4种直翅目蝗虫全线粒体基因组测序及直翅目线粒体基因组比较与系统分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直翅目属于节肢动物门、六足总纲、昆虫纲,是起源比较早的类群之一,已知有2万多种,广泛分布于世界各地,以热带地区种类较多。直翅目由蝗亚目(Caelifera)和螽亚目(Ensifera)两个亚目组成。目前在GenBank中虽然已经积累了47个直翅目物种的全线粒体基因组,但是主要集中于蝗亚目的蝗总科物种,螽亚目物种相对较少。迄今为止,利用比较基因组手段来探讨直翅目线粒体基因组的结构及进化特征的研究甚少;采用不同的数据集划分策略来探讨线粒体DNA(mtDNA)基因在直翅目系统研究中的作用的研究也很少,且大多研究者集中于直翅目内高级阶元的系统关系即两个亚目是否为单系群,但是利用mtDNA基因数据集对直翅目内中级阶元和低级阶元系统发育的研究甚少。直翅目中癞蝗科和槌角蝗科均属于蝗亚目物种。癞蝗科中疙蝗属同短鼻蝗属在形态上的差别微乎甚微,且均分布于我国的荒漠草原地区;而槌角蝗科大足蝗属内西伯利亚蝗同李氏大足蝗的形态上也仅仅依据前后肘脉是否合并来判定,且二者在地域分布上有交叉。这种形态相似且地域相近的物种在线粒体基因组水平上是否也很保守?
     本研究测定了蝗总科中3种癞蝗和1种槌角蝗的线粒体基因组全序列,并对其进行了注释和分析。在此基础上,联合GenBank中已测直翅目线粒体基因组全序列,采用生物信息学同比较基因组学相结合的方法分析了直翅目内不同阶元物种mtDNA基因的演化模式。在此基础上,基于线粒体蛋白基因密码子3位点及不同种类蛋白和rRNA不同区域构建的线粒体基因数据集对直翅目内不同分类阶元的系统发育关系进行了研究。主要研究结果如下:
     1.西伯利亚蝗(Gomphocerus sibiricus)、红胫波腿蝗(Asiotmethis zacharjini)、贺兰短鼻蝗(Filchnerella helanshanensis)和红缘疙蝗(Pseudotmethis rubimarginis)的mtDNA总长度分别为15590bp、15660bp、15657bp和15661bp,均编码昆虫线粒体基因组中典型的37个基因,即13个蛋白编码基因,2个rRNA基因和22个tRNA基因。4种蝗虫的mtDNA基因排序及转录方向同蝗亚目中已测物种的一致。
     2.从整体mtDNA、22个tRNA基因和2个rRNA基因序列计算大足蝗属内西伯利亚蝗同李氏大足蝗之间的P-距离最小,但从13个蛋白基因计算,西伯利亚蝗和西藏大足蝗间的P-距离最小。无论从核苷酸和氨基酸水平变异率还是从非同义/同义置换率的比率来分析,线粒体蛋白基因cox1、cox2、cox3和nad4L在槌角蝗科内最为保守,进化最慢,受到的净化选择功能约束最少,而atp6、atp8和nad6进化速率最快,受到自然选择压的影响较少。在4个槌角蝗trnThr的TΨC臂中第3对碱基后存在2个碱基A的插入,此特征是否为槌角蝗科的共源性状还有待证明。rrnS在西伯利亚蝗和李氏大足蝗中几乎完全一致。然而在同属的西藏大足蝗物种中rrnS结构域Ⅰ和Ⅱ却存在较大的变异区域。
     3.无论从线粒体全基因组整体序列还是从13个蛋白基因、22个tRNA基因或2个rRNA基因计算,4个癞蝗物种中,贺兰短鼻蝗同红缘疙蝗的P-距离均为最近。线粒体蛋白基因cox1、cox2、cytb和atp6在癞蝗科内最为保守,而nad5和nad3的进化速率相对比较快。
     4.在槌角蝗科和癞蝗科两个类群中,nad6和atp8都显示了非常高的AT%,在癞蝗中nad4L的A+T含量也非常高,而3个cox基因的A+T含量都为最低。除ATP8为中度的A-偏斜外,分布于J链的每个线粒体蛋白基因几乎不存在AT-偏斜性。然而由N链编码的4个蛋白基因都有显著的T-偏斜值。在4个槌角蝗和4个癞蝗物种的A+T丰富区中均找到了茎环结构,但是该二级结构在红拟棒角蝗中同其他3个槌角蝗物种中差别较大;宽纹蠢蝗同其他3个癞蝗的茎环结构差异也比较大。而且在癞蝗物种中发现了位于茎环J链序列内部的T簇。
     5.昆虫纲所选6个目物种的A+T含量集中在75%~80%之间;AT-skew集中于0~0.05之间,GC-skew基本为负值(C>G),且集中于-0.3~0之间。其中,直翅目物种的A+T含量和AT-skew分布均比较分散,但二者似乎存在正相关性。直翅目碱基组成异质性分析表明,A+T含量相似、AT百分比接近平均值或亲缘关系较近的物种间ID值较小;线粒体蛋白不同密码子位点的差异指数由低到高顺序为:第2位点<第1位点<第3位点。
     6.线粒体13个蛋白编码基因中,cox1和cox3在直翅目大多数物种中的A+T含量普遍偏低,而atp8, nad4L和nad6的A+T含量基本偏高。在碱基偏斜方面,N-链蛋白基因的AT偏斜均为显著的T偏斜。J-链蛋白基因在螽亚目物种中基本为T偏斜,而在蝗亚目多数物种中为A偏斜。对GC偏斜而言,N链蛋白基因均为正值,而J链蛋白基因则均为负值。基于JC和K2P两种模型对直翅目内两个亚目13个线粒体蛋白基因的平均遗传距离进行分析后发现,在两个亚目中cox2变异程度都为最小,在蝗亚目中nad5变异最大,而在螽亚目中nad1变异最大。13个蛋白基因无论从核苷酸序列还是氨基酸序列的差异性进行分析,cytb基因变异程度都为最小,其次为3个cox基因,而nad6基因变异度最大。通常,氨基酸序列比核酸序列应该更加保守。然而,在13个线粒体蛋白基因中,仅在cox1基因中发现氨基酸序列相似度高于核酸序列,多数蛋白基因的氨基酸序列差异性高于或等于核酸序列,在nad6和atp8中尤为明显。
     7.22种线粒体tRNA基因在蝗总科各科的保守位点比例表明tRNA基因的核酸保守性有链间偏向性。16种位于J-链的tRNAs在蝗总科中核酸一致度均超过50%,另外,核酸保守度很高的trnLeuUUR, trnAsn和trnLys基因均位于J-链上。tRNA家族在癞蝗科内最为保守,其次为槌角蝗科。rrnS的3个结构域中,结构域Ⅰ在去除5'端后最为保守,其次为结构域Ⅲ,结构域Ⅱ进化速率最快。在rrnL的6个结构域中,结构域Ⅳ和Ⅴ最为保守,而结构域Ⅰ和Ⅱ进化最快。
     8. PCG1、PCG2、COX、COX+cytb和rRNA (C)这类保守基因或区段主要适用于分析直翅目内高级阶元的系统发育关系,如亚目及总科阶元。进化中等的PCG23及NADH基因则适用于从亚科至亚目任意一个阶元的系统关系研究,且建树方法也至关重要。rRNA (V)这种可变位点较多的区段比较适用于对亚科级阶元的系统关系研究。但是像ATP这种进化速率超快且总长度比较短的基因似乎不太适用于系统关系研究。
Orthoptera is one of the oldest extant insect lineages with more than20thousands described species widely distributed throughout the world but mainly focused on the tropical areas. It is one of the largest and best researched of the hemimetabolous insect orders and consists of two suborders Caelifera and Ensifera. So far, complete47orthopteran mitogenomes were available in the GenBank, of which27for Acridoidea in Caelifera, and the number of complete mitogenomes sequenced were not balanced in the two suborders of Orthoptera. Currently, few studies on Orthoptera focus on using the comparative genomics to analyse the mitogenome sequence divergence and molecular evolution and using different data partitioning strategies in mitogenome to resolve the phylogenetic relationships at various taxonomic levels. Previous studies were limited to the phylogenetic relationships at higher taxonomic levels, and it is needed to pay more attention to the phylogenetic analyses at the middle and low taxonomic levels.based on the mitogenome sequence.
     Pamphagidae and Gomphoceridae belong to the Caelifera. The two genus Filchnerella and Pseudotmethis in Pamphagidae is so similar in the morphology and both are mainly distributed in the northwestern area of China. Additionally, the difference of G. sibiricus and G. licenti in Gomphoceridae are identified only according to whether the anterior and posterior cubitus connate or not, and the geographical ranges of the two species overlap in some northwestern areas of China. Do the mitogenomes of these taxa similar in the morphology and close in the distributed area have many common important characters?
     In this study, the four complete mitogenome sequence in Acridoidea were successfully sequenced, annotated and analysed. Additionally, a total of43orthopteran mitogenomes available in the GenBank were selected based on our different analyses. The evolutionary patterns of orthopteran mitogenomes were firstly investigated using the comparative genomics based on the bioinformatics. Additonally, the phylogeny of Orthoptera was analysed based on12datasets from a total of47orthopteran mitogenomes. Followings are the main results:
     1. The complete mitogenome sequences of G. sibiricus, A. zacharjini, F. helanshanensis and P. rubimarginis are15,590bp,15,660bp,15,657bp and15,661bp in size, respectively. All four mitogenomes share the same37typical metazoan genes (13protein-coding genes,22transfer RNA genes and2ribosomal RNA genes), and they have identical gene arrangement and orientation with all previously determined caeliferan mitogenomes.
     2. The average values of P-distance between G. sibiricus and G Licenti are lower than those between other two species in Gomphoceridae based on the whole mtDNA,22tRNAs or2rRNAs, however, that between G. sibiricus and G tibetanus is the lowest based on the13mitogenome protein coding genes. The ratio of cox1, cox2, cox3and nad4L were lower either on the nucleotide and amino acid sequence heteromorphosis or KalKs, which may indicate the four PCGs are highly conserved and evolve slowly. The evolutionary rate of atp6, atp8and nad6is relatively higher, and the three PCGs may under lower selection pressure. Two bulged adenines insertion after the third couplet in the TΨC stem of trnThr are common in the four Gomphoceridae species. Whether it is a molecular synapomorphy to Gomphocerinae may require more data to verify. The rrnS is very consistent between G. licenti and G. sibiricus. However, variable regions in domain Ⅰ and domain Ⅱ are obvious in G. tibetanus.
