesized Through Combustion Process. Solid State Communications,2005,136: 504-507.
    
    [110] Kim J S, Park Y H, Choi J C et al. Color Tunability and Stability of Silicate Phosphor for UV-Pumped White LEDs. Journal of The Electrochemical Society, 2005, 152(2): H29-H32.
    
    [111] Kim J S, Park Y H, Choi J C et al. Color Tunability of Nanophosphors by Changing Cationsfor Solid-state Lighting. Solid State Communications, 2006,137: 187-190.
    
    [112] Kim J S, Park Y H, Choi J C et al. White-light Generation Through Ultraviolet-emittingDiode and White-emitting Phosphor. Applied Physics Letters, 2004,85(17): 3696-3698.
    
    [113] Abea S, Toda K, Sato M, Luminescent Properties of Red Long Persistence Phosphors,BaMg_2Si_2O_7:Eu~(2+), Mn~(2+). Journal of Alloys and Compounds, 2006,408-412: 911-914.
    
    [114] Wang X J, Yen W M. Mn~(2+) Activated Green, Yellow, and Red Long Persistent Phosphors.Journal of Luminescence, 2003,102-103: 34-37.
    
    [115] Lin L, Shi C S, Zhang W P. Luminescence Properties of a New Red Long-lastingPhosphor:Mg_2SiO_4:Dy~(3+),Mn~(2+). Journal of Alloys and Compounds, 2008,455: 327-330.
    
    [116] Lin L, Shi C S, Zhang W P. Synthesis and Luminescence Properties of Red Phosphors:Mn~(2+)Doped MgSiO_3 and Mg_2SiO_4 Prepared by Sol-Gel Method. Journal of Rare Earths, 2006,24:104-107.
    
    [117] Lei B F, Ye Z R, Shi C S, A Novel White Light Emitting Long-lasting Phosphor. ChineseChemical Letters, 2004,15(3): 335-338.
    
    [118] Kuang J Y, Lei B F, Effect of RE~(3+) as a Co-dopant in Long-lasting PhosphorescenceCdSiO_3:Mn~(2+) (RE =Y, La, Gd, Lu). Journal of Luminescence, 2006,118: 33-38.
    
    [119] Liu Y L, Lei B F, Shi C S, Luminescent Properties of a White Afterglow PhosphorCdSiO_3:Dy~(3+). Chemistry of Materials, 2005,17: 2108-2133.
    
    [120]雷炳富,刘应亮,石春山,偏硅酸镉的自激活发光.分子科学学报,2004,20(1):57-59.
    
    [121]Tsuguo I, Koji F, Kazuyuki H. Full Color Triboluminescence of Rare Earth DopedHexacelsian (BaAl_2Si_2O_8). Solid State Communications, 1998,107(12): 763-767.
    
    [122] Yang W J, Chen T M, Wang N S, Luminescence and Energy Transfer of Eu- and Mn-Coactivated CaAl_2Si_2O_8 as a Potential Phosphor for White-Light UVLED. Chemistry of Materials, 2005,17: 3883-3888.
    
    [123] Im W B, Kang J H, Jeon D Y. Luminescent and Aging Characteristics of Blue Emitting (Ca_(1-x),Mg_x)Al_2Si_2O_8:Eu~(2+) Phosphor for PDPs Application. Solid State Communications, 2005,134: 717-720.
    
    [124] Im W B, Kang J H, Jeon D Y. Thermal Stability Study of BaAl_2Si_2O_8:Eu~(2+) Phosphor UsingIts Polymorphism for Plasma Display Panel Application. Chemistry of Materials,2006,18: 1190-1195.
    
    [125] Wang Y H, Zhang P Y, Hong Z L, Fan X P, Qian G D, Preparation of Eu~(2+) and Dy~(3+) Co-activatedCaAl_2Si_2O_8-based Phosphor and Its Optical Properties. Materials Letters, 2004,58:3308-3311.
    
