四种蝗虫线粒体基因组测序及系统发生分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直翅目是昆虫包括两大类:一类为螽亚目,以螽斯和蟋蟀为代表,其触角长度长于身体的长角型昆虫,另一类为蝗亚目,以蝗虫和蚱为代表,其触角长度短于身体的短角型昆虫。
     本研究选择了四种蝗虫进行了全线粒体测序,其中蹦蝗属和小蹦蝗属各一种,分别为贵州蹦蝗和峨眉小蹦蝗,其中根据形态从蹦蝗属中分出的小蹦蝗属能否成立是有争议的,太白秦岭蝗是中国特有属秦岭蝗属代表种类,仅分布于高寒的秦岭山脉。青海屹蝗是网翅蝗科一短翅型物种,在NCBI上提交的5种网翅蝗科物种中只有一种是短翅类型。
     本研究采用长距离PCR(聚合酶链式反应)结合二次嵌套PCR技术对蝗总科的4种蝗虫的全线粒体基因组进行了测定,拼接和注释,对四种斑腿蝗科蝗虫峨眉小蹦蝗(Pedopodisma emiensis(Yin)),贵州蹦蝗(Sinopodisma guizhouensis Zheng)和太白秦岭蝗(Qinlinggacris taibiensis Yin et Chou)外,还结合了本实验室所测而未发表的霍山蹦蝗(Sinopodisma houshana)进行了比较基因组分析,对四种网翅蝗科蝗虫青海屹蝗Oreoptygonotus chinghaiensis之外,还结合了NCBI下载的黑膝异爪蝗Euchorthippus fusigeniculatus,中华雏蝗Chorthippus chinensis Tarbinsky和隆额网翅蝗Arcyptera coreana Shiraki的线粒体基因组对网翅蝗科线粒体基因组的一些特性进行了比较基因组分析,并结合NCBI中已收录的和本研究小组其他成员所测定的未公开的共计54种直翅目昆虫线粒体基因组全序列,采用PCGs、 rRNA和全线粒体37基因联合三种数据集用最大简约法,最大似然法和贝叶斯推论法重新构建了直翅目系统树。主要结论如下:
     1.四种蝗总科昆虫分别为峨眉小蹦蝗(Pedopodisma emiensis(Yin))、贵州蹦蝗(Sinopodisma guizhouensis Zheng)、太白秦岭蝗(Qinlingacris taibaiensis Yin et Chou)和青海屹蝗(Oreoptygonotus chinghaiensis(Chnget Hang))。线粒体基因组全序列总长度分别为16014bp、16013bp.15631bp和15620bp。四种蝗虫均编码线粒体基因组中典型的37个基因,这37个基因分别为:13个蛋白编码基因,2个核糖体RNA基因和22个转运RNA基因。四种蝗虫线粒体基因排列次序和基因的转录方向同已经发表的蝗亚目昆虫一致。
     2.四种蝗虫线粒体基因组碱基组成均具AT偏向性,其中峨眉小蹦蝗(Pedopodisma emiensis(Yin))AT含量为76.5%,贵州蹦蝗(Sinopodisma guizhouensis Zheng)AT含量为76.4%,太白秦岭蝗(Qinlingacris taibaiensis Yin et Chou) AT含量为76.3%,青海屹蝗(Oreoptygonotus chinghaiensis(Cheng et Hang)) AT含量为75.2%。
     3.本研究所测定的线粒体基因组的A+T富集区均位于srRNA和trnI之间,长度和A+T含量分别为:峨眉小蹦蝗(Pedopodisma emiensis(Yin))为1123bp和85.8%,贵州蹦蝗(Sinopodisma guizhouensis Zheng)为1127bp和84.8%,太白秦岭蝗(Qinlingacris taibaiensis Yin et Chou)为778bp和88.7%,青海屹蝗(Oreoptygonotus chinghaiensis(Cheng et Hang))为711bp和82.1%。相对于4个主要部分(PCGs, rRNAs, tRNAs, A+T富集区),A+T富集区的AT含量是最高的区域。
     4.四种蝗虫各自均具有22个转运RNA基因,核酸保守性具链间偏向性,分布于J链的所有tRNAs比位于N链的所有tRNAs的AT%略偏高。tRNASer(AGN)的DHU臂都存在缺失的现象,其他21个转运RNA均能形成典型的三叶草二级结构。绝大多数tRNA二级结构存在一定数目的错配。在tRNA的二级结构中氨基酸接受臂和反密码子环长度较保守,TψC臂和DHU臂的变异最大。
     5.核糖体二级结构预测显示,四种蝗虫16s核糖体基因均不能形成H1臂。
     6.斑腿蝗科四个物种线粒体基因组的13个蛋白编码基因中,有11种蛋白编码基因数目完全一致,仅有2种不一致,为cytb和nad3蛋白编码基因。
     7.4种斑腿蝗氨基酸序列变异率中,cytb, cox1, cox2, cox3的氨基酸变异率最低(其中cytb的变异率为最低,AVE=0.049), nadl, nad4, nad4L和nad5的氨基酸变异率中等,atp8, nad3, nad2和nad6的氨基酸变异率偏高(其中nad3的变异率为最高,AVE=0.153)。
     8.4种斑腿蝗全线粒体mtDNA之间P-距离在贵州蹦蝗-霍山蹦蝗最小,为0.057, PCGs之间P-距离和mtDNA有相似的趋势,也是贵州蹦蝗-霍山蹦蝗最小,为0.056,说明两种蹦蝗在全线粒体mtDNA和PCGs之间差异很小。
     9.4种斑腿蝗J-链的T含量均低于N-链,而A和C的含量均为J-链高于N-链。N-链上蛋白质编码基因第3位点显示了极低的G含量,而具有极高的T含量。
     10.对PCGs、 rRNA和全线粒体37基因联合三种数据采用最大简约法,最大似然法和贝叶斯推论法重新构建的直翅目系统树,除基于rRNA用BI法所建树之外霍山蹦蝗和贵州蹦蝗均能优先聚成一支,再与峨眉小蹦蝗聚合,并结合形态学观察认为小蹦蝗属是成立的。
Orthoptera insects include two categories:one for the long-horned suborder to katydids and crickets, represented by its long antennae longer than the body angle of insects, the other for a short corner suborder to locust and grasshopper as the representative body of its antennae shorter than the short-corner type insects.