     3. The average values of P-distance between F. helanshanensis and P. rubimarginis are lower than those between other two species in Pamphagidae based on the whole mtDNA,13PCGs,22tRNAs and2rRNAs. In the thirteen PCGs of Pamphagidae mitogenomes, the coxl, cox2, cytb and atp6are the slowest evolving genes, while the nad3and nad5have higher evolutionary rate.
     4. In the two families of Caelifera, Pamphagidae and Gomphoceridae, both nad6and atp8reveal much higher A+T content, Without exception, A+T contents in all three COX genes are lower than the other gene categories. The number of adenine is almost equal to thymine in all PCGs distributed in J-strand except in atp8which has a moderate A-skew value, while each of the other four PCGs (nad5, nad4, nad4L and nadl) coded by N-strand has an obvious T-skew value. The hairpin in A+T-rich region can be predicted in all four species respectively from Gomphoceridae and Pamphagidae. one T-stretch in the majority strand was only found in the A+T-rich region of the four Pamphagidae mitogenomes, however, they are not adjacent to the trnIle but inside the stem-loop sequence in the majority strand.
     5. We evaluate the nucleotide-compositional behavior of the insecta mitogenome by the three parameters:A+T content (AT%), AT-skew and GC-skew. The A+T contents of the mitogenomes from6orders of insecta range from75%to80%, the AT-skew values range from0to0.05and the GC-skew values ranges from-0.3to0. Among these species, the A+T content and AT-skew in orthopteran mitogenomes are dispersed, but both seems to be positive correlations. The disparity index value is lower among those orthopteran species near in A+T content and near the average A+T content value or among the closely related species. The average ID value are different in three codon positions of PCGs, the highest ID value was observed in the third codon positions, the second codon positions shows the lowest ID value.
     6. In the13PCGs of orthopteran mitogenomes, the A+T contents of coxl and cox3are the lowest in most species, while atp8, nad4L and nad6reveal higher A+T content than other PCGs. The four PCGs coded by N-strand in Orthoptera have obvious T-skew value. The9PCGs coded by J-strand in Ensifera also have obvious T-skew value, while these PCGs show A-skew in most caeliferan species. Each PCG in J-strand is C-skew, However, each PCG in N-strand is G-skew. We compared overall mean distance of13PCGs in two suborders of Orthoptera based on the JC and K2P model and found the cox2is the slowest evolutionay gene, the nad5is the fastest evolutionary gene in Caelifera, while the nadl is the fastest in Ensifera. We compared the sequence heteromorphosis of13PCGs at the DNA and amino acid level, the cytochrome oxidase subunits and cytochrome b show overall much slower rates of evolution, while the nad6is the fastest evolving protein-coding gene. Generally, the amino acid sequence should be more conserved than the nucleotide sequence. However, the amino acid of all13PCGs show higher divergence than the DNA sequence with the exception of the cox1gene, especially obvious in the nad6and atp8.
     7. The pattern of nucleotide conservation in tRNA genes was markedly majority strand-biased. Eleven tRNAs showed%INUC>50, only one of them was located on the minority strand. Indeed, trnLeuUUR, trnAsn and trnLys, which showed the highest levels of nucleotide conservation (%INUC≥70), were all located on the majority strand. In the three domains of rrnS in orthopteran mitogenomes, the domain Ⅰ (excluding the5' half) is the most conserved region, while the domain Ⅱ has many fewer conserved nucleotide strings than other two domains. Similarly, in the rrnL of Orthoptera mitogenomes, Domains Ⅰ and Ⅱ, on average, are less conserved than domains Ⅳ and Ⅴ.
     8. In terms of the ability to resolve deeper level relationships in Orthoptera, the conserved datasets, PCG1, PCG2, COX, COX+cytb and rRNA(C) may be the best choice, while the genes or regions of intermediate rates might be of better phylogenetic utility for the orthopteran phylogenetic analyses at various taxonomic level, nevertheless, the analytical regimen is essential. Those regions including slightly more variable sites may be useful for the phylogenetic studies at the lower taxonomic level. However, the faster small evolutionary gene such as ATP genes seem to be usefulless in the phylogenetic studies.
引文
[1]I. Kim, S. Y. Cha, J. S. Hwang, S. M. Lee, H. D. Sohn, B. R. Jin. The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera:Gryllotalpidae)[J]. Gene. 2005,353(2):155-168.
    [2]C. Simon, F. Frati, A. Beckenbach, B. Crespi, H. Liu, P. Flook. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compliation of conserved polymerase chain reaction primers[J]. Ann Entomol Soc Am.1994,87 (6):651-701.
    [3]J.L. Boore. Animal Mitochondrial Genomes[J]. Nucleic Acids Res.1999,27(8): 1767-1780.
    [4]D.R. Wolstenholme. Animal Mitochondrial DNA:Structure and Evolution[J]. Int Rev Cytol,1992,141:173-216.
    [5]M.L. Thao, L. Baumann, P. Baumann. Organization of the Mitochondrial Genomes of Whiteflies, Aphids, and Psyllids (Hemiptera, Sternorrhyncha)[J]. BMC Evolutionary Biology.2004,4:25.
    [6]R. Shao, S.C. Barker. The Highly Rearranged Mitochondrial Genome of the Plague Thrips, Thrips imaginis (Insecta:Thysanoptera):Convergence of Two Novel Gene Boundaries and an Extraordinary Arrangement of rRNA Genes [J]. Mol Biol Evol.2003,20(3):362-370.
    [7]R. Shao, M. Dowton, A. Murrell, S.C. Barker. Rates of Gene Rearrangement and Nucleotide Substitution are Correlated in the Mitochondrial Genomes of Insects[J]. Mol Biol Evol.2003,20(10):1612-1619.
    [8]R. Shao, N.J. Campbell, S.C. Barker. Numerous Gene Rearrangements in the Mitochondrial Genome of the Wallaby Louse, Heterodoxus macropus (Phthiraptera)[J]. Mol Biol Evol.2001,18(5):858-865.
    [9]C. Covacin, R. Shao, S. Cameron, S.C. Barker. Extraordinary Number of Gene Rearrangements in the Mitochondrial Genomes of Lice (Phthiraptera:Insecta)[J]. Insect Mol Biol.2006,15(1):63-68.
    [10]K. Yukuhiro, H. Sezutsu, M. Itoh, K. Shimizu, Y. Anno. Significant Levels of Sequence Divergence and Gene Rearrangements have Occurred Between the Mitochondrial Genomes of the Wild Mulberry Silkmoth, Bombyx mandarina, and its Close Relative, the Domesticated Silkmoth, Bombyx mori[J]. Mol Biol Evol. 2002,19(8):1385-1389.
    [11]S.E. Masta. Mitochondrial sequence evolution in spiders:intraspecific variation in tRNAs lacking the T Ψ C Arm[J]. Mol Biol Evol.2000,17(7):1091-1100.
    [12]R.H. Crozier, Y.C. Crozier. The mitochondrial genome of the Honeybee Apis mellifera:complete sequence and genome organization[J], Genetics.1993,133(1): 97-117.
    [13]P.K. Flook, C.H. Rowell, G. Gellissen. The Sequence, Organization, and Evolution of the Locusta migratoria Mitochondrial Genome[J]. J Mol Evol.1995,41(6): 928-941.
    [14]C.B. Beard, D.M. Hamm, F.H. Collins. The Mitochondrial Genome of the Mosquito Anopheles gambiae:DNA Sequence, Genome Organization, and Comparisons with Mitochondrial Sequences of Other Insects[J]. Insect Mol Biol. 1993,2(2):103-124.
    [15]P.K. Flook, C.H. Rowell. Inferences about Orthopteroid Phylogeny and Molecular Evolution from Small Subunit Nuclear Ribosomal DNA Sequences [J]. Insect Mol Biol.1998,7(2):163-178.
    [16]M.C. Jost, K.L. Shaw. Phylogeny of Ensifera (Hexapoda:Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication[J]. Molecular Phylogenetics and Evolution.2006,38(2): 510-530.
    [17]B. Xiong, T.D. Kocher. Phylogeny of Sibling Species of Simulium venustum and S. verecundum (Diptera:Simuliidae) Based on sequences of the mitochondrial large subunit rRNA gene [J]. Mol Phylogenet Evol.1993,2(4):293-303.
    [18]丁方美,师红雯,黄原.短额负蝗线粒体基因组及其lrRNA和srRNA二级结构分析[J].动物学研究.2007,28(6):580-588.
    [19]Z.J. Zhou, Y. Huang, F.M. Shi. The Mitochondrial Genome of Ruspolia dubia (Orthoptera:Conocephalidae) Contains a Short A+T-Rich Region of 70 Bp in Length[J]. Genome.2007,50(9):855-866.
    [20]S.L. Cameron, M.F. Whiting. The Complete Mitochondrial Genome of the Tobacco Hornworm, Manduca sexta, (Insecta:Lepidoptera:Sphingidae), and an Examination of Mitochondrial Gene Variability within Butterflies and Moths[J]. Gene.2008,408(1-2):112-123.
    [21]L. Podsiadlowski, A. Carapelli, F. Nardi, R. Dallai, M. Koch, J.L. Boore, F. Frati. The Mitochondrial Genomes of Campodea fragilis and Campodea lubbocki (Hexapoda:Diplura):High Genetic Divergence in a Morphologically Uniform Taxon[J]. Gene.2006,381:49-61.
    [22]J.J. Gillespie, J.S. Johnston, J.J. Cannone, R.R. Gutell. Characteristics of the Nuclear (18S,5.8S,28S and 5S) and Mitochondrial (12S and 16S) rRNA Genes of Apis mellifera (Insecta:Hymenoptera):Structure, Organization, and Retrotransposable Elements[J]. Insect Molecular Biology.2006,15(5):657-686.
    [23]D.A. Clayton. Replication of animal mitochondrial DNA[J]. Cell.1982,28(4): 693-705.
