基于海洋遥感的东、黄海鲐鱼渔场与资源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,我国近海底层渔业资源出现衰退,但属中上层鱼类的鲐鱼资源较为丰富,其产量维持在40多万吨,占我国海洋捕捞产量的3%左右,在我国海洋捕捞渔业中占有重要地位,而东、黄海鲐鱼产量约占全国鲐鱼产量的78%。我国鲐鱼产量在波动中有所上升,但鲐鱼等中上层鱼类更易受到海洋环境影响,加之受到强大的捕捞压力,鲐鱼资源前景不容乐观,对鲐鱼资源及渔场动态的研究日益得到重视。与此同时,我国海洋遥感技术得到快速发展:我国已发射两颗海洋一号水色卫星,2009年将发射海洋二号动力环境卫星,2012年还将发射海洋三号海洋监视监测卫星,海洋信息获取能力得到极大提高,海洋遥感在海洋渔业的研究与应用日益受到我国海洋遥感与海洋渔业学者的关注。本文以中上层鱼鲐鱼为案例,探讨海洋遥感在近海渔业中的应用潜力及存在的问题,进一步拓展鲐鱼渔场及资源变动研究,为鲐鱼渔业管理提供理论支持。
     论文分为四个部分,第一部分概述了海洋遥感在海洋渔业的应用与进展,东、黄海鲐鱼的生物学、渔场与资源研究以及中国及周边国家与地区的鲐鱼围网渔业;第二部分介绍了东、黄海海洋环境与东、黄海海洋遥感监测研究及遥感数据源;第三部分为渔业资料的处理与分析,第四部分是遥感在鲐鱼渔场与资源动态变化中的应用。研究的主要结论如下:
     (1)根据1998-2003年东、黄海国营大型鲐鲹鱼灯光围网生产统计数据,利用一般线性模型对其捕捞效率进行了估算,讨论了线性模型误差结构的选择及数据变换对结果的影响。根据鲐鱼单位捕捞努力量渔获量(CPUE)数据呈正偏,以及CPUE均值与方差在对数尺度下的线性关系,选择了负二项分布、伽马分布与对数正态分布作为误差分布。研究表明,由于CPUE零值的存在,其对误差分布结构有很大影响。当采用最大似然估计时,对数正态分布与伽马分布的CPUE需加一常数(δ),δ取值对结果有较大影响,随δ增大将使估计的捕捞效率对比度得到压缩。为了避免δ取值的影响,同时采用了Delta-GLM方法。通过不同模型的比较,选择了Delta-负二项或Delta-伽马方法。根据Delta-负二项或Delta-伽马方法估算结果,各渔业公司间的捕捞效率存在很大的差异,且具有明显的区域性。32°N以北海区,捕捞效率高低依次为苏渔、辽渔、青渔、舟渔、宁渔、沪渔;台湾东北部海区,捕捞效率高低依次为苏渔、辽渔、舟渔、沪渔、宁渔、青渔。
     (2)研究了商业捕捞数据CPUE与资源量的关系。对此问题从两个方面进行了探讨:一是构造了一个集成了鱼类资源增长、渔船捕捞能力及鱼群与渔船间相互作用的元胞自动机模型,以探讨鱼群探捕与渔船作业可能对商业性CPUE与资源量之间关系的影响。文中分别模拟了①鱼群集中或随机分布,渔船随机分布;②鱼群由随机逐渐集中,渔船通过记录历史捕捞产量也逐渐集中分布,同时规定每艘船的最大捕捞量;③鱼群由分散到集中再到分散,而渔船集中在鱼群分布概率最大区;④渔船从随机分布到逐渐集中分布,鱼群集中分布不变等四种渔业上客观存在的情形。在渔船随机分布的情形下,不管鱼群如何分布,商业性CPUE与资源量均呈线性关系;在鱼群分布逐渐集中、渔船由于渔民经验积累也随之逐渐集中的情形下,商业性CPUE与资源量能表现出高稳性和高贫化性的特点。由于鱼群的集散或渔船进入渔区的时间长短不一,会造成商业性CPUE与资源量负相关的现象。上述模拟情况说明,在渔业资源评估中需要关注模型应用的前提条件以及模型的完善。文中还探讨了元胞自动机在渔业资源评估中应用的可行性。二是利用理想自由分布理论探讨了鲐鱼捕捞努力量的空间分布特点对CPUE与渔业资源密度关系的影响。从结果可知,在鲐鱼围网渔业中,随着捕捞努力量的集中,渔船之间存在一定的相互干扰,从而使得CPUE不一定随资源量的增加而增加,CPUE有被均匀化的趋势,捕捞努力量可能更能表达资源量的多少。上述结果表明CPUE受到众多因数的影响,如作业方式、努力量的空间分配(捕捞努力量直接指向高密度渔区)、努力量密度等,这使得CPUE与资源密度的关系难以保持线性。
     (3)根据1999-2003年鲐鱼捕捞生产数据,分析了东、黄海鲐鱼渔场的配置与东、黄海遥感获取的水温、叶绿素等环境要素的关系。结果表明,在北部渔场,黄海暖流对鲐鱼渔场的分布与变动有非常明显的影响,在冬季,鲐鱼主要分布于黄海暖流流轴边缘暖水侧,尽管叶绿素浓度数据混有泥沙等信息,但叶绿素浓度对鲐鱼的空间分布具有限制性作用;在南部渔场,上升流边缘偏暖水侧是鲐鱼渔场的分布区,鲐鱼渔场的分布在台湾暖流控制的区域,叶绿素浓度在该海域与渔场的分布关系不大。利用GAM模型进一步分析了各环境要素与CPUE的定量关系发现:在北渔场,海表水温、海面高度距平、海表温度梯度、海面风速与CPUE的关系密切;而在南渔场,海表水温距平、海面高度距平、海表风速、涡动能与CPUE的关系密切;两渔场叶绿素浓度对CPUE的影响均不显著。鲐鱼渔场的形成具有时空马尔科夫过程特征,利用GAM模型难以分析这种时空配置对渔场形成的影响,如北渔场,CPUE与水温的关系就隐含了特定时间、空间位置等条件,而不能单纯理解为温度单要素的作用,用该模型进行预测有可能会得出错误的结论。为进一步探索海洋环境与鱼群空间分布、演化的关系,本文利用遥感水温、叶绿素浓度与地形数据,构造了一个随机元胞自动机模型模拟黄海鲐鱼的空间分布的动态演化,但该模型需进一步发展。
     (4)鲐鱼资源的变动同海洋环境有密切的关系,研究海洋环境对鲐鱼资源的影响对制定合理的鲐鱼渔业管理计划至关重要。本文利用东海外海国营大型鲐鳕鱼灯光围网捕捞数据及TRMM/TMI遥感水温数据,分析了鲐鱼资源变动同水温的关系。利用主成分分析方法对遥感水温时间系列影像进行分析,得出鲐鱼资源受东海环境短周期变化的影响而表现出相应资源波动,黑潮及台湾暖流与东海外海鲐鱼资源变动关系密切,产卵场产卵期的温度升高有利于鲐鱼产量的提高,水温影响鲐鱼资源在时空分布上的调整。文章进一步指出,利用商业捕捞数据研究渔业资源变动,CPUE的标准化非常重要,渔业资源评估模型的构造必须考虑温度等环境因素,应加强环境变化引起的管理风险的评估。最后,简单探讨了遥感数据在渔业资源评估中的应用。