     In this study, the mitochondrial DNA of four locusts was fully sequenced, including the genus of Sinopodisma and Pedopodisma. The possibility of establishing of genus Sinopodisma is controversial.
     1. The Pedopodisma emiensis(Yin) mt genome was16014bp in size, the Sinopodisma guizhouensis Zheng mt genome was16013bp in size, the Qinlingacris taibaiensis Yin et Chou mt genome was15631bp in size and the Oreoptygonotus chinghaiensis(Cheng et Hang) was15620bp in size. The four mitochondrial genomes contain a identical set of13protein-coding genes,22transfer RNA genes, two ribosomal RNA genes and an A+T-rich region in the same arrangenment and orientation as those of the other analysed caeliferan species.
     2. The nucleotide composition all showed A/T bias and the A+T content of four species mitogenomes showed little difference. The A+T content of Pedopodisma emiensis(Yin), Sinopodisma guizhouensis Zheng, Qinlingacris taibaiensis Yin et Chou and Oreoptygonotus chinghaiensis(Cheng et Hang)was76.5%,76.4%,76.3%and75.2%respectively.
     3. The AT rich region between srRNA and trnl. The size of AT rich region of Pedopodisma emiensis (Yin), Sinopodisma guizhouensis Zheng, Qinlingacris taibaiensis Yin et Chou and Oreoptygonotus chinghaiensis (Cheng et Hang) was1123bp,1127bp,778bp and711bp. AT content of the AT rich region of Pedopodisma emiensis (Yin), Sinopodisma guizhouensis Zheng, Qinlingacris taibaiensis Yin et Chou and Oreoptygonotus chinghaiensis (Cheng et Hang) was85.8%,84.8%,82.1%and88.7%.
     4. Each mitogenomes of four species has22tRNA. The pattern of nucleotide conservation in tRNA genes was majority strand-biased. AT content of tRNAs located on the majority strand were high than tRNAs that located on the minority strand. Each tRNA has the typical cloverleaf secondary structure found in most mt tRNA genes, except for tRNA-Ser(AGN), which lacks a DHU arm. Some unmatched base pairs occur in the Pedopodisma emiensis(Yi), Sinopodisma guizhouensis Zheng, Qinlingacris taibaiensis Yin et Chou, and Oreoptygonotus chinghaiensis(Cheng et Hang) tRNAs.
     5. The secondary structure of16s ribosomal genes are not form H1arm, in addition, mitochondrial rRNA secondary structure of other parts of the very conservative, forming a plurality of sizes of stem-loop structure. Nucleotide substitution rate of the ring to the stem, and C-T is a common form of conversion. Stems mostly nucleotide substitution mutation compensation to ensure that the base to maintain the existence of secondary structure.
     6.13protein-coding genes in four species of Catantopidae mitochondrial genome, there are11kinds of exactly the same size of protein-coding genes, only two different, cytb andnad3.
     7. Variation rate of cytb, coxl, cox2, cox3are low (The lowest is cytb, AVE=0.049). Variation rate of nadl, nad4, nad4L and nad5are moderate. Variation rate of atp8, nad3, nad2and nad6are rapid (The fast is nad3, AVE=0.153).
     8. The least P-distance between mtDNA is0.057(Sinopodisma guizhouensis Zheng to Sinopodisma houshana). The least P-distance between PCGs is0.056(Sinopodisma guizhouensis Zheng to Sinopodisma houshana). Indicate that two species in genus Sinopodisma is quite similar.