    [24]D.A. Clayton. Replication and transcription of vertebrate mitochondrial DNA[J]. Annu Rev Cell Biol.1991,7:453-478.
    [25]D.O. Clary, D.R. Wolstenholme. The Mitochondrial DNA Molecule of Drosophila yakuba:Nucleotide Sequence, Gene Organization, and Genetic Code[J]. J Mol Evol.1985,22(3):252-271.
    [26]D.R. Wolstenholme, D.O. Clary. Sequence evolution of Drosophila mitochondrial DNA[J]. Genetics.1985,109(4):725-744.
    [27]T.H. Jukes, V. Bhushan. Silent nucleotide substitutions and G+C content of some mitochondrial and bacterial genes[J]. J MoL Evol.1986,24(1-2):39-44.
    [28]L.S. Jermiin, D. Graur, R.M. Lowe, R.H. Crozier. Analysis of directional mutation pressure and nucleotide content in mitochondrial cytochrome b genes[J]. J Mol EvoL.1994,39(2):160-173.
    [29]D.X. Zhang, J.M. Szymura, G.M. Hewitt. Evolution and Structural Conservation of the Control Region of Insect Mitochondrial DNA[J]. J Mol Evol.1995,40(4): 382-391.
    [30]M. Monnerot, M. Solignac, D. R. Wolstenholme. Discrepancy in Divergence of the Mitochondrial and Nuclear Genomes of Drosophila teissieri and Drosophila yakuba[J]. J Mol Evol.1990,30(6):500-508.
    [31]M. Solignac, M. Monnerot, J.C. Mounolou. Concerted Evolution of Sequence Repeats in Drosophila Mitochondrial DNA[J]. J Mol Evol.1986,24(1-2):53-60.
    [32]D.L. Lewis, C.L. Farr, A.L. Farquhar, L.S. Kaguni. Sequence, Organization, and Evolution of the A+T Region of Drosophila melanogaster Mitochondrial DNA[J]. Mol Biol Evol.1994,11(3):523-538.
    [33]B. Pakendorf, M. Stoneking. Mitochondrial DNA and Human Evolution[J]. Annu Rev Genomics Hum Genet.2005,6:165-183.
    [34]T.D. Kocher, W.K. Thomas, A. Meyer, S.V. Edwards, S. Paabo, F.X. Villablanca, A.C. Wilson. Dynamics of Mitochondrial DNA Evolution in animals: Amplification and Sequencing with Conserved Primers[J]. Proc Natl Acad Sci USA.1989,86(16):6196-6200.
    [35]W.M. Brown, E.M. Prager, A. Wang, A.C. Wilson. Mitochondrial DNA Sequences of Primates:Tempo and Mode of Evolution[J]. J Mol Evol.1982,18(4):225-239.
    [36]R. DeSalle, T. Freedman, E.M. Prager, A.C. Wilson. Tempo and Mode of Sequence Evolution in Mitochondrial DNA of Hawaiian Drosophila[J]. J Mol Evol.1987,26(1-2):157-164.
    [37]张方,米志勇.动物线粒体DNA的分子生物学研究进展[J].生物工程进展.1998,18(3):25-31.
    [38]M. Gray. Origin and Evolution of Mitochondrial DNA[J]. Ann Rev Cell Biol. 1989,5:25-50.
    [39]肖武汉.银鲴自然群体线粒体DNA的遗传分化[J].水生生物学报.2000,24(1):1-9.
    [40]王存芳,曾勇庆,杜立新,等.猪线粒体DNA(mtDNA)及其在遗传育种中的应用[J].黑龙江畜牧兽医.2001,(9):5-7.
    [41]胡文革,王金富.动物线粒体DNA多态性研究及其在鱼类群体遗传结构上的应用[J].石河子大学学报.2001,5(3):253-258.
    [42]F. Nardi, A. Carapelli, R. Dallai et al. The Mitochondrial Genome of the Olive Fly Bactrocera oleae:Two Haplotypes from Distant Geographic Locations [J]. Insect Mol Biol.2003,12(6):605-611.
    [43]F. Nardi, A. Carapelli, R. Dallai, et al. Population Structure and Colonization History of the Olive Fly Bactrocera oleae[J]. Mol Ecol.2005,14(9):2729-2738.
    [44]C. Simon, T. Buckley, F. Frati, et al. Incorporating Molecular Evolution into Phylogenetic Analysis, and a New Compilation of Conserved Polymerase Chain Reaction Primers for Animal Mitochondrial DNA[J]. Annu Rev Ecol Evol Syst. 2006,37(1):545-579.
    [45]S. Cameron, M. Whiting. Mitochondrial Genome Comparisons of the Subterranean Termites from the Genus Reticulitermes[J]. Genome.2007,50(2): 188-202.
    [46]K. Armstrong, S. Ball. DNA Barcodes for Biosecurity:Invasive Species Identification[J]. Philos Trans R Soc Lond B Biol Sci.2005,360(1462): 1813-1823
    [47]刘次全,黄京飞,王莹.分子进化研究中的一些问题[J].动物学研究.1990,11(2):167-172
    [48]徐庆刚,花保祯.线粒体DNA在昆虫系统学研究中的应用[J].西北农林科技大学学报(自然科学版).2001,29(增):79-83.
    [49]T.M. Boyce, M.E. Zwick, C.F. Aquadro. Mitochondrial DNA in the Bark Weevils: Size, Structure and Heteroplasmy[J]. Genetics.1989,123(4):825-836.
    [50]D.X. Zhang, F.M. Hewitt. Insect Mitochondrial Control Region:a Review of its Structure, Evolution and Usefulness in Evolutionary Studies [J]. Biochem Syst Ecol.1997,25(2):99-120.
    [51]W.M. Brown. The Mitochondrial Genome of Animals. In Monographs in Evolutionary Biology:Molecular Evolutionary Genetics, ed[M]. R.J. MacIntyre, pp.1985,95-130. New York/London:Plenum.
    [52]付晓燕,陈念,赵树进.动物线粒体基因重排[J].医学研究生学报.2009,22(12):1320-1323.
    [53]陈念,赖小平.后生动物线粒体基因组:起源、大小和基因排列进化[J].生物技术通讯.2010,21(5):721-726.
    [54]J.L. Boore, T.M. Collins, D. Stanton, et al. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements [J]. Nature.1995,376(6536): 163-167.
    [55]李伟,印莉萍.基因组学相关概念及其研究进展[J].生物学通报,2000,35(11):1-4.
    [56]赵晋平,徐平丽,孟静静,李新国.从结构基因组学到功能基因组学[J].生命科学研究.2006,10(2):57-61.
    [57]L.P. Wei, Y.Y. Liu, I. Dubchak, J. Shon, J. Park. Comparative genomics approaches to study organism similarities and differences [J]. Journal of Biomedical Informatics.2002,35(2):142-150.
    [58]E.V. Koonin, L. Aravind, A.S. Kondrashov. The impact of comparative genomics on our understanding of evolution[J]. Cell.2000,101(6):573-576.
    [59]V.C. Wasinger, S.J. Cordwell, C.D. Anne, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium[J]. Electrophoresis.1995, 16(17):1090-1094.
    [60]李培青,刘焕民,朱必才.比较基因组学在哺乳动物进化研究中的应用[J].细胞生物学杂志.2006,28(1):47-50.
    [61]宋雪梅,李宏滨,杜立新.比较基因组学及其应用[J].生命的化学.2006,26(5):425-427.
    [62]D.C. King, J. Taylor, Y. Zhang, Y. Cheng, H.A. Lawson, J. Mar-tin, F. Chiaromonte, W. Miller, R.C. Hardison. Finding cis-regulatory elements using comparative genomics:some lessons from ENCODE data[J]. Genome Res.2007, 17(6):775-786.
    [63]W. Miller, K.D. Makova, A. Nekrutenko, R.C. Hardison. Comparative genomics[J]. Annu Rev Genomics Hum Genet.2004,5:15-56.
    [64]M.A. Nobrega, L.A. Pennacchio. Comparative genomic analysis as a tool for biological discovery[J]. Physiological Soc.2004,554 (Pt 1):31-39.
    [65]E. Rubin, L. Pachter, I. Dubchak. Strategies and tools for whole genome alignments [J]. Genome Research.2003,13(1):73-80.
    [66]A.K. Frazer, L. Elnitski, D.M. Church, et al. Cross-species sequence comparisons: A review of methods and available resources [J]. Genome Res.2003,13(1):1-12.
    [67]S. Batzoglou, L. Pachter, J.P. Mesirov, et al. Human and mouse gene structure: Comparative analysis and application to exon prediction[J]. Genome Research. 2000,10(7):950-958.
    [68]W.M. Fitch. Homology:a personal view on some of the problems[J]. Trends in Genetics.2000,16(5):227-231.
    [69]E.L. Sonnhammer, E.V. Koonin. Orthology, paralogy and proposed classification for paralog subtypes[J]. Trends Genet.2002,18(2):619-620.
    [70]L. Li, C J. Stoeckert, D.S. Roos. OrthoMCL:Identification of Ortholog Groups For Eukaryotic Genomes[J]. Genome Research.2003,13(9):2178-2189.
    [71]J. Balaji, J.H. Crouch, P.V. Petite, D.A. Hoisington. A Database of Annotated Tentative Orthologs from Crop Abiotic Stress Transcripts [J]. Bioinformation. 2006,1(6):225-227.
    [72]K.V. Krutovsky, C.G. Elsik, M. Matvienko, A. Kozik, D.B. Neale. Conserved Ortholog Sets in Forest trees[J]. Tree Genet Genomes.2006,3(1):61-70.
    [73]E.L. Sonnhammer. Orthology, Pralogy and Poposed Ossification for Paralog Subtypes[J]. Trends in Genetics.2002,18(12):619-620.
    [74]S. Yokoyama, W.T. Starmer, R. Yokoyama. Paralogous Origin of the Red and Green-Sensitive Visual Pigment Genes in Vertebrates[J]. Molecular Biology And Ecolotion.2010,10(3):527-538.
    [75]D.W. Burt. Comparative Mapping in Farm Animals[J]. Brief Funct Genomics Proteomics.2002,1(2):159-168.