    [126] Wang Y H, Zhang P Y, Fan X P. Synthesis of Long Afterglow Phosphor CaAl_2Si_2O_8: Eu~(2+),Dy~(3+)via Sol-Gel Technique and Its Optical Properties. Journal of Rare Earths, 2005,23(5):625-628.
    
    [127] Nobuhiro K, Brian H. Energy Levels and Symmetry of Ce~(3+) in Fluoride and Oxide Crystals.Journal of Applied Physics, 1998,84(10): 5820-5822.
    
    [128] Nobuhiro K, MitsuoY, Yoshifumi T. Long-lasting phosphorescence in Ce~(3+) doped Ca_2Al_2SiO_7and CaYAl_3O_7 crystals. Applied Physics Letters, 1999, 75(12):1715-1717.
    
    [129] Nobuhiro K, Mitsuo Y, Yoshifumi T. Optical Properties of Long-lasting Phosphorescent Crystals Ce~(3+) Doped Ca_2Al_2SiO_7 and CaYAl_3O_7. Journal of Luminescence, 2000,87-89: 1076-1078.
    
    [130] Nobuhiro K, MitsuoY, Yuki M. Long-lasting Phosphorescence of Eu~(2+) in Melilite. Journalof Luminescence, 2001, 94-95: 19-22.
    
    [131]Yutaka I, Kazuyoshi U, Kenji T. Luminescence Properties of Long-persistence SilicatePhosphors. Journal of Alloys and Compounds, 2006,408-412: 907-910.
    
    [132] Wu J J. So-gel Synthesis of Green-luminescence Microcrystalline PhosphorsSr_xCa_(2-x)Al_2SiO_7:yTb~(3+), zCe~(3+) by hybrid precursors. Colloids and Surfaces A: Physicochem.Eng. Aspects, 2007,297: 253-257.
    
    [133] Ropp R C. Luminescence and The Solid State. Elsevier, Amsterdam, Netherlands, 1991.
    
    [134] Leverenz H W. An Introduction to Luminescence of Solids. Dover, New York, 1968.
    
    [135] Xu W, Toth L M, Peterson J R. Effect of Curing Temperature on Green Light EmissionFrom Er~(3+_)-doped Sol-gel Silica Glass. Journal of Non-Crystalline Solids, 1996,194:235-240.
    [136] Han Y H, Zhang H J, Photoluminescence of Organic-Inorganic Hybrid SiO_2 Xerogels. Materials Letters, 2002,54: 389-396.
    [137] He H P, Tang H G, Intense Ultraviolet and Green Photoluminescence From Sol-gel Derived Silica Containing Hydrogenated Carbon. Journal of Physics: Condensed Matter, 2002,14: 11867-11874.
    [138] Adam M J. A Novel Approach to Monodisperse, Luminescent Silica Spheres. Chemistry of Materials, 2006,18: 3173-3175.
    [139] Ronald B S, Adam M J, Clifford M C. Long-lifetime Emission in Luminescent Colloidal Silica. Applied Physics Letters, 2007,91: 091909-091911.
    [140] Lin J, Lin C K, Liu X M. Multiform Oxide Optical Materials via the Versatile Pechini-Type Sol-Gel Process: Synthesis and Characteristics. The Journal of Physical Chemistry C, 2007,111: 5835-5845.
    [141] Lin C K, You H, Zhang J. Sol-Gel-Derived BP0_4/Ba~(2+) as a New Efficient and Environmentally-Friendly Bluish-White Luminescent Material. Chemistry of Materials, 2006,18: 458-464.
    [142] Zhang C M, Li C X, Lin J. Enhanced Luminescence of BPO_4 by Mixing with SiOz and Al_2O_3. The Journal of Physical Chemistry C, 2008,112: 2183-2192.
    [143] Kuang J Y, Zhang J X, Huang L H. Blue-emitting Long-lasting Phosphor, Sr_3Al_(10)Si0_(20):Eu~(2+)Ho~(3+) Solid State Communications, 2005.136: 6-10.
    [144] Chen Y, Kirm M, Zimmerer G, Luminescent Properties of Blue-emitting Long Afterglow Phosphors Sr_(2-x)Ca_x MgSi_2O_7:Eu~(2+), Dy~(3+) (x = 0, 1). Journal of Luminescence, 2006. 118: 70-78.
    [145] Dorenbos P. Energy of the Eu~(2+) 5d State Relative to the Conduction Band in Compounds. Journal of Luminescence, 2008,128: 578-582.
    [146] Bosze E J, Shea-Rohwer L, McKittrick J. Improving the Efficiency of a Blue-emitting Phosphor by an Energy Transfer from Gd~(3+) to Ce~(3+). Journal of Luminescence, 2003,104: 47-54.
    [147] Nobuhiro K, Brian H, Energy Levels and Symmetry of Ce~(3+) in Fluoride and Oxide Crystals. Journal of Applied Physics, 1998,84(10): 5820-5822.
    [148] Nikl M, Mihokova E, Solovieva N. Efficient Radio Luminescence of the Ce~(3+)-doped Na-Gd Phosphate Glasses. Applied Physics Letters, 2000,77(14): 2159-2161.
    [149] Babi V, Mares J A, Nikl M. Luminescence Spectroscopy of the Gd-rich Ce~(3+) Tb~(3+) and Mn~(2+)doped Phosphate Glasses. Physica Status Solidi (a), 2003,196(2): 484-495.
    [150] Cho S H, Lee J D. Journal of The Electrochemical Society, 1998,145: 1017-1019
    [151] Ireland T G, Gibbons. Electrochemical and Solid State Letters, 1999,2: 52-56.
    [152] Rang Y C, Lenggoro I W, Okuyama K, Gd_2O_3:Eu Phosphor Particles with Sphericity, Submicron Size and Non-aggregation Characteristics. Journal of Physics and Chemistry of Solids, 1999,60: 379-384.
    