     9. T content of the four species of Catantopidae in J strand lower than N strand, A and C content in the J strand are higher than that of in N strand. The third site of codon of protein-coding genes in N strand show a very low G content, and has a very high T content.
     10. Based on PCGs, rRNA gene and whole37mitochondrial gene by using maximum parsimony, maximum likelihood and Bayesian inference method reconstructed phylogenetic tree Orthoptera, We consider that the exist of the genus Pedopodisma is reasonable.
引文
[1]I. Kim, S. Y. Cha, J. S. Hwang, S. M. Lee, H. D. Sohn, B. R. Jin. The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera:Gryllotalpidae)[J]. Gene. 2005,353(2):155-168.
    [2]J.L. Boore. Animal Mitochondrial Genomes[J]. Nucleic Acids Res.1999,27(8): 1767-1780.
    [3]D.R. Wolstenholme. Animal Mitochondrial DNA:Structure and Evolution[J]. Int RevCytol,1992,141:173-216.
    [4]D.A. Clayton. Replication of animal mitochondrial DNA[J]. Cell.1982,28(4): 693-705.
    [5]M. Dowton, L.R. Castro, A.D. Austin. Mitochondrial Gene Rearrangements as Phylogenetic Characters in the Invertebrates:the Examination of Genome 'morphology'[J]. Invertebr Syst.2002,16(1):345-356.
    [6]C. Simon, F. Frati, A. Beckenbach, B. Crespi, H. Liu, P. Flook. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compliation of conserved polymerase chain reaction primers[J]. Ann Entomol Soc Am.1994,87 (6):651-701.
    [7]M. Masahiko, K. Kenjiro, S. Toru. Phylogenetic Utility of Nucleotide Sequences of Mitochondrial 16S Ribosomal RNA and Cytochrome B Genes in Anthocorid bugs (Heteroptera:Anthocoridae)[J]. Appl Entomol Zool.2000,35(3):293-300.
    [8]李淑娟.中国猎蝽科昆虫分子分类初探[D].中国农业大学硕士学位论文,2002.
    [9]孙钦霞,张雅林.七种蝽mtDNA-16S rRNA基因序列多态性的研究[J].昆虫分类学报,2004,26(2):107-113.
    [10]M.B. Hebsgaard, N.M. Andersen, J. Damgaard. Phylogeny of the True Water Bugs (Nepomorpha:Hemiptera-Heteroptera) Based on 16S and 28S rDNA and Morphology [J]. Syst Entomol.2004,29(4):488-508.
    [11]J. Damgaard, N. M. Andersen, R. Meier. Combining Molecular and Morphological Analyses of Water Strider Phylogeny (Hemiptera-Heteroptera, Gerromorpha):Effects of Alignment and Taxon Sampling[J]. Syst Entomol.2005, 30(2):289-309.
    [12]A. S. Paula, L. Diotaiuti, C. J. Schofield. Testing the Sister-Group Relationship of the Rhodniini and Triatomini (Insecta:Hemiptera:Reduviidae:Triatominae)[J]. Mol Phyl Evol.2005,35(3):712-718.
    [13]N. A. Moran, M. A. Munson, P. Baumann. A Molecular Clock in Endosymbiotic Bacteria is Calibrated Using the Insect Hosts [J]. Proc Royal Soc Lond Brit.1993, 253(1337):167-171.
    [14]李红梅,王珣章,林进添.基于线粒体16S rDNA序列的蝽总科系统发育研究(异翅亚目:蝽次目)[J].华中农业大学学报.2006,25(5):507-511.
    [15]J. S. Hwang, J. S. Lee, T. W. Goo, et al. Molecular Genetic Relationships between Bombycidae and Saturniidae Based on the Mitochondria DNA Encoding of Large and Small rRNA[J]. Genet Anal.1999,15(6):223-228.
    [16]B. Mahendran, S. K. Ghosh, S. C. Kundu. Molecular Phylogeny of Silk-producing Insects Based on 16S Ribosomal RNAand Cytochrome Oxidasesubunit I Genes [J]. J Genet.2006,85(1):31-38.
    [17]R. C. Sobti, V. L. Sharma, M. Kumari, et al. Genetic Relatedness of Six North-Indian Butterfly Species (Lepidoptera:Pieridae) Based on 16S rRNA Sequence Analysis [J]. Mol Cell Biochem.2007,295(1-2):145-151.
    [18]陈娜,朱国萍,郝家胜,等.基于线粒体rDNA序列探讨蛱蝶科(鳞翅目,蝶亚目)主要分类群的系统发生关系[J].动物学报,2007,53(1):106-115.
    [19]苏成勇,朱国萍,郝家胜,等.凤蝶亚科(凤蝶科,鳞翅目)16S rRNA基因的分子系统发生分析[J].动物分类学报,2007,32(2):335-342.
    [20]J. Aubert, L. Legal, H. Descimon, F. Michel. Molecular Phylogeny of Swallow Tail Butterflies of the Tribe Papilionini (Papilionidae, Lepidoptera) [J]. Mol Phylogenet Evol.1999,12(2):156-167.
