歧口凹陷中、新生界火成岩储层特征及储层发育控制因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
歧口凹陷位于渤海湾盆地黄骅坳陷中北部,是该坳陷中最大的生油凹陷,油气资源丰富,中-新生界火成岩分布广泛。本论文利用岩心观察、普通岩石薄片、铸体薄片、扫描电镜、包裹体测温、压汞实验等分析测试手段,结合盆地埋藏一热演化史模拟和前人烃类充注史等资料,对歧口凹陷中-新生界火成岩的成岩作用和孔隙类型进行了深入的研究,并在此基础上,研究了火成岩储集空间发育的控制因素。研究结果表明,歧口凹陷中、新生界火成岩主要经历了早期和晚期两个成岩作用阶段。早期成岩作用阶段发生的成岩作用类型主要包括:挥发分逸出作用、熔蚀作用、熔结作用、冷凝收缩作用、脱玻化作用、岩浆期后热液沉淀充填作用和岩浆期后热液蚀变作用;晚期成岩作用阶段主要的成岩作用类型包括:机械压实压溶作用、充填作用、胶结作用、交代作用、风化淋滤溶蚀作用和次生溶蚀作用。火成岩在其成岩演化过程中发生了3期溶蚀作用、2期构造作用、2期油气充注作用,以及绿泥石、硅质、碳酸盐等胶结作用。主要的成岩演化序列为:溶蚀作用Ⅰ→构造作用Ⅰ→栉壳状绿泥石→细纤维状绿泥石→硅质Ⅰ→较粗纤维状绿泥石→烃类充注Ⅰ→硅质充填Ⅱ→亮晶方解石Ⅰ→构造作用Ⅱ→溶蚀作用Ⅱ→烃类充注Ⅱ→亮晶方解石Ⅱ→铁方解石(白云石)→硅质充填Ⅲ→溶蚀作用Ⅲ。
     歧口凹陷中、新生界火成岩的孔隙类型主要有原生孔隙和次生孔隙两大类。原生孔隙主要包括气孔和残余气孔、火山角砾间孔和原生裂缝,次生孔隙主要包括溶蚀孔(洞、缝)、构造裂缝和风化裂缝。通过大量的孔隙结构参数研究认为,歧口凹陷中新生界辉绿岩的孔喉较大,分选差,连通性较好;玄武岩的孔喉大小中等,分选中等,连通性较差;凝灰岩的孔喉较小,分选性较好,连通性中等。孔隙结构可以分为5种类型,Ⅰ型、Ⅱ型为较好储层,岩性主要为辉绿岩,其次为凝灰岩;Ⅲ型为中等储层,岩性主要为辉绿岩,其次为玄武岩;Ⅳ型为较差储层,岩性主要为玄武岩;Ⅴ型为非储层,岩性主要为凝灰岩。Ⅲ型所占比例最高,达52%,其次是Ⅱ型,Ⅰ型、Ⅳ型、Ⅴ型所占比例较小
     歧口凹陷中、新生界火成岩储层发育主要受火成岩岩性和岩相、风化淋滤作用、蚀变作用、火山喷发旋回、构造作用和成岩作用等因素的影响。其中岩性和岩相是储层发育的基础,溶蚀作用是储层发育的决定性因素,构造作用和风化淋滤作用是储层发育的重要条件。
The Qikou depression located in the north-central of Bohai Bay basin is the largest oil generation sag in the Huanghua Depression, rich in oil and gas resources; The volcanic rocks are widely distributed in Mesozoinc Cenozoic. According to a large number of core observations, ordinary microscope, casting thin sections, scanning electron microscope (SEM), fluid inclusion analysis, as well as mercury intrusion experiment data testing, The diagenesision and pore types of volcanic reservoirs in Mesozoic Cenozoic erathem Qikou Depression were in-depth researched.Based on the present research achievement, the controlling factors of the volcanic reservoir space development were puts forward the study focus of this paper, having made the following findings and understanding:
     The volcanic rocks of Qikou depression in Mesozoinc Cenozoic erathem have mainly experienced early diagenetic stage and late diagenetic stage. Diagenetic types in early diagenetic stage includes:evolution of volatile component, corrosion effect, sintering effect, condensing contraction, de-vitrification, and post-magmatic hydrothermal precipitates filling and the post-magmatic hydrothermal alteration; Late types in late diagenetic stage includes: mechanical compaction, pressure solution, filling, cementation, metasomatism, weathering-denudated dissolution, and secondary solution effect. According to paleo-temperature, homogenization temperature of fluid inclusions and texture and structure of volcanic rocks, and the authigenic minerals and their occurrence pore types, etc. combined with the history of the basin buried-thermal evolution and hydrocarbon charge filling, research indicates that the volcanic rock diageneses of Qikou depression have undergone three stages of dissolution, two stages of tectonics, two stages of hydrocarbon charging and chlorite cementation, siliceous cementation and carbonate cementation. The main digenetic sequences are dissolution Ⅰ→structure movement Ⅰ→pectinate texture chlorite→fine fibrous chlorite→silicic Ⅰ→coarse fibrous chlorite→hydrocarbon charging→silicic filling Ⅱ→sparry calcite Ⅰ→tectonism Ⅱ→dissolution Ⅱ→hydrocarbon charging Ⅱ→sparry calcite Ⅱ→ferrocalcite→silicic filling Ⅲ→dissolution Ⅲ.