    [76]Y. Lee, R. Sultana, G. Pertea, J. Cho, S. Karamycheva, J. Tsai, B. Parvizi, F. Cheung, V. Antonescu, J. White, I. Holt, F. Liang, J. Quackenbush. Cross-Referencing Eukaryotic Genomes:TIGR Orthologous Gene Alignments (TOGA) [J]. Genome Res.2002,12(3):493-502.
    [77]A. Heger, C.P. Ponting. OPTIC:Orthologous and Paralogous Transcripts in Clades[J]. Nucleic Acids Res.2008,36(10):267-270.
    [78]L. Liu, G Gong, Y. Liu, S. Natarajan, D.M. Larkin, Everts-van der Wind A, M. Rebeiz, J.E. Beever. Multi-species Comparative Mapping in Silico Using the Compass Strategy[J]. Oxford Univ Press.2004,20(2):148-154.
    [79]R.L. Tatusov, N.D. Fedorova, J.D. Jackson, A.R. Jacytbs, B. Kiryutin, E.V. Koonin, D.M. Krylov, R. Mazumder, S.L. Mek-hedov, A.N. Nikolskaya, B.S. Rao, S. Smirnov, A.V. Sverdlov, S. Vasudevan, Y.I.Wolf, J.J. Yin, D.A. Natale. The COG Database:an Updated Version Includes Eukaryotes[J]. BMC Bioinformatics. 2003,4:41.
    [80]B.G. Mirkin, T.I. Fenner, M.Y. Galperin, E.V. Koonin. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes [J]. BMC Evol Biol.2003,3:2.
    [81]Z. Jiang, H. He, N. Hamasima, H. Suzuki, A.M. V. Gibbins. Comparative Mapping of Homo Sapiens Chromosome 4 (HSA4) and Sus Scrofa Chromosome 8 (SSC8) Using Orthologous Genes Representing Different Cytogenetic Bands as Landmarks [J]. Genome.2002,45(1):147-156.
    [82]E.S. Lander, L.M. Linton, B. Bi rren, et al. Initial Sequencing and Analysis of the Human Genome [J]. Nature.2001,409(6822):860-921.
    [83]张森,李辉,顾志刚.功能基因组学研究的有力工具——比较基因组学[J]. 东北农业大学学报.2005,36(5):664-668.
    [84]洪桂云.鳞翅目昆虫线粒体全基因组结构特点及其比较基因组学分析[D].合肥工业大学.2009.
    [85]M.I. Kim, J.Y. Baek, M.J. Kim, H.C. Jeong, K.G. Kim, C.H. Bae, Y.S. Han, B.R. Jin, I. Kim. Complete Nucleotide Sequence and Organization of the Mitogenome of the Red-Spotted Apollo Butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and Comparison with Other Lepidopteran Insects [J]. Molecules and Cells.2009,28(4):347-363.
    [86]N.C. Sheffield, K.D. Hiatt, M.C. Valentine, H. Song, M.F. Whiting. Mitochondrial Genomics in Orthoptera Using MOSAS[J]. Mitochondr DNA. 2010,21(3-4):87-104.
    [87]H. Yin, Y.C. Zhi, H.D. Jiang, P.X. Wang, X.C. Yin, D.C. Zhang. The Complete Mitochondrial Genome of Gomphocerus tibetanus Uvarov,1935 (Orthoptera: Acrididae:Gomphocerinae) [J]. Gene.2011,494(2):214-218.
    [88]N. Liu, Y. Huang. Complete Mitochondrial Genome Sequence of Acrida cinerea (Acrididae:Orthoptera) and Comparative Analysis of Mitochondrial Genomes in Orthoptera[J]. Comp Funct Genom ID 319486,2010,16 pages.
    [89]N. Song, A.P. Liang. The Complete Mitochondrial Genome Sequence of Geisha distinctissima (Hemiptera:Flatidae) and Comparison with Other Hemipteran Insects[J]. Acta Biochim Biophys Sin.2009,41(3):206-216.
    [90]E. Negrisolo, M. Babbucci, T. Patarnello.The Mitochondrial Genome of the Ascalaphid Owlfly Libelloides macaronius and Comparative Evolutionary Mitochondriomics of Neuropterid Insects[J]. BMC Genomics.2011,12(221): 1-26.
    [91]魏书军.膜翅目线粒体基因组的特征与进化及其在系统发育研究中的应用[D].浙江大学.2009.
    [92]魏书军,陈学新.昆虫比较线粒体基因组学研究进展[J].应用昆虫学报.2011,48(6):1573-1585.
    [93]S.J. O'Brien, M. Menotti-Raymond, W.J. Murphy, W.G. Nash, J. Wienberg, R. Stanyon, N.G. Copeland, N.A. Jenkins, J.E. Womack, J.A. Marshall Graves. The Promise of Comparative Genomics in Mammals[J]. Science.1999,286(5439): 458-481.
    [94]J. William, O. Ballard. Comparative Genomics of Mitochondrial DNA in Members of the Drosophila melanogaster Subgroup[J]. J Mol Evol.2000,51(1): 48-63.
    [95]N.C. Sheffield, H. Song, S.L. Cameron, M.F. Whiting. A Comparative Analysis of Mitochondrial Genomes in Coleoptera (Arthropoda:Insecta) and Genome Descriptions of Six New Beetles[J]. Mol Biol Evol.2008,25(11):2499-2509.
    [96]J.M. Hua, M. Li, P.Z. Dong, Y. Cui, Q. Xie, W.J. Bu. Comparative and Phylogenomic Studies on the Mitochondrial Genomes of Pentatomomorpha (Ins ecta:Hemiptera:Heteroptera)[J]. BMC Genomics.2008,9:610.
    [97]M. Dowton, L.R. Castro, A.D. Austin. Mitochondrial Gene Rearrangements as Phylogenetic Characters in the Invertebrates:the Examination of Genome 'morphology'[J]. Invertebr Syst.2002,16(1):345-356.
    [98]M. Dowton, A.D. Austin. Evolutionary Dynamics of a Mitochondrial Rearrangement "hot spot" in the Hymenoptera[J]. Mol Biol Evol.1999,16(2): 298-309.
    [99]R.F. Shao, N.J. H. Campbell, E.R. Schmidt, S.C. Barker. Increased Rate of Gene Rearrangement in the Mitochondrial Renomes of Three Orders of Hemipteroid Insects. Mol Biol Evol.2001,18(9):1828-1832.
    [100]M. Dowton, L.R. Castro, S.L. Campbell, S.D. Bargon, A.D. Austin. Frequent Mitochondrial Gene Rearrangement at the Hymenopteran nad3-nad5 Junction[J]. J Mol Evol.2003,56(5):517-526.
    [101]J.L. Boore, W.M. Brown. Big Trees from Little Genomes:Mitochondrial Gene Order as a Phylogenetic Tool[J]. Curr Opin Genet Dev.1998,8(6):668-674.
    [102]G Giribet, G.D. Edgecombe, W.C. Wheeler. Arthropod Phylogeny Based on Eight Molecular Loci and Morphology[J]. Nature.2001,413(6852):157-161.
    [103]F. Nardi, A. Carapelli, P.P. Fanciulli, R. Dallai, F. Frati. The Complete Mitochondrial DNA Sequence of the Basal Hexapod Tetrodontophora bielanensis: Evidence for Heteroplasmy and tRNA Translocations[J]. Mol Biol Evol.2001, 18(7):1293-1304.
    [104]C.E. Cook, Q.Y. Yue, M. Akam. Mitochondrial Genomes Suggest that Hexapods and Crustaceans are Mutually Paraphyletic[J]. Proc R Soc B.2005,272(1569): 1295-1304.
    [105]A. Carapelli, P. Lio, F. Nardi, E. Van Der Wath, F. Frati. Phylogenetic Analysis of Mitochondrial Protein Coding Genes Confirms the Reciprocal Paraphyly of Hexapoda and Crustacea[J]. BMC Evol Biol.2007,7(Suppl 2):S8.
    [106]W.J. Chen, Y. Bu, A. Carapelli, R. Dallai, S. Li, W.Y. Tin, Y.X. Luan. The Mitochondrial Genome of Sinentomon erythranum (Arthropoda:Hexapoda: Protura):an Example of Highly Divergent Evolution[J]. BMC Evolutionary Biology.2011,11:246.
    [107]王备新,杨莲芳.线粒体DNA序列特点与昆虫系统学研究[J].昆虫知识.2002,39(2):88-92.
    [108]江世宏,孟子烨,陈晓琴,李广京.核糖体DNA序列分析在昆虫系统学研究中的应用[J].昆虫分类学报,2008,30(3):225-238.
    [109]M. Masahiko, K. Kenjiro, S. Toru. Phylogenetic Utility of Nucleotide Sequences of Mitochondrial 16S Ribosomal RNA and Cytochrome B Genes in Anthocorid bugs (Heteroptera:Anthocoridae)[J]. Appl Entomol Zool.2000,35(3):293-300.
    [110]李淑娟.中国猎蝽科昆虫分子分类初探[D].中国农业大学硕士学位论文,2002.
    [111]孙钦霞,张雅林.七种蝽mtDNA-16S rRNA基因序列多态性的研究[J].昆虫分类学报,2004,26(2):107-113.
    [112]M.B. Hebsgaard, N.M. Andersen, J. Damgaard. Phylogeny of the True Water Bugs (Nepomorpha:Hemiptera-Heteroptera) Based on 16S and 28S rDNA and Morphology [J]. Syst Entomol.2004,29(4):488-508.
    [113]J. Damgaard, N. M. Andersen, R. Meier. Combining Molecular and Morphological Analyses of Water Strider Phylogeny (Hemiptera-Heteroptera, Gerromorpha):Effects of Alignment and Taxon Sampling[J]. Syst Entomol.2005, 30(2):289-309.
    [114]A. S. Paula, L. Diotaiuti, C. J. Schofield. Testing the Sister-Group Relationship of the Rhodniini and Triatomini (Insecta:Hemiptera:Reduviidae:Triatominae)[J]. Mol Phyl Evol.2005,35(3):712-718.
    [115]N. A. Moran, M. A. Munson, P. Baumann. A Molecular Clock in Endosymbiotic Bacteria is Calibrated Using the Insect Hosts[J]. Proc Royal Soc Lond Brit.1993, 253(1337):167-171.