    [21]T. Katoh, A. Chichvarkhin, T. Yagi, K. Omoto. Phylogeny and Evolution of Butterflies of the Genus Parnassius:Inferences from Mitochondrial 16S and ND1 Sequences [J]. Zoolog Sci.2005,22(3):343-351.
    [22]J. Martin, A. Gilles, H. Descimon. Molecular Phylogeny and Evolutionary Patterns of the Europeansatyrids (Lepidoptera:Satyridae) as Revealed by Mitochondrial Gene Sequences [J]. Mol Phylogenet Evol.2000,15(l):70-82.
    [23]N. Wahlberg, M. Zimmermann. Pattern of Phylogenetic Relationships among Members of the Tribe Melitaeini (Lepidoptera:Nymphalidae) Inferred from Mitochondrial DNA Sequences [J]. Cladistics.2000,16(4):347-363.
    [24]C. L. Lange, K. D. Scott, G. C. Graham, G.C. Graham, M.N. Sallam, P.G. Allsopp. Sugarcane mothborers (Lepidoptera:Noctuidae and Pyraloidea):Phylogenetics Constructed Using COII and 16S Mitochondrial Partial Gene Sequences[J]. Bull Entomol Res.2004,94(5):457-464.
    [25]J. N. Derr, S. K. Davis, J. B. Woolley, R.A. Wharton. Variation and the Phylogenetic Utility of the Large Ribosomal Subunit of Mitochondrial DNA from the Insect Order Hymenoptera[J]. Mol Phylogenet Evol.1992,1(2):136-147.
    [26]J. N. Derr, S. K. Davis, J. B. Woolley, R.A. Wharton. Reassessment of the 16S rDNA Nucleotide Sequence from Members of the Parasitic Hymenoptera[J]. Mol Phylogenet Evol.1992,1(4):338-341.
    [27]S. A. Cameron. Multiple Origins of Advanced Eusociality in Bees Inferred from Mitochondrial DNA Sequences[J]. Proc Aatl Acad Sci USA.1993,90:8687-8691.
    [28]M. Dowton, A. D. Austin. Molecular Phylogeny of the Insect Order Hymenoptera: Apocritan Relationships[J]. Proc Natl Acad Sci USA.1994,91:9911-9915.
    [29]M. Dowton, A. D. Austin. Evidence for AT-transversion Bias in Wasp (Symphyta: Hymenoptera) Mitochondrial Genes and Its Implications for the Origin of Parasitism[J]. J Mol Evol.1997,44:348-405.
    [30]刘晓丽,任国栋.九种拟步甲16S rDNA部分序列及其亲缘关系[J].河北大学学报(自然科学版),2004,24(4):339-405.
    [31]P. Uva, J. L. Clement, J. W. Austin. Origin of a New Reticulitermes termite (Isoptera:Rhinotermitidae) Inferred from Mitochondrial and Nuclear DNA Data[J]. Mol Phylogenet.2004,30(2):344-353.
    [32]T. M. Jenkins, S. C. Jones, C.Y. Lee. Phylogeography Illuminatesmaternal Origins of Exotic coptotermes gestroi (Isoptera:Rhinotermitidae) [J]. Molecular Phylogenetics and Evolution.2007,42 (3):612.
    [33]Q. W. Fang, I. V. C. Black, H. D. Blocker, et al. A Phylogeny of New World Deltocephalus-like Leafhopper Genera Based on Mitochondrial 16S Ribosomal DNASequences[J]. Mol Phylogenet Evol.1993,2(2):119-131.
    [34]C. H. Dietrich, S. J. Fitzgerald, J. L. Holmes. Reassessment of Dalbulus leafhopper (Homoptera:Cicadellidae) Phylogeny Based on Mitochondrial DNA Sequences[J]. Ann Entomol SocAm.1998,91(5):590-597.
    [35]刘殿锋,蒋国芳.应用16S rDNA序列探讨斑腿蝗科的单系性及其亚科的分类地位[J].昆虫学报.2005.48(5):759-769.
    [36]印红,张道川,毕智丽.蝗总科部分种类16S rDNA的分子系统发育关系[J].遗传学报.2003,30(8):766-772.
    [37]李新江,张道川,王文强,等.基于16SrDNA部分序列的6种短鼻蝗的分子系统学(直翅目:蝗总科)[J].动物学报(增刊).2005,51:138-142.
    [38]孙正莉,蒋国芳,霍光明,等.基于16S rDNA序列探讨中国剑角蝗科的单系性及其六属的系统发育关系[J].动物学报.2006,52(2):302-308.
    [39]孙晓明,继峰,应斌武,等.16S rDNA序列分析在嗜尸性蝇类鉴定中的应用[J].法医学杂志.2005,22(2):36-38.