     The pore types of volcanic rocks of Qikou depression in Mesozoinc Cenozoic erathem are mainly two categories, primary porosity and secondary porosity. The primary pores include stomata, residual stomata, inter-gravel pores and primary fractures; the secondary pores include:dissolved pores (hole, fractures), structural fractures and weathering fracture. Test results from a great number of records of pore structure parameters have indicated that the diabase in of Qikou depression in Mesozoinc Cenozoic erathem are characterized by good pore throat, poor sorting, better connectivity; the basalt are characterized by medium size pore throat, poor sorting, and poor connectivity; the tuff are characterized by pore throats smaller, sorting good, and medium connectivity. The pore structures are classified into five types. Type Ⅰ,Ⅱ are better reservoirs, whose lithology is mainly diabase and followed by tuff. Type Ⅲ is moderate reservoirs, whose lithology is mainly diabase and followed by basalt. Type Ⅳ is worse reservoir, whose lithology is mainly diabase. Type V is non-reservoir, whose lithology is mainly tuff. Type Ⅲ has the highest proportion, up to52%, and type Ⅱ is the second highest. Type Ⅰ, Ⅳ and Ⅴ have smaller proportion.
     The development of volcanic reservoir of Qikou depression in Mesozoinc Cenozoic erathem are mainly affected by the lithology and lithofacies, weathering-leaching, alteration, volcanic eruption cycles, tectonic movement and diagenesis factors. Lithology and lithofacies is the basis of reservoir development; the dissolution is a decisive factor in reservoir development; tectonic movement and weathering-leaching is also an important condition for reservoir development.
引文
1. Seemann U, Schere M.Volcaniclastics as potential hydrocarbon reservoirs[J].Clay Minerals,1984, 19(9):457-470.
    2. Abdelmalak M M, Aubourg C, Geoffroy L, et al. A new oil-window indicator? The magnetic assemblage of claystones from the Baffin Bay volcanic margin (Greenland)[J]. AAPG Bulletin,2012, 96(2):205-215.
    3. Akal C. K-richterite-olivine-phlogopite-diopside-sanidine lamproites from the Afyon volcanic province, Turkey[J]. Geological Magazine,2008,145(4):570-585.
    4. Anthony B. Christie, Mark P. Simpson, Robert L. Brathwaite, et al. Epithermal Au-Ag and Related Deposits of the Hauraki Goldfield, Coromandel Volcanic Zone, New Zealand[J].Economic Geology, 2007,102:785-816.
    5. Aydin F. Contrasting complexities in the evolution of calc-alkaline and alkaline melts of the Nigde volcanic rocks, Turkey:textural, mineral chemical and geochemical evidence[J]. European Journal of Mineralogy,2008,20:101-118.
    6. Barrie T C, Nielsen W F, Aussant H C. The Bisha Volcanic-Associated Massive Sulfide Deposit, Western Nakfa Terrane, Eritrea[J]. Economic Geology,2007,102:717-738.
    7. Berger A, Gier S, Krois P. Porosity-preserving chlorite cements in shallow-marine volcaniclastic sandstones:Evidence from Cretaceous sandstones of the Sawan gas field, Pakistan[J].AAPG Bulletin, 2009,93(5):595-615.
    8. Bergman S C, Talbot J P, Thompson P R. The Kora Miocene submarine andesite stratovolcano hydrocarbon reservoir, northern Taranaki Basin, New Zealand[C], New Zealand Oil Exploration Conference, Proceedings. Ministry of Commerce, Wellington, New Zealand,1992,178-206.
    9. Caruso A, Censi P, Aricq P, et al. Astronomical dating of two Pliocene alkaline volcanic ash layers in the Capo Rossello area (southern Sicily, Italy):implications for the beginning of the rifting in the Sicily Channel[J].Bulletin Societe Geology,2009,180(2):95-104.
    10. CHEN Yuan-yong, WANG Zhen-qi, XING Cheng-zhi, et al. Characteristics of volcanics reservoir in Chepaizi Region of Junggar Basin[J]. Fault-block Oil and Gas Field,2009,16(5):23-26.
    11. Cooper M R, Crowley Q G, Rushton A W A. New age constraints for the Ordovician Tyrone Volcanic Group, Northern Ireland[J]. Journal of the Geological Society,2008,165:333-339.
    12. Galushkin Y L. Thermal effects of igneous intrusions on maturity of organic matter:A possible mechanism of intrusion[J]. Org Geochemistry,1997.26(11-12):645-658.