    [116]李红梅,王殉章,林进添.基于线粒体16S rDNA序列的蝽总科系统发育研究(异翅亚目:蝽次目)[J].华中农业大学学报.2006,25(5):507-511.
    [117]P. Uva, J. L. Clement, J. W. Austin. Origin of a New Reticulitermes termite (Isoptera:Rhinotermitidae) Inferred from Mitochondrial and Nuclear DNA Data[J]. Mol Phylogenet.2004,30(2):344-353.
    [118]T. M. Jenkins, S. C. Jones, C.Y. Lee. Phylogeography Illuminatesmaternal Origins of Exotic coptotermes gestroi (Isoptera:Rhinotermitidae) [J]. Molecular Phylogenetics and Evolution.2007,42 (3):612.
    [119]Q. W. Fang, I. V. C. Black, H. D. Blocker, et al. A Phylogeny of New World Deltocephalus-like Leafhopper Genera Based on Mitochondrial 16S Ribosomal DNA Sequences[J]. Mol Phylogenet Evol.1993,2(2):119-131.
    [120]C. H. Dietrich, S. J. Fitzgerald, J. L. Holmes. Reassessment of Dalbulus leafhopper (Homoptera:Cicadellidae) Phylogeny Based on Mitochondrial DNA Sequences[J]. Ann Entomol Soc Am.1998,91(5):590-597.
    [121]刘殿锋,蒋国芳.应用16S rDNA序列探讨斑腿蝗科的单系性及其亚科的分类地位[J].昆虫学报.2005.48(5):759-769.
    [122]印红,张道川,毕智丽.蝗总科部分种类16S rDNA的分子系统发育关系[J].遗传学报.2003,30(8):766-772.
    [123]李新江,张道川,王文强,等.基于16S rDNA部分序列的6种短鼻蝗的分子系统学(直翅目:蝗总科)[J].动物学报(增刊).2005,51:138-142.
    [124]孙正莉,蒋国芳,霍光明,等.基于16S rDNA序列探讨中国剑角蝗科的单系性及其六属的系统发育关系[J].动物学报.2006,52(2):302-308.
    [125]孙晓明,继峰,应斌武,等.16S rDNA序列分析在嗜尸性蝇类鉴定中的应用[J].法医学杂志.2005,22(2):36-38.
    [126]J. S. Hwang, J. S. Lee, T. W. Goo, et al. Molecular Genetic Relationships between Bombycidae and Saturniidae Based on the Mitochondria DNA Encoding of Large and Small rRNA[J]. Genet Anal.1999,15(6):223-228.
    [127]B. Mahendran, S. K. Ghosh, S. C. Kundu. Molecular Phylogeny of Silk-producing Insects Based on 16S Ribosomal RNA and Cytochrome Oxidasesubunit I Genes [J]. J Genet.2006,85(1):31-38.
    [128]R. C. Sobti, V. L. Sharma, M. Kumari, et al. Genetic Relatedness of Six North-Indian Butterfly Species (Lepidoptera:Pieridae) Based on 16S rRNA Sequence Analysis [J]. Mol Cell Biochem.2007,295(1-2):145-151.
    [129]陈娜,朱国萍,郝家胜,等.基于线粒体rDNA序列探讨蛱蝶科(鳞翅目,蝶亚目)主要分类群的系统发生关系[J].动物学报,2007,53(1):106-115.
    [130]苏成勇,朱国萍,郝家胜,等.凤蝶亚科(凤蝶科,鳞翅目)16S rRNA基因的分子系统发生分析[J].动物分类学报,2007,32(2):335-342.
    [131]J. Aubert, L. Legal, H. Descimon, F. Michel. Molecular Phylogeny of Swallow Tail Butterflies of the Tribe Papilionini (Papilionidae, Lepidoptera) [J]. Mol Phylogenet Evol.1999,12(2):156-167.
    [132]T. Katoh, A. Chichvarkhin, T. Yagi, K. Omoto. Phylogeny and Evolution of Butterflies of the Genus Parnassius:Inferences from Mitochondrial 16S and ND1 Sequences [J]. Zoolog Sci.2005,22(3):343-351.
    [133]J. Martin, A. Gilles, H. Descimon. Molecular Phylogeny and Evolutionary Patterns of the Europeansatyrids (Lepidoptera:Satyridae) as Revealed by Mitochondrial Gene Sequences [J]. Mol Phylogenet Evol.2000,15(1):70-82.
    [134]N. Wahlberg, M. Zimmermann. Pattern of Phylogenetic Relationships among Members of the Tribe Melitaeini (Lepidoptera:Nymphalidae) Inferred from Mitochondrial DNA Sequences [J]. Cladistics.2000,16(4):347-363.
    [135]C. L. Lange, K. D. Scott, G. C. Graham, G.C. Graham, M.N. Sallam, P.G Allsopp. Sugarcane mothborers (Lepidoptera:Noctuidae and Pyraloidea):Phylogenetics Constructed Using COII and 16S Mitochondrial Partial Gene Sequences[J]. Bull Entomol Res.2004,94(5):457-464.
    [136]J. N. Derr, S. K. Davis, J. B. Woolley, R.A. Wharton. Variation and the Phylogenetic Utility of the Large Ribosomal Subunit of Mitochondrial DNA from the Insect Order Hymenoptera[J]. Mol Phylogenet Evol.1992,1(2):136-147.
    [137]J. N. Derr, S. K. Davis, J. B. Woolley, R.A. Wharton. Reassessment of the 16S rDNA Nucleotide Sequence from Members of the Parasitic Hymenoptera[J]. Mol Phylogenet Evol.1992,1(4):338-341.
    [138]S. A. Cameron. Multiple Origins of Advanced Eusociality in Bees Inferred from Mitochondrial DNA Sequences[J]. Proc Aatl Acad Sci USA.1993,90:8687-8691.
    [139]M. Dowton, A. D. Austin. Molecular Phylogeny of the Insect Order Hymenoptera: Apocritan Relationships [J]. Proc Natl Acad Sci USA.1994,91:9911-9915.
    [140]M. Dowton, A. D. Austin. Evidence for AT-transversion Bias in Wasp (Symphyta: Hymenoptera) Mitochondrial Genes and Its Implications for the Origin of Parasitism[J]. J Mol Evol.1997,44:348-405.
    [141]刘晓丽,任国栋.九种拟步甲16S rDNA部分序列及其亲缘关系[J].河北大学学报(自然科学版),2004,24(4):339-405.
    [142]T. Katoh, A. Chichvarkin, T. Yagi, et al. Phylogeny and Evolution of ButterXies of the Genus Parnassius:Inferences from Mitochondrial 16S and ND1 Sequences [J]. Zoological Science.2005,22:343-351.
    [143]R. C. Sobti, V. L. Sharma, M. Kumari, et al. Genetic Relatedness of Six North-Indian Butterfly Species (Lepidoptera:Pieridae) based on 16S rRNA Sequence Analysis [J]. Molecular and Cellular Biochemistry.2007,295(1-2): 145-151.
    [144]J. E. Hixson, W. M. Brown. A Comparison of the Small Ribosomal RNA Genes from the Mitochondrial DNA of the Great Apes and Humans:Sequences, Structure, Evolution, and Phylogentic Implications [J]. Mol Biol Evol.1986,3(1): 1-18.
    [145]D. M. Hillis, M. Moritz, K. M. Mable. Molecular Systematics[M]. Sunderland: Sinauer Associates.1996.
    [146]D. M. Hillis, M. T. Dixon. Ribosomal DNA:Molecular Evolution and Phylogenetic Inference[J]. Q Rev Biol.1991,66(4):411-453.
    [147]C. Simon, A. Franke, A. Martin. The Polymerase Chain Reaction:DNA Extraction and Amplification. In GM Hewitt, AWB Johnson, JPW Young, eds. Molecular Techniques in Taxonomy. Berlin:Springer-Verlag Press.1991,pp.329-355.
    [148]C. S. Simon, T. K. Paabo, A. C. Wilson. Evolution of the Mitochondrial Ribosomal RNA in Insects as Shown by the Polymerase Chain Reaction. In M Clegg, SO' Brien, eds. Molecular evolution. vol.122. New York:UCLA Symposia on Molecular and Cellular Biology.1990,pp.235-244.
    [149]P. De Rijk, J. M. Neefs, Y. Van de Peer, R. De Wachter. Compilation of Small Ribosomal Subunit RNA Sequences[J]. Nucleic Acids Res.1993,20(supplement): 2075-2089.
    [150]Y. Van de Peer, J. M. Neefs, P. De Rijk, R. De Wachter. Reconstructing Evolution from Eukaryotic Small-ribosomal-subunit RNA Sequences:Calibration of the Molecular Clock[J]. J Mol Evol.1993,37(2):221-232.
    [151]I. Uhlenbusch, A. McCracken, G. Gellissen. The Gene for the Large (16S) Ribosomal RNA from the Locusta migrator ia Mitochondrial Genome [J]. Curr Genet.1987,11(8):631-638.
    [152]R. R. Gutell, M. N. Schnare, M. W. Gray. A Compilation of Large Subunit (23S-and 23S-like) Ribosomal RNA Structures [J]. Nucleic Acids Res.1992,20 (supplement):2095-2109.
    [153]S. Kambhampati, K. M. Kjer, B. L. Thorne. Phylogenetic Relationship Among Termite Families based on DNA Sequence of Mitochondrial 16S Ribosomal RNA Gene[J]. Insect Mol Biol.1996,5(4):229-238.
    [154]P. K. Flook, C. H. F. Rowell. The Phylogeny of the Caelifera (insecta, orthoptera) as Deduced from mtrRNA Gene Sequences[J]. Mol Phylogenet Evol.1997,8(1): 89-103.
    [155]P. K. Flook, C. H. F. Rowell. The Effectiveness of Mitochondrial rRNA Gene Sequences for the Reconstruction of the Phylogeny of an Insect Order (Orthoptera) [J]. Mol Phylogenet Evol.1997,8(2):177-192.
    [156]T. R. Buckley, C. Simon, P. K. Flook, B. Misof. Secondary Structure and Conserved Motifs of the Frequently Sequenced Domains IV and V of the Insect Mitochondrial Large Subunit rRNA Gene[J]. Insect Mol Biol.2000,9(6):565-580.