    [40]G Gadaleta, G. Pepe, G. DeCandia, C. Quagliarieuo, E. Sbisa, C. Saccone. The Complete Nucleotide Sequence of the Rattus norvegicus Mitochondrial Genome: Cryptic Signals Revealed by Comparative Analysis between Vertebrates[J], J Mol Evol.1989,28(6):497-516
    [41]朱玉贤,李毅.现代分子生物学[M].北京:高等教育出版社,1997:479.
    [42]S.E. Masta. Mitochondrial sequence evolution in spiders:intraspecific variation in tRNAs lacking the T ΨC Arrm[J]. Mol Biol Evol.2000,17(7):1091-1100.
    [43]L. Nigro, M. Solignac, P. Sharp. Mitochondrial DNA Sequence Divergence in the Melanogaster and Oriental Species Subgroups of Drosophila[J]. J Mol Evol. 1991,33(2):156-162.
    [44]R. Shao, N.J. Campbell, S.C. Barker. Numerous Gene Rearrangements in the Mitochondrial Genome of the Wallaby Louse, Heterodoxus macropus (Phthiraptera)[J]. Mol Biol Evol.2001,18(5):858-865.
    [45]C. Covacin, R. Shao, S. Cameron, S.C. Barker. Extraordinary Number of Gene Rearrangements in the Mitochondrial Genomes of Lice (Phthiraptera:Insecta)[J]. Insect Mol Biol.2006,15(1):63-68.
    [46]R. Shao, S.C. Barker. The Highly Rearranged Mitochondrial Genome of the Plague Thrips, Thrips imaginis (Insecta:Thysanoptera):Convergence of Two Novel Gene Boundaries and an Extraordinary Arrangement of rRNA Genes[J]. Mol Biol Evol.2003,20(3):362-370.
    [47]R. Shao, M. Dowton, A. Murrell, S.C. Barker. Rates of Gene Rearrangement and Nucleotide Substitution are Correlated in the Mitochondrial Genomes of Insects[J]. Mol Biol Evol.2003,20(10):1612-1619.
    [48]K. Yukuhiro, H. Sezutsu, M. Itoh, K. Shimizu, Y. Anno. Significant Levels of Sequence Divergence and Gene Rearrangements have Occurred Between the Mitochondrial Genomes of the Wild Mulberry Silkmoth, Bombyx mandarina, and its Close Relative, the Domesticated Silkmoth, Bombyx mori[J], Mol Biol Evol. 2002,19(8):1385-1389.
    [49]R.H. Crozier, Y.C. Crozier. The mitochondrial genome of the Honeybee Apis mellifera:complete sequence and genome organization[J]. Genetics.1993,133(1): 97-117.
    [50]R. Shao, S.C. Barker. The Highly Rearranged Mitochondrial Genome of the Plague Thrips, Thrips imaginis (Insecta:Thysanoptera):Convergence of Two Novel Gene Boundaries and an Extraordinary Arrangement of rRNA Genes[J]. Mol Biol Evol.2003,20(3):362-370.
    [51]M.L. Thao, L. Baumann, P. Baumann. Organization of the Mitochondrial Genomes of Whiteflies, Aphids, and Psyllids (Hemiptera, Steenorrhyncha)[J]. BMC Evolutionary Biology.2004,4:25.
    [52]C.B. Beard, D.M. Hamm, F.H. Collins. The Mitochondrial Genome of the Mosquito Anopheles gambiae:DNA Sequence, Genome Organization, and Comparisons with Mitochondrial Sequences of Other Insects[J]. Insect Mol Biol. 1993,2(2):103-124.
    [53]P.K. Flook, C.H. Rowell, G. Gellissen. The Sequence, Organization, and Evolution of the Locusta migratoria Mitochondrial Genome[J]. J Mol Evol.1995,41(6): 928-941.
    [54]M. S. Caterino, S. Cho, F. A. H. Sperling. The Current State of Insect Molecular Systematics:A Thriving Tower of Babel[J]. Ann Rev Entomol.2000,45:1-54.
    [55]D.O. Clary, D.R. Wolstenholme. The Mitochondrial DNA Molecule ofDrosophila yakuba:Nucleotide Sequence, Gene Organization, and Genetic Code[J]. J Mol Evol.1985,22(3):252-271.
    [56]L. Nigro, M. Solignac, P. Sharp. Mitochondrial DNA Sequence Divergence in the Melanogaster and Oriental Species Subgroups of Drosophila[J]. J Mol Evol. 1991,33(2):156-162.
    [57]F. A. H. Sperling, A. G. Raske, I. S. Otvos. Mitochondrial DNA Sequence Variation among Population and Host Races of Lambdina fiscellaria (Gn) (Lepidoptera:Geometridae) [J]. Insect Mol Biol.1999,8(l):97-106.
    [58]S. T. Kelley, J. B. Mitton, T. D. Paine. Strong Differentiation in Mitochondrial DNA of Dendroctonus brevicomis (Coleoptera:Scolytidae) on Different Subspecies of Pondreosa Pine [J]. AnnEntomol Soc Am.1999,92(2):193-197.