    13. Genareau K, Hervig R, Clarke A. Geochemical variations in late-stage growth of volcanic phenocrysts revealed by SIMS depth-profiling[J]. American Mineralogist,2007,92:1374-1382.
    14. Goldsmith S T, Carey A E, Lyons W B, et al. Geochemical fluxes and weathering of volcanic terrains on high standing islands:Taranaki and Manawatu-Wanganui regions of New Zealand[J]. Geochimica et Cosmochimica Acta,2008,72:2248-2267.
    15. Holohan E P, Troll V R, Errington M, et al. The Southern Mountains Zone, Isle of Rum, Scotland: volcanic and sedimentary processes upon an uplifted and subsided magma chamber roof[J]. Geological Magazine,2009,146(3):400-418.
    16. Inverno C M C, Solomon M, Barton D M. et al. The Cu Stockwork and Massive Sulfide Ore of the Feitais Volcanic-Hosted Massive Sulfide Deposit. Aljustrel, Iberian Pyrite Belt, Portugal:A Mineralogical, Fluid Inclusion, and Isotopic Investigation[J]. Economic Geology,2008,103:241-267.
    17. J.Mcphie. Microstructural controls on the geomechanical behaviour of ignimbrite[J]. Engineering Geology,1993,35(1):19-31.
    18. Jerram A D, Single T R. Hobbs W R, et al. Understanding the offshoreflood basalt sequence using onshore volcanic facies analogues:an example from the Faroe-Shetland basin[J]. Geological Magazine,2009.146(3):353-367.
    19. Jinglan Luo, Sadoon Morad, Zhigang Liang, and Yushuang Zhu, Controls on the quality of Archean metamorphic and Jurassic volcanic reservoir rocks from the Xinglongtai buried hill, western depression of Liaohe basin, China[J], AAPG Bulletin,2005,10(89),1319-1346.
    20. Johnson R E, Kamenetsky S V, Mcphie J, et al. Degassing of the H2O-rich rhyolites of the Okataina Volcanic Center, Taupo Volcanic Zone, New Zealand[J]. Geology,2011,39:311-314.
    21. Kaymakci N, Aldanmaz E, Langereis C, et al. Late Miocene transcurrent tectonics in NW Turkey: evidence from palaeomagnetism and 40Ar-39Ar dating of alkaline volcanic rocks[J]. Geological Magazine,2007,144(2):379-392.
    22. Kent J R A. Melt Inclusions in Basaltic and related Volcanic rocks[J]. Reviews in Mineralogy & Geochemistry,2008,69:273-331.
    23. Laurora A, Brigatti M F, Mottana A, et al.Crystal chemistry of trioctahedral micas in alkaline and subalkaline volcanic rocks:A case study from Mt. Sassetto (Tolfa district, Latium, central Italy)[J].American Mineralogist,2007,92:468-480.
    24. Luo Jinglan, S. Morad, Zhang Xiaoli, Yan Shike, Wu Fuli, Li Yuhong and Xue Junming. Reconstruction of the diagenesis of the fluvial-lacustrine-deltaic sandstones and its influence on the reservoir quality evolution-Evidence from Jurassic and Triassic sandstones, Yanchang Oil Field, Ordos Basin. Sciences in China (Series D),2002,45(7):616-634.
    25. Luo Jinglan, Ssdoon Marad, Liang Zhigang, et al. Controls on the quality of Archean metamorphic and Jurassic volcanic reservoir rocks from the Xinglongtai buried hill, western depression of Liaohe basin, China[J]. AAPG Bulletin,2005,89(10):1319-1346.
    26. Luo Jinglan, Zhang Chengli and Qu Zhihao. Volcanic reservoir rocks:a case study of the Cretaceous Fenghuadian Suite, Huanghua Basin, Eastern China:Journal of Petroleum Geology,1999,22(4): 397-415.
    27. Marantos I, Markopoulos T H, Christidis G E, et al. Geochemical characteristics of the alteration of volcanic and volcaniclastic rocks in the Feres Basin, Thrace, NE Greece[J]. Clay Mineral,2008, 43:575-595.
    28. Nedli Z, Princivalle F, Dobosi G, et al. Crystal chemistry of clinopyroxenes from upper-mantle xenolith series in the Balaton-Bakony volcanic area[J]. European Journal of Mineralogy,2009, 21:433-442.
    29. Neilson J C, Kokelaar B P, Crowley Q G. Timing, relations and cause of plutonic and volcanic activity of the Siluro-Devonian post-collision magmatic episode in the Grampian Terrane, Scotland[J]. Journal of the Geological Society,2009,166:545-561.
    30. Peloquin S A, Piercey J S, Hamilton A M. The Ben Nevis Volcanic Complex, Ontario, Canada:Part of the Late Volcanic Phase of the Blake River Group, Abitibi Subprovince[J]. Economic Geology,2008, 103:1219-1241.
    31. Phillips M F, McIntosh C W, Dunbar W N. Chronology of late Cenozoic volcanic eruptions onto relict surfaces in the south-central Sierra Nevada, California[J]. Geological Society of America Bulletin, 2011,123:890-910.