    [157]M. C. Milinkovitch, G. Orti, A. Meyer. Revised Phylogeny of Whales Suggested by Mitochondrial Ribosomal DNA Sequences[J]. Nature (Lond.).1993, 361(6410):346-348.
    [158]L. Nigro, M. Solignac, P. Sharp. Mitochondrial DNA Sequence Divergence in the Melanogaster and Oriental Species Subgroups of Drosophila[J]. J Mol Evol. 1991,33(2):156-162.
    [159]朱玉贤,李毅.现代分子生物学[M].北京:高等教育出版社,1997:479.
    [160]T. Miura, K. Maekawa, O. Kitade, T. Abe, T. Matsumoto. Phylogenetic Relationships among Subfamilies in Higher termites (Isoptera:Termitidae) Based on Mitochondrial COII Gene Sequences[J]. Ann Entomol Soc Am.1998,91(5): 515-521.
    [161]W. M. Fitch, E. Markowitz. An Improved Method for Determining Codon Variability in a Gene and its Application to the Rate of Fixation of Mutations in Evolution[J]. Biochem Genet.1970,4(5):579-593.
    [162]M. Nei. Molecular Evolutionary Genetics[M]. New York:Columbia University Press,1987.
    [163]J. S. Shoemaker, W. M. Fitch. Evidence from Nuclear Sequences that Invariable Sites should be Considered when Calculating Sequence Divergence [J]. Mol Biol Evol.1989,6(3):270-289.
    [164]J. H. Gillespie. The Causes of Molecular Evolution[M]. New York:Oxford University Press,1991.
    [165]W. H. Li, D. Graur. Fundamentals of Molecular Evolution[M]. Sinauer, Sunderland, MA.1991.
    [166]R. J. Britten. Forbidden Synonymous Substitutions in Coding Regions[J]. Mol Biol Evol.1993,10(1):205-220.
    [167]M. S. Caterino, S. Cho, F. A. H. Sperling. The Current State of Insect Molecular Systematics:A Thriving Tower of Babel[J]. Ann Rev Entomol.2000,45:1-54.
    [168]D. H. Foley, J. H. Bryan, D. Yeates, et al. Evolution and Systematics of Anopheles: Insights from a Molecular Phylogeny of Australasian Mosquitoes[J]. Mol Phyl Evol.1998,9 (2):262-275.
    [169]K. P. Pruess, B. J. Adams, T. J. Parsons, et al. Utility of the Mitochondrial Cytochrome Oxidase Ⅱ Gene for Resolving Relationships among Black Flies (Diptera:Simuliidae)[J]. Mol Phyl Evol.2000,16(2):286-295.
    [170]H. Liu, A. T. Beckenbach. Evolution of the Mitochondrial Cytochrome Oxidase II Gene among 10 Orders of Insects[J]. Mol Phylogenet Evol.1992,1(1):41-52.
    [171]F. A. H. Sperling, A. G. Raske, I. S. Otvos. Mitochondrial DNA Sequence Variation among Population and Host Races of Lambdina fiscellaria (Gn) (Lepidoptera:Geometridae) [J]. Insect Mol Biol.1999,8(1):97-106.
    [172]S. T. Kelley, J. B. Mitton, T. D. Paine. Strong Differentiation in Mitochondrial DNA of Dendroctonus brevicomis (Coleoptera:Scolytidae) on Different Subspecies of Pondreosa Pine [J]. Ann Entomol Soc Am.1999,92(2):193-197.
    [173]J. M. Brown, O. Pellmyr, J. N. Thomspon, et al. Mitochondrial DNA Phylogeny of the Prodoxidae (Lepidoptera:Incurvariodea) Indicates Rapid Ecological Diversification of Yucca Moths [J]. Ann Entomol Soc Am.1994,87(6):795-802.
    [174]N. M. Andersen, L. Cheng, J. Damgaard, et al. Mitochondrial DNA Sequence Variation and Phylogeography of Oceanic Insects (Hemiptera:Gerridae: Halobates spp.)[J]. Marine Biol.2000,136(3):421-430.
    [175]J. Damgaard, N. M. Andersen, L. Cheng, et al. Phylogeny of Sea Skaters, Halobates eschscholtz (Hemiptera, Gerridae), based on mtDNA Sequence and Morphology [J]. Zool J Linn Soc.2000,130(4):511-526.
    [176]J. Damgaard, F. A. H. Sperling. Phylogeny of the Water Strider Genus Gerris fabricius (Heteroptera:Gerridae) based on COI mtDNA, EF-la Nuclear DNA and Morphology [J]. Syst Entomol.2001,26:241-254.
    [177]J. Damgaard, A. I. Cognato. Sources of Character Conflict in a Clade of Water Striders (Heteroptera:Gerridae)[J]. Cladistics.2003,19(6):512-526.
    [178]H.M. Li, R.Q. Deng, J. W. Wang. A Preliminary Phylogeny of the Pentatomomorpha (Hemiptera:Heteroptera) based on Nuclear 18S rDNA and Mitochondrial DNA Sequences[J]. Mol Phyl Evol.2005,37(2):313-326.
    [179]A. P. Vogler, R. DeSalle, T. Assmann, et al. Molecular Population Genetics of the Endangered Tiger Beetle, Cicindela dorsalis (Coleop tera:Cicindelidae)[J]. Ann Entomol Soc Am.1993,86(2):142-152.
    [180]肖金花,肖晖,黄大卫.生物分类学的新动向——DNA条形编码[J].动物学报,2004,50(5):852-855.
    [181]P. D. N. Hebert, A. Cywinska, S. L. Ball. Biological Identifications Through DNA Barcodes[J]. Proc R Soc Lond B.2003,270(1512):313-321.
    [182]P.D.N. Hebert, S. Ratnasingham, J.R. de Waard. Barcoding Animal life: Cytochrome Coxidase Subunit I Divergences Among Closely Related Species [J].Proc R Soc Lond B.2003,270:doi:10.1098/rsbl.2003.0025.
    [183]P. D. N. Hebert, M. Y. Stoeckle, T. S. Zemlak, C. M. Francis. Identification of Birds through DNA Barcodes [J]. PLoS Biol.2004,2(10):1657-1663.
    [184]P. D. N. Hebert, E. H. Penton, J. M. Burns, D. H. Janzen, Hallwachs Winnie. Ten Species in one:DNA Barcoding Reveals Cryptic Species in the Neotropical Skipper Butterfly Astraptes fulgerator[J]. PNAS.2004,101(41):14812-14817.
    [185]郭晓华,孙娜,张嫒.线粒体COI基因在昆虫分子系统学研究中的应用[J].国际遗传学杂志.2009,32(5):79-81.
    [186]戴金霞.线粒体Cyt b基因与昆虫分子系统学研究[J].四川动物.2005,24(2):222-225.
    [187]周继亮,张亚平,黄美华,等.蝮亚科蛇线粒体细胞色素b基因序列分析及其系统发[J].动物学报,2001,47(4):361-366.
    [188]A. Meyer, A. C. Wilson. Origin of Tetrapods Inferred from Their Mitochondrial DNA Affiliation to Lungfish[J]. Mol Evol.1990,31(5):359-364.
    [189]K. Pirounakis, K. Stella, S. H. Paul. Genetic Variation among European Populations of Bombus pascuorum (Hymenoptera, Apidae) from Mitochondrial DNA Sequence Data[J]. European J Entomol.1998,95 (1):27-33.
    [190]F. A. Monado, P. Kuben, P. Franciso, et al. MtDNA Variation of Triatoma infestans Populations and its Implicationon Specific Status of T. melanosoma[J]. Mem Inst Oswaldo Cruz.1999,94 (sup1):229-238.
    [191]J. Morrow, L. Scott, B. Congdon. Close Genetic Similarity between two Sympatric Species of Tephritid Fruit Fly Reproductively Isolated by Mating Time[J]. Evolution Int J Org Evolution.2000,54 (3):899-910.
    [192]F.O. Aikhionbare, Z. B.Mayo. Mitochondrial DNA Sequences of Greenbug (Homoptera:Aphididae) Biotypes [J]. Biomol Eng.2000,16 (6):199-205.
    [193]陈久永,张亚平.中国5种珍稀绢蝶非损伤性取样的mtDNA序列及系统进化[J].遗传学报,1996,26(3):203-207.
    [194]Y. Huang, M. Orti. Phylogenetic Relationship of North American Field Crickets Inferred from Mitochondrial DNA Datas[J]. Mol Phylogenet Evol.2000,1 (17): 48-57.
    [195]R. Belshaw, L. J. Donald. A Molecular Phylogeny of the Aphidiinae (Hymenoptera:Braconidae) [J]. Mol Phylogenet Evol.1997,7 (3):281-293.
    [196]邵红光,张亚平,等.原尾虫DNA序列变异及无翅昆虫的系统进化[J].科学通报,1999,11(44):1836-1841
    [197]L. G. Willis, M. L. Winston, B. M. Honda. Phylogenetic Relationships in the Honeybee (Apis) as Determined by the Sequence of the Cytochrome Oxidase II Region of Mitochondrial DNA[J].Mol Phylogenetics Evol.1992,1 (3):169-178.
    [198]任竹梅,马恩波,郭亚平.蝗总科部分种类Cyt b基因序列及系统进化研究[J].遗传学报,2002,29(4):314-321.
    [199]W. Chapco, G Litzenberger, W. R. Kuperus. A Molecular Biogeographic Analysis of the Relationship between North American Melanoploid Grasshoppers and Their Eurasian and South American Relatives[J]. Mol Phylogenet Evol.2001,18(3): 460-466.
    [200]G Litzenberger, W. Chapco. A Molecular Phylogeographic Perspective on a Fifty-year-old Taxonomic Issue in Grasshopper Systematics[J]. Heredity. 2001,86(Ptl):54-59.
    [201]W. Chapco, G. Litzenberger. A Molecular Phylogenetic Study of two Relict Species of Melanopline Grasshoppers [J]. Genome.2002,45(2):313-318.
    [202]C. Amedegnato, W. Chapco, G. Litzenberger. Out of South America? Additional Evidence for a Southern Origin of Melanopline Grasshoppers[J]. Mol Phylogenet Evol.2003,29(1):115-119.
    [203]智妍,葛振萍,张春田等.基于线粒体基因的昆虫分子系统学研究进展[J].沈阳师范大学学自然科学版.2008,26(3):347-350.