    [153] Pramod K. Sharma M, Nass R. Tailoring the Particle Size from lmPnm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttrium. Journal of Luminescence, 1999,82: 187-193.
    
    [154] Park JK, Kim C H, Park H D. Luminescence Characteristics of Sr_3MgSi_20_8:Eu Blue Phosphorfor Light-Emitting Diodes. Electrochemical and Solid-State Letters, 2004, 7(10): H42-H43.
    
    [155] Jennifer N C, Henrik B. Spontaneous Formation of Nanoparticle Vesicles from Homopolymer Polyelectrolytes. Journal of the American Chemical Society, 2003, 125: 8285-8289
    
    [156] Vinit S M, Jennifer N. C. Charge-Driven Flocculation of Poly(L-lysine)-Gold Nanoparticle Assemblies Leading to Hollow Microspheres. Journal of the American Chemical Society, 2004, 126: 5292-5299
    [157] Muhammet S T, Brandon J M. Spontaneous Assembly of Magnetic Microspheres. Advanced Materials, 2007, 19: 1362-1368
    
    [158] Kim T H, Park W H, Lee T S. Sensor Application of Submicro-Sized Silica Particle Functionalized with Hydroxyphenylbenzoxazole Molecular Crystals and Liquid Crystals, 2006,445(1): 185-192.
    [159] Liane M R, Frank H Q, Zeev R. Stober Synthesis of Monodispersed Luminescent Silica Nanoparticles for Bioanalytical Assays. Langmuir, 2005,21: 4277-4280.
    [160] Chan Y T, Mark S, Jonathan S S. Incorporation of Luminescent Nanocrystals into Monodisperse Core-Shell Silica Microspheres. Advanced Materials, 2004,16(23-24): 2092-2097.
    
    [161] Li J, Li D, Zhao K, Wang L. Mixed Ligand System of Cysteine and Thioglycolic Acid Assisting in the Synthesis of Highly Luminescent Water-soluble CdTe Nanorods. Chemical Communications, 2004: 1740-1741.
    [162] Tang B, Yu C G, Zhuo L H. Highly Luminescent Water-soluble CdTe Nanowires as Fluorescent Probe to Detect Copper(II). Chemical Communications,2005:4184-4186.
    [163] Stober W. Colloid Interface Science, 1968,26: 62-69.
    [164] Steve R B, Rafael E. Bras, Thomas J M. Self-Assembled Peptide Amphiphile Nanofibers Conjugated to MRI Contrast Agents. Nano Letters, 2004,5(1): 1-5.
    [165] van Blaaderen A. Langmuir, 1992,8: 2921-2931.
    