    32. Putirka D K. Thermometers and Barometers for Volcanic Systems[J]. Reviews in Mineralogy & Geochemistry,2008,69:61-120.
    33. Richer M, Tosdal M R, Ullrich T. Volcanic Framework of the Pliocene El Dorado Low-Sulfidation Epithermal Gold District, El Salvador[J]. Economic Geology,2009,104:3-18.
    34. Robert G, Russell J K, Giordano D, et al. High-temperature deformation of volcanic materials in the presence of water[J]. American Mineralogist,2007.93:74-80.
    35. Rohrman M. Prospectivity of volcanic basins:Trap delineation and acreage de-risking[J]. AAPG Bulletin,2007,91(6):915-939.
    36. Rutherford J M. Magma ascent rates[J]. Reviews in Mineralogy & Geochemistry,2008,69:241-271.
    37. Sahagian D L, Proussevitch A A. Analysis of vesicular basalts and lava emplacement processes for application as a paleobarometer/paleoaltimeter[J]. The Journal of Geology,2002.
    38. Schingaro E, Scordari F, Matarrese S, et al. Phlogopite from the Ventaruolo subsynthem volcanics(Mt Vulture, Italy):amulti-method study[J]. Mineralogical Magazine,2007,71(5):519-537.
    39. Seemann U, Schere M. Volcaniclastics as potential hydrocarbon reservoirs[J]. Clay Minerals.1984, 19(9):457-470.
    40. Sheppard D S, Christie A B, Goff J, et al. Stream sediment geochemical survey in an area of volcanic-hosted epithermal Au-Ag-Zn-Pb-Cu deposits and porphyry Cu prospects, Thames. Coromandel Peninsula, New Zealand[J]. Geochemistry:Exploration, Environment Analysis.2009. 9:279-296.
    41. Sruoga P, Rubinstein N, Hinterwimmer G. Porosity and permeability in volcanic rocks:A case study on the Serie Tobifera, South Patagonia, Argentina[J]. Journal of Volcanology and Geothemal Research,2004,31-43.
    42. Sruoga P, Rubinstein N. Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquen basins, Argentina[J]. AAPG Bull.,2007,91:115-129.
    43. Sruoga P, Rubinstein N. Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquen basins, Argentina[J].AAPG Bulletin,2007,91 (1):115-129.
    44. Surdam R C, Boese S W, Crossey L J. The chemistry of secondary porosity, Clastic Diagenesis[J]. AAPG Memoir,2004.37:127-150
    45. T. J. Barrett, G. L. Dawson, W. H. Maclean. Volcanic Stratigraphy, Alteration, and Sea-Floor Setting of the Paleozoic Feitais Massive Sulfide Deposit, Aljustrel, Portugal[J]. Economic Geology,2008, 103:215-239.
    46. Ventruti G, Levy D, Pavese A, et al. High-temperature treatment, hydrogen behaviour and cation partitioning of a Fe-Ti bearing volcanic phlogopite by in situ neutron powder diffraction and FTIR spectroscopy[J]. European Journal of Mineralogy,2009,21:385-396.
    47. Villamor P, Berryman K R. Nairn I A, et al. Associations between volcanic eruptions from Okataina volcanic center and surface rupture of nearby active faults, Taupo rift, New Zealand:Insights into the nature of volcano-tectonic interactions[J]. Geological Society of America Bulletin,2011,123:1383-1405.
    48. Winter S L, Tosdal M R, Mortensen K J, et al. Volcanic Stratigraphy and Geochronology of the Cretaceous Lancones Basin, Northwestern Peru:Position and Timing of Giant VMS Deposits[J]. Economic Geology,2010,105:713-742.
    49. Wu Changzhi, Gu Lianxing, Zhang Zunzhong, et al. Formation mechanisms of hydrocarbon reservoirs associated with volcanic and subvolcanic intrusive rocks:Examples in Mesozoic-Cenozoic basins of eastern China[J]. AAPG Bulletin,2006,90(1):137-147.
    50. Zellmer F G. Petrogenesis of Sr-rich adakitic rocks at volcanic arcs:insights from global variations of eruptive style with plate convergence rates and surface heat flux[J]. Journal of the Geological Society, 2009.166:725-734.
    51.边伟华.准噶尔盆地巴塔玛依内山组火山岩储层地质学研究[D].长春:吉林大学,2011.
    52.陈建林,张玉明,徐宏节,等.松辽盆地长岭断陷火山岩储层形成特征研究[J].石油实验地质,2009,31(5):441-449.
    53.陈莹.歧口凹陷古近系层序地层及构造对沉积的控制研究[D].北京:中国地质大学(北京),2006.
    54.陈元勇,王振奇,邢成智,等.准噶尔盆地车排子地区火山岩储集层特征[J].断块油气田,2009,16(5):23-26.
    55.陈仲勤.黄骅坳陷第三系时代划分新方案[A].大港油田地质科技研究论文集[C].北京:石油工业出版社,1994:476-481.