    [204]Z. H. Su, Y. Imura, M. Okamoto. Phylogeny and Evolution of Digitulati ground beetles (Coleoptera, Carabidae) inferred from Mitochondrial ND5 Gene Sequences[J]. Mol Phylogenet Evol.2004,30(1):152-166.
    [205]M. Okamoto, N. Kashiwai, Z. H. Su. Sympatric Convergence of the Color Pattern in the Chilean Ceroglossus Ground Beetles inferred from Sequence Comparisons of the Mitochondrial ND5 Gene[J]. J Mol Evol.2001,53(4/5):530-538.
    [206]C. G. Kim, A. O. Tominag, Z. H. Su. Differentiation within the Genus Leptocarabus (excl. L. kurilensis) in the Japanese Islands as deduced from Mitochondrial ND5 Gene Sequences (Coleoptera, Carabidae)[J]. Genes Genet Syst.2000,75(6):335-342.
    [207]J. Krzywinski, R. C. Wilkerson, N. J. Besansky. Evolution of Mitochondrial and Ribosomal Gene Sequences in Anophelinae (Diptera:Culicidae):Implications for Phylogeny Reconstruction[J]. Mol Phylogenet Evol,2001,18(3):479-487.
    [208]T. Yagi, G. Sasaki, H. Takebe. Phylogeny of Japanese Papilionid Butterflies inferred from Nucleotide Sequences of the Mitochondrial ND5 Gene[J]. J Mol Evol.1999,48(1):42-48.
    [209]C. A. M. Russo, M. Takezaki, M. Nei. Efficiencies of Different Genes and Different Tree-building Methods in Recovering a Known Vertebrate Phylogeny [J]. Mol BiolEvol.1996,13(3):525-536.
    [210]M. S. Springer, R. W. DeBry, C. Douady, H. M. Amrine, O. Madsen, W. W. de Jong, M. J. Stanhope. Mitochondrial Versus Nuclear Gene Sequences in Deep-Level Mammalian Phylogeny Reconstruction[J]. Mol Biol Evol.2001,18(2): 132-143.
    [211]R. Zardoya, A. Meyer. Phylogenetic Performance of Mitochondrial Protein-Coding Genes in Resolving Relationships Among Vertebrates[J]. Mol Biol Evol.1996,13(7):933-942.
    [212]S. L. Cameron, K. B. Miller, C. A. D'Haese, M. F. Whiting, S. C. Barker. Mitochondrial Genome Data Alone are not enough to unambiguously Resolve the Relationships of Entognatha, Insecta and Crustacea Sensu Lato (Arthropoda) [J]. Cladistics.2004,20(6):534-557.
    [213]M. Miya, M. Nishida. Use of Mitogenomic Information in Teleostean Molecular Phylogenetics:A Tree-Based Exploration under the Maximum-Parsimony Optimality Criterion[J]. Molecular Phylogenetics and Evolution.2000,17(3): 437-455.
    [214]G. Gadaleta, G Pepe, G. DeCandia, C. Quagliarieuo, E. Sbisa, C. Saccone. The Complete Nucleotide Sequence of the Rattus norvegicus Mitochondrial Genome: Cryptic Signals Revealed by Comparative Analysis between Vertebrates [J]. J Mol Evol.1989,28(6):497-516
    [215]S. Saccone, C. D. Giorgi, C. Gissi, G. Pesole, A. Reyes. Evolutionary Genomics in Metazoa:The Mitochondrial DNA as a Model System [J]. Gene.1999,238(1): 195-209.
    [216]Y. Kumazawa, M. Nishida. Sequence Evolution of Mitochondrial tRNA Genes and Deep-branch Animal Phylogenetics [J]. J Mol Evol.1993,37(3):380-398.
    [217]Y. Kumazawa, M. Nishida. Variations in Mitochondrial tRNA Gene Organization of Reptiles as Phylogenetic Markers [J]. Mol Biol Evol.1995,12(5):759-772.
    [218]刘忠权,王义权,周开亚.用线粒体tRNA基因探讨现存两栖动物三个目间系统发生关系[J].动物学研究.2004,25(3):185-190.
    [219]A. Caccone, B. A. Garcia, J. R. Powell. Evolution of the Mitochondrial DNA Control Region in the Anopholes gambiae complex[J]. Insect Mol Biol.1996,5(1): 51-59.
    [220]J. C. R. Duenas, G. M. Panzetta-Dutari, A. Blanco, C. N. Gardenal. Restriction Fragment-length Polymorphism of the mtDNA A+T-rich Region as a Genetic Marker in Aedes Aegypti (Diptera:Culicidae) [J]. Ann Entomol Soc Am.2002, 95(3):352-258.
    [221]M. F. J. Taylor, S. W. McKechnie, N. Pierce, M. Kreitman. The Lepidopteran Mitochondrial Control Region:Structure and Evolution[J]. Mol Biol Evol. 1993,10(6):1259-1272
    [222]黄原.分子系统发生学[M].2011,北京:科学出版社.
    [223]D. Swofford, G. Olsen, P. Waddel, D. Hillis. Phylogenetic inference. In:Molecular Systematics.2nd ed. D. Hi llis, C. Moritz, andB. Mable. Sunderland, Massacusetts: Sinauer Associates.1996,407-514.
    [224]J. D. Thompson, T. J. Gibson, F. Plewniak. The ClustalX Windows Interface, Flexible Strategies for Multiple Sequence Alignment aided by quality Analysis Tools [J]. Nucleic Acids Res.1997,25(24):4876-4882.
    [225]D. D. Pollock, D. J. Zwickl, J. A. McGuire, et al. Increased Taxon Sampling is Advantageous for Phylogenetic Inference[J]. Systematic Biology.2002,51(4): 664-671.
    [226]J. Derrick, D. M. Hillis. Increased Taxon Sampling Greatly Reduces Phylogenetic Error[J]. Systematic Biology.2002,51(4):588-598.
    [227]黄大卫.支序分类学中外群分析的探讨[J].动物学集刊,1992,9:149-157.
    [228]B. G. Hall. Comparison of the Accuracies of Several Phylogenetic Methods Using Protein and DNA Sequences[J]. Mol Biol Evol.2005,22(3):792-802.
    [229]J. Felsenstein. Evolutionary Trees from DNA Sequences:a Maximum Approach[J]. J Mol Evol.1981,17(6):368-376.
    [230]J. P. Huelsenbeck, F. Ronquist. MRBAYES:Bayesian Inference of Phylogeny [J]. Bioinformatics.2001,17(8):754-755.
    [231]D. Otte, P. Naskrecki. Orthoptera Species Online. httP://vieeroy.eeb. ueolm.edLI/Orthop-tera.(2004/02/10).1997.
    [232]V. M. Dirsh. Classification of the Acridomorphoid Insects, E. W. Classey Ltd, Famngdon, Oxon 45-54.1975.
    [233]郑哲民.蝗虫分类学[M].西安:陕西师范大学出版社,1993.
    [234]夏凯龄等.中国动物志:昆虫纲第四卷:直翅目:蝗总科[M].北京:科学出版社,1994.
    [235]刘举鹏.癞蝗科(Pamphagidae)在中国的分布和演化[J].昆虫分类学报,1995,17(增刊):111-116.
    [236]黄原.分子系统学-原理、方法及应用[M].北京:中国农业出版,1998.
    [237]A. Meyer, R. Zardoya. Recent Advances in the (molecular) Phylogeny of Vertebrates[J]. Annu Rev Ecol Evol Syst.2003,34:311-338.
    [238]J. L. Boore, J. R. Macey, M. Medina. Sequencing and Comparing Whole Mitochondrial Genomes of Animals[J]. Methods Enzymol.2005,395:311-348.
    [239]A. Carapelli, F. Nardi, R. Dallai, F. Frati. A Review of Molecular Data for the Phylogeny of Basal Hexapods[J]. Pedobiologia.2006,50(2):191-204.
    [240]B. Larget, D. L. Simon, J. B. Kadane, D. Sweet. A Bayesian Analysis of Metazoan Mitochondrial Genome Arrangements [J]. Mol Biol Evol.2005,22(3):486-495.
    [241]A. Handlirsh. Mantodea Order Fangheuschrecken. In Kukenthal and Krumbach Handbuch der Zoologie. Berlin and Leipzig:de Gruyter.1930.4(i):803-819.
    [242]K. Ander. Vergleichend-anatomische und Phylogenetische Studien uber die Ensifera (Saltatoria). Opuscula, Ent (Supplement Ⅱ) 1939,306pp.
    [243]田英芳,黄刚,郑哲民.一种简易的昆虫基因组DNA提取方法[J].陕西师范大学学报(自然科学版),1999,27(4):82-84.
    [244]萨姆布鲁克J,拉塞尔DW著,黄培堂译.分子克隆试验指南(第3版)[M].北京:科学出版社,2002.
    [245]孙慧敏.蝗亚目三种昆虫线粒体基因组测序与蝗总科系统发育分析[D].西安:陕西师范大学,2009.
    [246]S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman. Basic Local Alignment Search Tool [J]. J Mol Biol.1990,215(2):403-410.
    [247]J.K. Bonfield, K.F. Smith, R. Staden. A New DNA Sequence assembly Program [J]. Nucleic Acids Res.1995,23(24):4992-4999.
    [248]T. M. Lowe, S. R. Eddy. tRNAscan-SE:a Program for Improved Detection of Transfer RNA Genes in Genomic Sequence[J]. Nucleic Acids Res.1997,25(5): 955-964.
    [249]J. Gao, C. H. Cheng, Y. Huang. Analysis of Complete Mitochondrial Genome Sequence of Gomphocerus licenti Chang[J]. Zool Res.2009,30 (6),603-612.
    [250]D. C. Zhang, Y. C. Zhi, H. Yin, X. J. Li, X. C. Yin. The Complete Mitochondrial Genome of Thrinchus schrenkii (Orthoptera:Caelifera, Acridoidea, Pamphagidae) [J]. Mol Biol Rep.2011,38(1),611-619.
    [251]M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. MeGettigan, H. Mewilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, D. G. Higgins. Clustal W and Clustal X version2.0[J]. Bioinformatics. 2007,23(21):2947-2948.