    [166] Slooff L H, van Blaaderen A, Polman A. Erbium-implanted Silica Colloids With 80% Luminescence Quantum Efficiency. Applied Physics Letters, 2000,76(25): 3682-3684.
    [167] Zhao D, Wu C F, Qin G S. Laser Selective Spectroscopy of Europium Complex Embedded in Colloidal Silica Spheres. Chemical Physics Letters, 2004,388: 400-405.
    [168] Asahi R, Ohwaki T, Aoki R. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 2001,293: 269-271.
    [169] Carlos L D, Pereira R N, Assuncua M. White-Light Emission of Amine- Functionalized Organic/Inorganic Hybrids: Emitting Centers and Recombination Mechanisms. The Journal of Physical Chemistry B, 2004,108: 14924-14932.
    [170] Takashi U, Natsuko S. Structure and Formation Mechanism of Blue-light-emitting Centers in Silicon and Silica-based Nanostructured Materials. Physical Review B, 2006,73: 233203-233207.
    [171] Seiichiro I, Hiroyuki N. Correlation Between the Luminescence Properties and the Surface Structures of Submicron Silica Particles. Journal of Non-Crystalline Solids, 2007,353: 510-513.
    [172] Delaorden M U, Urreaga J M. Modiffication of Cellulose with Amino Compounds: A Fluorescence Study. Carbohydrate Polymers, 2007,69: 14-19.
    [173] Delaorden M U, Urreaga J M. Spectroscopic Study of the Modification of Cellulose with Polyethylenimines. Journal of Applied Polymer Science, 2004,92: 2196-2202.
    [174] Delaorden M U, Urreaga J M. Discoloration of Celluloses Treated with Amino Compounds. Polymer Degradation and Stability, 2006,91: 886-893.
    [175] Kim S W, Lee W Y, Taeghwan H. Journal of the American Chemical Society, 2002,124: 7642-7643.
    [176] Rapoport L, Feldman Y, Homyonfer M. Hollow Nanoparticles of WS_2 as Potential Solid-state Lubricants. Nature, 1997,387: 791-793.
    [177] Jiang P, Colvin V L, A Lost-Wax Approach to Monodisperse Colloids and Their Crystals. Science, 2001,291: 453-456.
    [178] Deng Z W, Zhou S X, Wu L M. A Novel Method for the Fabrication of Monodisperse Hollow Silica Spheres. Langmuir, 2006,22: 6403-6407.
    [179] Masih D, Thomas N. Hollow Silica Nanospheres: In situ, Semi-In situ, and Two-Step Synthesis. Chemistry of Materials, 2007, 19: 1700-1703.
    [180] Zhu G S, Osamu T, Yen W. Polystyrene Bead-Assisted Self-Assembly of Microstructured Silica Hollow Spheres in Highly Alkaline Media. Journal of the American Chemical Society, 2001,123: 7723-7724.
    [181] Arul D N. Sonochemical Preparation of Hollow Nanospheres and Hollow Nanocrystals. Journal of the American Chemical Society, 2005,127: 2368-2369.
    [182] Li Y S, Hua Z L, Chen H R. Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability. Nano Letters, 2003,3(5): 609-612.
    [183] Stephen A B, Thomas J P. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants. Science, 1995,269(5228): 1242-1244.
    
    [184] Ryong R, Shin C H, Disordered Molecular Sieve with Branched Mesoporous Channel Network. Journal of Physical Chemistry, 1996,100: 17718-17721.
    
    [185] Atsuko A, Tomoko Y, Takashi U. Influence of Thermal Treatments on the Photoluminescence Characteristics of Nanometer-Sized Amorphous Silica Particles. The Journal of Physical Chemistry C, 2007,111: 8483-8488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700