    56.崔泽宏.塔里木盆地塔河地区海西晚期火山岩形成分布与构造、岩相环境[D].北京:中国石油大学(北京),2008.
    57.戴亚权,罗静兰,林潼,等.松辽盆地北部升平气田营城组火山岩储层特征与成岩演化[J].中国地质,2007,34(3):528-535.
    58.杜洋,罗明高,李青,等.北三台地区火山岩储层特征[J].特种油气藏,2010,17(5):48-51.
    59.冯仁蔚,王兴志,张帆,等.四川西南部周公山及邻区“峨眉山玄武岩”特征及储集性能研究[J].沉积学报,2008,26(6):913-926.
    60.冯子辉,邵红梅,童英.松辽盆地庆深气田深层火山岩储层储集性控制因素研究[J].地质学报,2008,82(6):760-769.
    61.傅容珊,周明顺,李艳华,等.核磁共振谱的岩石孔喉结构分析[J].石油地球物理勘探,2003,38(3):328-335.
    62.高建,韩冬,王家禄,等.应用CT成像技术研究岩心水驱含油饱和度分布特征[J].新疆石油地质,2009,30(2):269-271.
    63.高建,刘鹏,柳汉明,等.应用CT成像进行碳酸盐岩储层孔隙表征[J].西部探矿工程,2010,4:36-39.
    64.高建,吕静.应用CT成像技术研究岩心孔隙度分布特征[J].CT理论与应用研究,2009,18(2):50-57.
    65.高敏,安秀荣,祗淑华,等.用核磁共振测井资料评价储层的孔隙结构[J].测井技术,2000,24(3):188-194.
    66.高有峰,刘万洙,纪学雁,等.松辽盆地营城组火山岩成岩作用类型、特征及其对储层物性的影响[J].吉林大学学报(地球科学版),2007,37(6):1251-1258.
    67.高知云,章濂澄.辽河盆地老第三纪火山岩及其构造环境分析[J].西北大学学报,1993,23(4):365-377.
    68.高志云,章濂澄,韦阿娟,等.黄骅坳陷第三系火成岩与油气研究.西北大学地质系/大港油田勘探公司(内部报告),1997.
    69.高志云,章濂澄.火成岩与油气藏[C].西安:西北大学出版社,1995.
    70.高志云.黄骅拗陷第三系隐伏火山岩及其形成的大地构造环境初探[J].岩石学报,1986,2(4):14-30.
    71.侯贵廷,钱祥麟,蔡东升.渤海湾盆地中、新生代构造演化研究[J].北京大学学报(自然科学版),2001,37(6):845-851.
    72.侯贵廷,钱祥麟,宋新民.渤海湾盆地形成机制研究[J].北京大学学报(自然科学版),1998,34(4):503-509.
    73.候连华,王京红,邹才能,等.火山岩风化体储层控制因素研究——以三塘湖盆地石炭系卡拉岗组为例[J].地质学报,2011,85(4):557-568.
    74.胡才志.渤海湾盆地歧口凹陷中新生代构造应力场模拟[D].武汉:中国地质大学(武汉),2010.
    75.胡耀军.歧口凹陷上第三系油气藏形成[D].北京:中国地质大学,2002.
    76.冀连杰.徐家围子断陷兴城地区营一段火山岩储层特征研究[D].大庆:东北石油大学,2010:72-80.
    77.贾雪艳.安达次洼陷营三段火山岩储层特征研究[D].大庆:东北石油大学,2010:52-60.
    78.江洲.沾化凹陷四扣-渤南区沙三-沙四段构造-地层分析与砂体预测[D].北京:中国地质大学(北京),2000.
    79.金成志,杨双玲,舒萍,等.升平开发区火山岩储层孔隙结构特征与产能关系综合研究[J].大庆石油地质与开发,2007,26(2):38-42.
    80.雷海艳,柳成志,何仁忠,等.马郎凹陷火山岩成岩作用及其对储集层物性的影响[J].新疆石油地质,2011,32(5):480-483.
    81.李军.准噶尔盆地西北缘石炭系火山岩油藏储层分布规律及控制因素研究[D].北京:中国地质大学(北京),2008:59-67.
    82.李亮,瞿建华,王新海,等.红山嘴油田石炭系火山岩储集层特征研究[J].新疆石油天然气,2008,4(4):10-15.
    83.李明辉.徐深1井区营一段火山岩储层特征研究[D].大庆:东北石油大学,2008.
    84.李宁.火成岩储层孔隙结构表征与储层参数分类评价[D].长春:吉林大学,2010.
    85.李嵘.准噶尔盆地西北缘二叠系储层特征及分类[J].石油与天然气地质,2001,22(1):78-84
    86.李睿.准噶尔盆地北缘山前带东段构造特征与油气成藏关系研究[D].西安:西北大学,2009.
    87.李树青,汪利.海拉尔盆地贝尔凹陷下白垩统南屯组储集层特征[J].古地理学报,2009,11(2):241-249.