    [252]M. Zuker. Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction[J]. Nucleic Acids Research.2003,31(13):3406-3415.
    [253]G. Benson. Tandem Repeats Finder:a Program to Analyze DNA Sequenees[J]. Nucleic Acids Research.1999,27(2):573-580.
    [254]K. Tamura et al. MEGA5:Molecular Evolutionary Genetics Analysis Using Maxi-mum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods [J]. Mol Biol Evol.2011,28 (10):2731-2739.
    [255]吕宝忠,钟扬,高莉萍等译.分子进化与系统发育[M].北京:高等教育出版社,2002:1-299.
    [256]H. H. C. Crick. Codon-Anticodon Pairing:The Wobble Hypothesis [J]. J Mol Biol. 1966,19(2):548-555.
    [257]S. Steinberg, F. Leclerc, R. Cedergren. Structural Rules and Conformational Compensations in the tRNAL-Form[J]. J Mol Biol.1997,266(2):269-282.
    [258]S. Yokobori, S. Paabo. Transfer RNA Editing in Land Snail Mitochondria[J]. Proc Natl Acda Sci USA.1995,92(22):10432-10435.
    [259]C. M. R. Fauron, D. R. Wolstenholme. Intraspecific Diversity of Nucleotide Sequences within the Adenine+ Thymine-rich Region of Mitochondrial DNA Molecules of Drosophila mauritiana, Drosophila melanogaster and Drosophila simulans[J]. Nucl Acids Res.1980,8 (22):5391-5410.
    [260]C. M. R. Fauron, D. R. Wolstenholme. Extensive Diversity among Drosophila Species with respect to Nucleotide Sequences within the Adenine+ Thymine-rich Region of Mitochondrial DNA Molecules[J]. Nucl Acids Res.1980,8(11): 2439-2452.
    [261]P. Librado, Rozas J:DnaSP v5:a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics.2009,25(11):1451-1452.
    [262]X. J. Min, D. A. Hickey. DNA Asymmetric Strand Bias Affects the Amino Acid Composition of Mitochondrial Proteins[J]. DNA Research.2007,14(5):201-206.
    [263]P. G. Foster, L. S. Jermiin, D. A. Hickey. Nucleotide Composition Bias Affects Amino Acid Content in Proteins Coded by Animal Mitochondria[J]. Journal of Molecular Evolution.1997,44(3):282-288.
    [264]S. K. Randall, R. Eritja, B. E. Kaplan, J. Petruska, M. F. Goodman. Nucleotide Insertion Kinetics Opposite Abasic Lesions in DNA[J]. J Biol Chem.1987, 262(14):6864-6870
    [265]K. C. Cheng, D. S. Cahill, H. Kasai, S. Nishimura, L. A. Loeb.8-Hydroxyguanine, an abundant form of Oxidative DNA Damage, Causes G→T and A→C Cubstitutions[J]. J Biol Chem.1992,267(1):166-172.
    [266]M. P. Francino, H. Ochman. Strand Asymmetries in DNA Evolution[J]. Trends Genet.1997,13(6):240-245.
    [267]S. J. Wei, M. Shi, X. X. Chen, M. J. Sharkey, C. Achterberg, G. Y. Ye, J. h. He. New Views on Strand Asymmetry in Insect Mito Chondrial Genomes[J]. Plos One. 2010,5(9):1-10.
    [268]J. Castresana. Selection of Conserved Blocks from Multiple Alignments for their Use in Phylogenetic Analysis [J]. Molecular Biology and Evolution.2000,17(4): 540-552.
    [269]D. V. Lavrov, J. L. Boore, W. M. Brown. The Complete Mitochondrial DNA Sequence of the Horseshoe Crab Limulus polyphemus[J]. Molecular and Evolution.2000,17(5):813-824.
    [270]Y. Liu, Y. Huang. Sequencing and Analysis of Complete Mitochondrial Genome of Chorthippus chinensis Tarb[J]. Chin J Biochem Mol Biol.2008,24(4):329-335.
    [271]C. Ma, C. Liu, P. Yang, L. Kang. The Complete Mitochondrial Genomes of two Band-winged Grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus[J]. BMC Genomics.2009,10(156):1-12.
    [272]H.M. Sun, Z.M. Zheng, Y. Huang. Sequence and Phylogenetic Analysis of Complete Mitochondrial DNA of two Grasshopper Species Gomphocerus rufus (Linnaeus,1758) and Primnoa arctica (Zhang and Jin,1985) (Orthoptera: Acridoidea) [J]. Mitochondr DNA.2010,21(3-4):115-131.
    [273]L. Zhao, Z. M. Zheng, Y. Huang, H. M. Sun. A Comparative Analysis of Mitochondrial Genomes in Orthoptera (Arthropoda:Insecta) and Genome Descriptions of Three Grasshopper Species[J]. Zool Sci.2010,27(8):662-672.
    [274]J. D. Fenn, H. Song, S. L. Cameron, M. F. Whiting. A Preliminary Mitochondrial Genome Phylogeny of Orthoptera (Insecta) and Approaches to Maximizing Phylogenetic Signal Found within Mitochondrial Genome Data[J]. Mol Phylogenet Evol.2008,49(1):59-68.
    [275]H. W. Shi, F. M. Ding, Y. Huang. Complete Sequencing and Analysis of mtDNA in Phlaeoba albonema Zheng[J]. Chinese Journal of Biochemistr.2008,24(7): 604-611.
    [276]C. Y. Zhang, Y. Huang. Complete Mitochondrial Genome of Oxya chinensis (Orthoptera, Acridoidea) [J]. Acta Bioch Bioph Sin.2008,40(1):7-18.
    [277]S. Erler, H. J. Ferenz, R. F. A. Moritz, H. H. Kaatz. Analysis of the Mitochondrial Genome of Schistocerca gregaria gregaria (Orthoptera:Acrididae) [J]. Biol J Linn Soc.2010,99(2):296-305.
    [278]F. M. Ding, H. W. Shi, Y. Huang. Complete Mitochondrial Genome and Secondary Structures of lrRNA and srRNA of Atractomorpha sinensis (Orthoptera, Pyrgomorphidae) [J]. Zool Res.2007,28(6):580-588.
    [279]H. Yang, Y. Huang. Analysis of the Complete Mitochondrial Genome Sequence of Pielomastax zhengi[J]. Zool Res.2011,32(4):353-362.
    [280]B. Xiao, X. Feng, W. J. Miao, G. F. Jiang. The Complete Mitochondrial Genome of Grouse Locust Tetrix japonica (Insecta:Orthoptera:Tetrigoidea) [J]. Mitochondr DNA.2012,23(4):288-289.
    [281]B. Xiao, W. Chen, C. C. Hu, G. F. Jiang. Complete Mitochondrial Genome of the Groundhopper Alulatettix yunnanensis (Insecta:Orthoptera:Tetrigoidea) Mitochondr[J]. DNA.2012,23(4):286-287.
    [282]J. D. Fenn, S. L. Cameron, M. F. Whiting. The Complete Mitochondrial Genome Sequence of the Mormon Cricket (Anabrus simplex:Tettigoniidae:Orthoptera) and an Analysis of Control Region Variability [J]. Insect Mol Biol.2007,16(2): 239-252.
    [283]Z. J. Zhou, F. M. Shi, Y. Huang. The Complete Mitogenome of the Chinese Bush Cricket, Gampsocleis gratiosa (Orthoptera:Tettigonioidea)[J]. J Genet Genomics. 2008,35(6):341-348.
    [284]Z. J. Zhou, Y. Huang, F. M. Shi, H. Y. Ye. The Complete Mitochondrial Genome of Dercantha onos (Orthoptera:Bradyporidae) [J]. Mol Biol Rep.2009,36(1): 7-12.
    [285]Z. J. Zhou, H. Y. Ye, Y. Huang, F. M. Shi. The Phylogeny of Orthoptera inferred from mtDNA and Description of Elimaea cheni (Tettigoniidae:Phaneropterinae) Mitogenome[J]. J Genet Genomics.2010,37(5):315-324.
    [286]W. Ye, J. P. Dang, L. D. Xie, Y. Huang. Complete Mitochondrial Genome of Teleogryllus emma (Orthoptera:Gryllidae) with a New Gene Order in Orthoptera [J]. Zool Res.2008,29(3):236-244.
    [287]S. L. Cameron, S. C. Barker, M. F. Whiting. Mitochondrial Genomics and the new Insect Order Mantophasmatodea[J]. Mol Phylogenet Evol.2006,38(1):274-279.
    [288]T. A. Hall. BioEdit:a User-friendly Biological Sequence Alignment Editor and Analysis Program for windows 95/98/NT[J]. Nucleic Acids Symp Ser.1999,41, 95-98.
    [289]D. Posada, K. A. Crandall. Modeltest:Testing the Model of DNA Substitution[J]. Bioinformatics.1998,14(9):817-818.
    [290]J. A. A. Nylander. MrModeltest v2; Program Distributed by the author. Evolutionary Biology Centre, Uppsala University.2004.
    [291]A. Stamatakis. RAxML-VI-HPC:Maximum Likelihood-based Phylogenetic Analyses with thousands of Taxa and Mixed Models [J]. Bioinformatics. 2006,22(21):2688-2690.
    [292]F. Ronquist, J. P. Huelsenbeck. MrBayes 3:Bayesian Phylogenetic Inference under Mixed Models[J]. Bioinformatics.2003,19(12):1572-1574.
    [293]K. L. Xia. Fauna Sinica Insecta Vol.4[M]. Beijing, China:Science Press(in Chinese),1994.
    [294]P. K. Flook, S. Klee, C. H. F. Rowell. Combined Molecular Phylogenetic Analysis of the Orthoptera (Arthropoda, insecta) and Implications for their Higher Systematics[J]. Syst Biol.1999,48(2):233-253.
    [295]Z. J. Zhou, H. Y. Ye, Y. Huang, F. M. Shi. The Phylogeny of Orthoptera inferred from mtDNA and Description of Elimaea cheni (Tettigoniidae:Phaneropterinae) Mitogenome[J]. J Genet Genomics.2010,37(5):315-324.
    [296]D. C. Eades, D. Otte. Orthoptera species file 2.0/3.5[EB]. Available at http://orthoptera. speciesfile. org,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700