    [59]N. M. Andersen, L. Cheng, J. Damgaard, et al. Mitochondrial DNA Sequence Variation and Phylogeography of Oceanic Insects (Hemiptera:Gerridae:Halobates spp.)[J]. Marine Biol.2000,136(3):421-430.
    [60]J. M. Brown, O. Pellmyr, J. N. Thomspon, et al. Mitochondrial DNA Phylogeny of the Prodoxidae (Lepidoptera:Incurvariodea) Indicates Rapid Ecological Diversification of Yucca Moths [J]. Ann Entomol Soc Am.1994,87(6):795-802.
    [61]J. Damgaard, N. M. Andersen, L. Cheng, et al. Phylogeny of Sea Skaters, Halobates eschscholtz (Hemiptera, Gerridae), based on mtDNA Sequence and Morphology [J]. Zool J Linn Soc.2000,130(4):511-526.
    [62]H.M. Li, R.Q. Deng, J. W. Wang. A Preliminary Phylogeny of the Pentatomomorpha (Hemiptera:Heteroptera) based on Nuclear 18S rDNA and Mitochondrial DNA Sequences[J]. Mol Phyl Evol.2005,37(2):313-326.
    [63]J. Damgaard, F. A. H. Sperling. Phylogeny of the Water Strider Genus Gerris fabricius (Heteroptera:Gerridae) based on COI mtDNA, EF-la Nuclear DNA and Morphology [J]. Syst Entomol.2001,26:241-254.
    [64]J. Damgaard, A. I. Cognato. Sources of Character Conflict in a Clade of Water Striders (Heteroptera:Gerridae)[J]. Cladistics.2003,19(6):512-526.
    [65]A. P. Vogler, R. DeSalle, T. Assmann, et al. Molecular Population Genetics of the Endangered Tiger Beetle, Cicindela dorsalis (Coleop tera:Cicindelidae)[J]. Ann Entomol Soc Am.1993,86(2):142-152.
    [66]肖金花,肖晖,黄大卫.生物分类学的新动向——DNA条形编码[J].动物学报,2004,50(5):852-855.
    [67]K. Pirounakis, K. Stella, S. H. Paul. Genetic Variation among European Populations of Bombus pascuorum (Hymenoptera, Apidae) from Mitochondrial DNA Sequence Data[J]. European J Entomol.1998,95 (1):27-33.
    [68]F. A. Monado, P. Kuben, P. Franciso, et al. MtDNA Variation of Triatoma infestans Populations and its Implicationon Specific Status of T. melanosoma[J]. Mem Inst Oswaldo Cruz.1999,94 (sup1):229-238.
    [69]J. Morrow, L. Scott, B. Congdon. Close Genetic Similarity between two Sympatric Species of Tephritid Fruit Fly Reproductively Isolated by Mating Time[J]. Evolution Int J Org Evolution.2000,54 (3):899-910.
    [70]F. O. Aikhionbare, Z. B.Mayo. Mitochondrial DNA Sequences of Greenbug (Homoptera:Aphididae) Biotypes [J]. Biomol Eng.2000,16 (6):199-205.
    [71]陈久永,张亚平.中国5种珍稀绢蝶非损伤性取样的mtDNA序列及系统进化[J].遗传学报,1996,26(3):203-207.
    [72]Y. Huang, M. Orti. Phylogenetic Relationship of North American Field Crickets Inferred from Mitochondrial DNA Datas[J]. Mol Phylogenet Evol.2000,1 (17): 48-57.
    [73]R. Belshaw, L. J. Donald. A Molecular Phylogeny of the Aphidiinae (Hymenoptera:Braconidae) [J]. Mol Phylogenet Evol.1997,7 (3):281-293.
    [74]邵红光,张亚平,等.原尾虫DNA序列变异及无翅昆虫的系统进化[J].科学通报,1999,11(44):1836-1841
    [75]L. G. Willis, M. L. Winston, B. M. Honda. Phylogenetic Relationships in the Honeybee (Apis) as Determined by the Sequence of the Cytochrome Oxidase II Region of Mitochondrial DNA[J].Mol Phylogenetics Evol.1992,1 (3):169-178.
    [76]任竹梅,马恩波,郭亚平.蝗总科部分种类Cyt b基因序列及系统进化研究[J].遗传学报,2002,29(4):314-321.
    [77]Z. H. Su, Y. Imura, M. Okamoto. Phylogeny and Evolution of Digitulati ground beetles (Coleoptera, Carabidae) inferred from Mitochondrial ND5 Gene Sequences[J]. Mol Phylogenet Evol.2004,30(1):152-166.
    [78]M. Okamoto, N. Kashiwai, Z. H. Su. Sympatric Convergence of the Color Pattern in the Chilean Ceroglossus Ground Beetles inferred from Sequence Comparisons of the Mitochondrial ND5 Gene[J]. J Mol Evol.2001,53(4/5):530-538.