    88.李伟,何生,谭开俊,等.准噶尔盆地西北缘火山岩储层特征及成岩演化特征[J].天然气地球科学,2010,21(6):909-916.
    89.李垚锟,柳成志.三塘湖盆地马朗凹陷卡拉岗组火山岩储集空间类型及储集物性研究[J].科学技术与工程,2011,11(16):3772-3775.
    90.李祖兵,王建伟,刘洋.南堡凹陷5号构造沙河街组火山岩岩性分布及储层特征[J].天然气地球科学,2010,21(3):413-420.
    91.林潼.松辽盆地升平气田白垩系营城组火山岩岩相、“岩—电”关系以及储层特征研究[D].西安:西北大学,2007.
    92.林向洋,苏玉平,郑建平,等.准噶尔盆地克拉美丽气田复杂火山岩储层特征及控制因素[J].地质科技情报,2011,30(6):28-37.
    93.刘成林,杜蕴华,高嘉玉,等.松辽盆地深层火山岩储层成岩作用与孔隙演化[J].岩性油气藏,2008,20(4):33-37.
    94.刘翠娟.准格尔盆地克301块火山岩储层评价及成藏规律研究[D].北京:中国地质大学(北京),2008.
    95.刘万洙,庞彦明,吴河勇,等.松辽盆地深层储层砂岩中火山碎屑物质在成岩阶段的变化与孔隙发育[J].吉林大学学报(地球科学版),2007,37(4):698-673.
    96.刘喜顺,郭建华,翟建华,等.准噶尔盆地西北缘火山岩孔隙特征及演化[J].新疆石油地质,2008,29(5):565-568.
    97.刘喜顺,郭建华,张晓萍.准噶尔盆地西北缘火山岩岩石学与孔隙特征及演化模式研究[J].天然气地球科学,2009,20(4):525-530.
    98.刘阳.松辽盆地北部徐家围子断陷营城组一段火山岩储层评价[D].大庆:东北石油大学,2009.
    99.卢继平.徐家围子营城组火山岩储层成岩作用及孔隙演化[D].大庆:大庆石油学院,2009.
    100.吕炳全,张彦军,王红罡,等.中国东部中、新生代火山岩油气藏的现状与展望[J].海洋石油,2003,23(4):9-13.
    101.吕希光.济阳坳陷第三系火成岩油气藏成藏机理及成藏模式[D].杭州:浙江大学,2007.
    102.罗静兰,林潼,杨知盛,等.松辽盆地升平气田营城组火山岩岩相及其储集性能控制因素分析[J].石油与天然气地质,2008,29(6):748-757.
    103.罗静兰,邵红梅,张成立.火山岩油气藏研究方法与勘探技术综述[J].石油学报,2003,24(1):31-38
    104.马劲风,赵圣亮,曲志浩.风化店中生界火山岩油藏描述中的地震方法[A].中国地球物理学会第十二届学术年会论文集[C].西安:中国科学技术出版社,1996:120-122.
    105.毛志强,张冲,肖亮.一种基于核磁共振测井计算低孔低渗气层孔隙度的新方法[J].石油地球物理勘探,2010,45(1):105-111.
    106.蒙启安,门广田,赵洪文,等.松辽盆地中生界火山岩储层特征及对气藏的控制作用[J].石油与天然气地质,2002,23(3):285-289.
    107.牛宝荣,潘红芳.火山岩油藏储层特征及开发对策[J].吐哈油气,2008,13(3):278-292.
    108.牛海青,陈世悦,张鹏,等.准噶尔盆地乌夏地区二叠系储集层特征及影响因素分析[J].古地理学报,2009,11(4):425-436.
    109.庞彦明,毕晓明,邵锐,等.火山岩气藏早期开发特征及其控制因素[J].石油学报,2009,30(6):882-887.
    110.庞彦明,章凤奇,邱红枫,等.酸性火山岩储层微观孔隙结构及物性参数特征[J].石油学报,2007,28(6):72-77.
    111.庞彦明.酸性火山岩储层储集空间特征与评价研究—以松辽盆地北部营城组为例[D].杭州:浙江大学,2006.
    112.彭彩珍,郭平,李莉,等.流纹岩类储层压汞毛管压力曲线测定和应用[J].钻采工艺,2005,28(4):51-55
    113.彭彩珍,郭平,苏萍,等.流纹岩类火山岩储层物性特征研究[J].西南石油学院学报,2004,26(3):12-16.
    114.秦小双,师永民,吴文娟,等.准噶尔盆地石炭系火山岩储层主控因素分析[J].北京大学学报(自然科学版),2011,1-7.
    115.邱春光.松辽盆地滨北地区不整合面剥蚀量恢复研究[D].长春:吉林大学,2004.
    116.邱隆伟,姜在兴,席庆福.欧利坨子地区沙三下亚段火山岩成岩作用及孔隙演化[J].石油与天然气地质,2000,21(2):139-144.
    117.曲延明,舒萍,纪学雁,等.松辽盆地庆深气田火山岩储层的微观结构研究[J].吉林大学学报(地球科学版),2007,37(4):721-725.
    118.曲延明,舒萍,王强.兴城气田火山岩储层特征研究[J].天然气勘探与开发,2006,29(3):13-17.
    119.任作伟,金春爽.辽河坳陷洼609井区火山岩储集层的储集空间特征[J].石油勘探与开发,1994,26(4):54-56.
    120.邵红梅,毛庆云,姜洪启,等.徐家围子断陷营城组火山岩气藏储层特征[J].天然气工业,2006,26(6):29-34.
    121.邵维志,丁娱娇,刘亚,等.核磁共振测井在储层孔隙结构评价中的应用[J].测井技术,2009,33(1):52-56.
    122.佘敏,寿建峰,郑兴平,等.基于CT成像的三维高精度储集层表征技术及应用[J].新疆石油地质,2011,32(6):665-667.
    123.师江波.升深更2井火山岩储层特征研究[D].大庆:东北石油大学,2008.
    124.史艳丽,侯贵廷.辽河油田黄于热地区火山岩储层物性评价[J].北京大学学报(自然科学版),2005,41(4):577-585.
    125.宋双.井震资料联合识别火成岩储层及在歧口凹陷的应用[D].武汉:中国地质大学(武汉),2009.
    126.苏俊磊,孙建孟,王涛,等.应用核磁共振测井资料评价储层孔隙结构的改进方法[J].吉林大学学报(地球科学版),2011,41(增刊1):380-386.
    127.苏俊磊,孙建孟,苑吉波,等.基于核磁共振孔隙结构的产能评价[J].西安石油大学学报(自然科学版),2011,26(3):43-48.
    128.苏俊青,赵厚祥,钱茂路,等.歧口凹陷湖盆特征及对油气成藏控制作用研究[J].新疆地质,2009,27(4):383-386.
    129.孙军昌,郭和坤,刘卫,等.低渗致密火山岩气藏微观孔喉特征[J].断块油气田,2010,17(5):548-553.
    130.孙军昌.火山岩气藏微观孔隙结构及核磁共振特征实验研究[D].北京:中国科学院研究生院,2010.
    131.孙玉凯,罗权生,何国貌.三塘湖盆地马朗凹陷石炭系火山岩储集层特征及影响因素[J].大庆石油学院学报,2009,33(3):36-42.
    132.覃豪.基于微观孔隙结构的火山岩储层分类方法研究[J].石油天然气学报,2011,33(1):98-103.
    133.谭佳奕.新疆卡拉麦里地区石炭系巴塔玛依内山组火山岩时序和火山机构特征研究[D].北京:北京大学,2010.
    134.谭开俊,张帆,赵应成,等.准噶尔盆地西北缘火山岩溶蚀孔隙特征及成因机制[J].岩性油气藏,2010,22(3):22-25.
    135.万永清,刘峰,张生兵,等.三塘湖火山岩孔隙结构类型及压汞资料应用[J].吐哈油气,2010,15(3):244-247.
    136.王成,邵红梅,洪淑新.徐深1井火山岩、砾岩储层特征研究[J].大庆石油地质与开发,2003,22(5):1-6.
    137.王会丽.金湖凹陷低孔低渗储层分布与油井评价方法研究[D].青岛:中国石油大学(华东),2011.
    138.王金友,张世奇,赵俊青,等.渤海湾盆地惠民凹陷临商地区火山岩储层特征[J].石油实验地质,2003,25(3):264-268.
    139.王鹏,罗明高,杜洋,等.北三台地区石炭系火山岩储层控制因素研究[J].特种油气藏,2010,17(3):41-45.
    140.王璞军,冯志强,刘万洙,等.盆地火山岩:岩性·岩相·储层·气藏·勘探[M].北京:科学出版社,2008:1-18.
    141.王仁冲,徐怀民,邵雨,等.准噶尔盆地陆东地区石炭系火山岩储层特征[J].石油学报,2008,29(3):350-358.
    142.王瑞飞,陈军斌,孙卫.特低渗透砂岩储层水驱油CT成像技术研究[J].地球物理学进展,2008,23(3):864-870.
    143.王胜.用核磁共振分析岩石孔隙结构特征[J].新疆石油地质,2009,30(6):768-770.
    144.王筱文,肖立志,谢然红,等.中国陆相地层核磁共振孔隙度研究[J].中国科学G辑:物理学、力学、天文学,2006,36(4):366-374.
    145.王孝辕.松辽盆地德惠断陷营城组火山岩储层孔隙特征[J].吉林地质,2011,30(1):10-15
    146.王学武,杨正明,李海波,等.核磁共振研究低渗透储层孔隙结构方法[J].西南石油大学学报(自然科学版),2010,32(2):69-73.
    147.王英南,郗玉清.松辽盆地兴城地区营一段火山岩岩性、岩相及孔隙结构特征研究[J].中国石油勘探,2009,1:24-30
    148.王振升,陈智宇,王书香,等.枣北地区火山岩油藏勘探历程及开发实践[J].特种油气藏,2003,10(1):55-58.