    [79]C. G. Kim, A. O. Tominag, Z. H. Su. Differentiation within the Genus Leptocarabus (excl. L. kurilensis) in the Japanese Islands as deduced from Mitochondrial ND5 Gene Sequences (Coleoptera, Carabidae)[J]. Genes Genet Syst. 2000,75(6):335-342.
    [80]J. Krzywinski, R. C. Wilkerson, N. J. Besansky. Evolution of Mitochondrial and Ribosomal Gene Sequences in Anophelinae (Diptera:Culicidae):Implications for Phylogeny Reconstruction[J]. Mol Phylogenet Evol,2001,18(3):479-487.
    [81]T. Yagi, G. Sasaki, H. Takebe. Phylogeny of Japanese Papilionid Butterflies inferred from Nucleotide Sequences of the Mitochondrial ND5 Gene[J]. J Mol Evol.1999,48(1):42-48.
    [82]H. Makita, T. Shinkawa,, K. Ohta,, A. Kondo, T. Nakazawa. Phylogeny of Luehdorfia butterflies inferred from mitochondrial ND5 gene sequences [J]. Entomological Science,2000,3 (2):321-329.
    [83]R. DeSalle, J. Gatesy,, W. Wheeler, D. Grimaldi. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications [J]. Science, 1992,257:1933-1936.
    [84]Pashley, D., Ke, LD. Sequence evolution in the mitochondrial ribosomal and ND-1 gene in Lepidoptera:implications for phylogenetic analyses[J]. Mol. Biol. Evol.,1992,9:1061-1075.
    [85]李伟丰,黄永成,陈邦禄,等.7种长科昆虫的线粒体DNAND4基因序列比较分析[J].植物检疫,2001,15(5):257-262.
    [86]张四明,王登强,邓怀,等.长江中游水系鲢和草鱼群体mtDNA遗传变异的研究[J].水生生物学报,2002,26(2):142-147.
    [87]姚纪花,楼允东,江涌.我国六个地区银鲫种群线粒体DNA多态性研究[J].水产学报,1998,22(4):289-294.
    [88]M. F. J. Taylor, S. W. McKechnie, N. Pierce, M. Kreitman. The Lepidopteran Mitochondrial Control Region:Structure and Evolution[J]. Mol Biol Evol. 1993,10(6):1259-1272
    [89]C. Simon, F. Frati, A. Beckenbach, B. Crespi, H. Liu, P. Flook. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compliation of conserved polymerase chain reaction primers[J]. Ann Entomol Soc Am.1994,87 (5):651-701.
    [90]T.M. Boyce, M.E. Zwick, C.F. Aquadro. Mitochondrial DNA in the Bark Weevils: Size, Structure and Heteroplasmy[J]. Genetics.1989,123(4):825-836.
    [91]E.N. Moriyama, J.R. Powell, Synonymous substitution rates in Drosophila: mitochondrial versus nuclear genes[J]. J. Mol. Evol.,1997,45:378-91.
    [92]黄原.分子系统发生学[M].2011,北京:科学出版社.
    [93]D.A. Roff. The cost of being able to fly:a study of wing polymorphism in two species of crickets[J].1984,63:30-37.
    [94]R. F. Denno. Life history variation in planthoppers. In:R.F. Denno Perfect T J. planthoppers:Their Ecology and Management[M]. New York:Chapman and Hall, 1994.163-215
    [95]王裕文,李晓东.湖北神农架蝗虫一新种(直翅目:斑腿蝗科)[J].昆虫学报, 1996,39(1):73-75.
    [96]印象初.四川峨眉山蝗虫二新种记述[J].昆虫分类学报,1980,2(3):229-232.
    [97]贺同利,慕芳红,王裕文.浙江省小蹦蝗属一新种(直翅目:斑腿蝗科)[J]昆虫分类学报,1999,21(1):22-24.
    [98]郑哲民.川、陕、滇蝗虫的新属和新种[J].昆虫分类学报,1980,2(4):335-350.
    [99]郑哲民.云贵川陕宁地区的蝗虫[M].北京:科学出版社,1985.160-164.
    [100]郑哲民.蝗虫分类学[M].西安:陕西师范大学出版社,1993.135-137.
    [101]郑哲民,陈军.四川省小蹦蝗属一新种(直翅目:蝗总科:斑腿蝗科)[J].昆虫分类学报,1995,17(4):259-261.
    [102]郑哲民,霍科科.中国小蹦蝗属研究(直翅目:蝗总科:斑腿蝗科)[M].见:昆虫分类区系研究.北京:中国农业出版社,2000.7-12.
    [103]张秀江.河南秃蝗亚科、裸蝗亚科种类及两新种(直翅目:斑腿蝗科)[M].见:河南省昆虫分类区系研究(第1卷).北京:中国农业科技出版社,1994.8-12.