    149.吴磊,徐怀民,季汉成,等.松辽盆地杏山地区深部火山岩有利储层的控制因素及分布预测[J].现代地质,2005,19(4):585-595.
    150.吴颜雄,王璞珺,吴艳辉,等.火山岩储层储集空间的构成——以松辽盆地为例[J].天然气工业,2011,31(4):28-35.
    151.肖敦清,王桂芝,李国成,等.黄骅坳陷中南区火成岩成因类型、储层特征及含油气评价(内部报告).大港油田集团石油地质勘探开发研究院,1998.
    152.肖亮.利用核磁共振测井资料评价储集层孔隙结构的讨论[J].新疆石油地质,2008,29(2):260-263.
    153.谢庆宾,韩德馨,朱筱敏,等.三塘湖盆地火成岩储集空间类型及特征[J].石油勘探与开发,2002,29(1):84-87.
    154.徐浩,代宗仰,何云,等.辽河盆地东部中生界小岭组火山岩储层特征[J].地质学刊,2010,34(1):17-21.
    155.闫林,周雪峰,高涛,等.徐深气田兴城开发区火山岩储层发育控制因素分析[J].大庆石油地质与开发,2007,26(2):9-13.
    156.杨金龙.鄂尔多斯盆地陇东地区上三叠统延长组长8油层组沉积相与层序地层学研究[D].西安:西北大学,2004.
    157.杨立民,邹才能,冉启全.大港枣园油田火山岩裂缝性储层特征及其控制因素[J].沉积与特提斯地质,2007,27(1):86-91.
    158.杨双玲,刘万洙,于世泉,等.松辽盆地火山岩储层储集空间特征及其成因[J].吉林大学学报(地球科学版),2007,37(3):506-512.
    159.杨艳芳.火山岩储层储集空间演化、成岩作用及成岩相研究——松辽盆地徐家围子下白垩统营城组火山岩[D].西北大学,2011:49-68.
    160.姚芳,黄芳,季静,等.枣35断块火成岩储层评价与开发效果[J].天然气工业,2007,27(8):41-45.
    161.姚江波.黄骅坳陷油气藏规模概率分布资源预测[D].北京:石油大学,2002.
    162.姚卫江,范存辉,党玉芳,等.准噶尔盆地西北缘中拐凸起石炭系火山岩储层特征及主控因素[J].石油天然气学报,2011,33(9):32-37.
    163.姚卫江,李兵,张顺存,等.准噶尔盆地西北缘中拐一五八区二叠系一石炭系火山岩储层特征研究[J].岩性油气藏,2011,23(2):46-53.
    164.叶治续.剥蚀厚度恢复方法研究及应用——塔里木盆地台盆区埋藏史研究[D].北京:中国石油大学(北京),2006.
    165.于兴河,王兴志,王宝清,等.油气储层地质学基础[M].北京:石油工业出版社,2009:168-205.
    166.余淳梅,郑建平,唐勇,等.准噶尔盆地五彩湾凹陷基底火山岩储集性能及影响因素[J].地球科学——中国地质大学学报,2004,29(3):303-308.
    167.张家政.准噶尔盆地红山嘴油田石炭系火山岩油藏储层研究[D].长沙:中南大学,2009.
    168.张建林.孤北洼陷下第三系同沉积构造与沉积体系分布及油气预测[D].北京:中国地质大学(北京),2000.
    169.张绍辉,王振升,刘玉梅,等.歧口凹陷火成岩岩相与储集空间特征研究[J].天然气地球科学,2010,21(4):572-577.
    ]70.张顺存,黄治赳,孔玉华,等.陆西地区石炭系火山岩储集层的孔隙演化特征[J].新疆石油地质,2008,29(5):561-565.
    171.张彦霞,王保华,陆建林.长岭断陷营城组火山岩储层物性及影响因素研究[J].石油实验地质,2011,33(2):177-182.
    172.张子枢,吴邦辉.国内外火山岩油气藏研究现状及勘探技术调研[J].天然气勘探与开发,1994,16(1):1-26.
    173.赵飞,罗静兰,张有平,等.克拉玛依油田六、七、九区石炭系火山岩储集层特征及其控制因素[J].吉林大学学报(地球科学版),2010,40(1):48-55.
    174.赵杰,姜亦忠,王伟男,等.用核磁共振技术确定岩石孔隙结构的实验研究[J].测井技术,2003,27(3):185-189.
    175.仲维维,卢双舫,张世广,等.火成岩储层物性特征及其影响因素——以松辽盆地南部英台断陷龙深1井区为例[J].沉积学报,2010,28(3):563-571.
    176.周动力,董青松.火成岩油气储层特征及形成浅析[J].岩性油气藏,2010,22(4):80-84.
    177.祝文亮.黄骅坳陷下第三系深层碎屑岩储集层发育特征研究[D].北京:中国石油大学(北京),2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700