    [104]黄春梅.小蹦蝗属二新种(直翅目:斑腿蝗亚科)[J].昆虫学报,1988,31(1):73-76.
    [105]傅鹏,郑哲民.湖南武陵山地区小蹦蝗属一新种(直翅目:斑腿蝗科)[J].动物分类学报,1986,21(2):202-204.
    [106]印象初,郑方强,叶保华.中国四川省小蹦蝗属一新种(直翅目,蝗总科,斑腿蝗科)(In Engish) 2012,37 (4):757-759.
    [107]郑哲民,任国栋.贵州省小蹦蝗属一新种(直翅目:斑腿蝗科)陕西师范大学学报(自然科学版)2005,33(1):92-94.
    [108]印象初,周尧.陕西省蝗虫2新属3新种[J];昆虫分类学报;1979,2:3-9.
    [109]陈世骧,钱燕文.关于属的分类学意义兼论鸟纲系统中的种属比率[A].见:陈世骧.进化论选集[C]北京:科学出版社,1983.147-148.
    [110]印象初,印红,张道川,施鉴屏.关于蝗虫类种属比率的研究.河北大学学报(自然科学版)2000,6(20)2:109-115.
    [111]郑作新,汪松,潭耀匡,等译E. Mayr, E.G Linsley, R.L Usingerr著.动物分类学的方法和原理[M].北京:科学出版社,1965,1-369.
    [112]陈世骧.形态特征的分类原理[J].科学通报,1964
    [113]J. Camin, R. Sokal. A methed for deducing branching sequences in phylogeny. Evolution,1965,19:311-326.
    [114]R.V. Eck, M.O. Dayhoff. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science,1966,152:363-366.
    [115]A.G. Kluge, J.S. Farris. Quantitative Phyletics and Evolution of anurans. System Biology,1969,18(1):1-32.
    [116]W.M. Fitch, J.S. Farris. Evolutionary trees with minimum nucleotide replacements rom amino acid sequences. Journal of molecular Evolution.1974,3:263-278.
    [117]D.L. Swofford. PAUP*. Phylogenetic AnalysisUsing parsimony(* andother Methods) [M]. Version4. Sunderland:Sinauer Associates,2002.
    [118]M. Holder, P.O. Lewis. Phylogeny estimation:traditional and Bayesian approaches. Nature,2003,4:275-284.
    [119]L.L Cavalli-Sforza, A.W. Edwards. Phylogenetic analysis:model and estimation procedures. Evolution.1967,21(3):550-570.
    [120]J. Felsenstein. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Biol,1973.22 (3): 240-249.
    [121]E.A. Thompson. Human evolutionary trees. Cambridge:Cambridge University Press 1975.
    [122]J. Felsenstein Evolutionary trees from DNA sequences:a maximum likelihood approach. Journal of Molecular Evolution,1981,17:368-376.
    [123]D. Barry, J.A. Hartigan. Statistical analysis of hominoid molecular evolution. Stat Sci,1987,2:191-210.
    [124]H. Kishino. T. Miyata, M. Hasegawa. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. Journal of Molecular Evolution,1990, 30:151-160.
    [125]M.O. Dayhoff, R.M Schwartz, B.C Orcutt. A model of evolutionary change in proteins//Dayhoff M O. Atlas of Protein Sequence and Structure. Washington, DC:National Biomedical Research Foundation.1978,345-352.
    [126]Felsenstein, J. PHYLIP(phylogeny inference package) [M].version3.s c.1993.
    [127]张亚平.从DNA序列到物种树[J].动物学研究,1996,17(3):247-252.
    [128]Fenn, JD, H. Song, et al. (2008). A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Molecular Phylogenetics and Evolution 49(1): 59-68.
    [129]刘举鹏.蝗卵形态结构与蝗虫系统发育关系的初步研究[J].系统进化动物学 论文集,1991,1:89-94.
    [130]许升全,李后魂,郑哲民.中国瘤锥蝗科和锥头蝗科的支序系统学研究[J].动物分类学报,2003,28(3):381-384.
    [131]周志军.五种螽撕线粒体基因组的测定与直翅目谱系基因组学分析[D].西安:陕西师范大学,2008.
    [132]丁方美.短额负蝗、日本蚤蝼和中华寰螽线粒体基因组序列测定与分析[D].西安:陕西师范大学,2008.
    [133]郑哲民.蝗虫分类学[M].西安:陕西师范大学出版社,1993:1-442.
    [134]印红,张道川,毕智丽,印展,刘勇,印象初.蝗总科部分种类16S rDNA的分子系统发育关系[J].遗传学报,2003,30(8):766-772.
    [135]印红,李新江,王文强,印象初.基于核内核糖体小亚基序列的蝗总科系统发育关系分析[J].昆虫学报,2004,47(6):809-814.
    [136]刘殿锋,蒋国芳.基于18S rDNA的蝗总科分子系统发育关系研究及分类系统探讨[J].昆虫学报,2005,48(2):232-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700