In the last decades, although most demersal fish stocks have collapsed along the coast of China, the Chub mackerel (Scomber japonicus) still supports a large pelagic fishery in the East China Sea and Yellow Sea. The yield of chub mackerel in Chinese offshore fishery is about 0.4 million ton which is about 3 percent of the total output of marine capture fisheries in China. The catch from the East China Sea and Yellow Sea consists of 78 percent of this total yield. However, the future of this important fisheries resource is unclear with high fishing intensity and large changes in the ecosystem. Current research is focused on improved understanding of its population dynamics and spatial dynamics of fishing ground. The improved technology of ocean remote sensing in our country has resulted in increased capacity in monitoring environments of the fishery on a large spatial scale. The two ocean color remote sensing satellites (HY-1A and HY-1B) were launched in May 2002 and July 2007, and the ocean dynamic satellite series (HY-2) and ocean watch & monitor satellite series (HY-3) is scheduled to be launched, respectively, in 2009 and 2012. These satellites greatly enhance our abilities of collecting the information of oceanic environment in China Sea. Chub mackerel, a pelagic fish species, is used as an example to show the potential use of remote sensing in improving modeling the dynamics of marine fisheries stocks.
     This dissertation consists of four parts. Part one reviews (1) the development of ocean remote sensing in marine fisheries; (2) chub mackerel biology; (3)fishing ground and resource assessment; and (4) the Chub mackerel purse sense fisheries in China and related countries and area. Part two reviews the environments of East China Sea and Yellow Sea, the ocean remote sensing research, and the corresponding remote sensing data. Part three is focused on the methods of estimating relative fishing efficiencies and analyzing the relationship between CPUE and biomass based on the fisheries-dependent data. The last part tries to incorporate the remote sensing data into a production model in assessing fish stock dynamics. The main findings of this study are as follow:
     (1) Reliable estimation of effective fishing effort, which is proportional to fishing mortality, can provide information critical to the assessment and management of fisheries stocks. To estimate effective fishing effort, we need to understand fishing efficiency and factors that may influence it. In this study fishing efficiency was estimated for mackerel purse seine fisheries using a generalized linear model. This was done for different companies involved in the fisheries. Different choices of error structures were considered in the estimation and their impacts on the estimation were evaluated. The negative binomial distribution, gamma distribution, and log-normal distribution were chosen as error distributions according to log-linear regression of variance versus log-mean of CPUE (catch per unit effort). Zero CPUE values in data were found to have great impacts on the assumed error structure and adding a constant (5) to CPUE was needed for the gamma distribution and log-normal distribution in maximum likelihood estimation. As 5 increased, the contrast of estimated fishing efficiency was reduced greatly. Delta approaches were also chosen as an alternative way to deal with zero CPUE values in this study. Comparing the results of different models, we considered Delta-negative binomial and Delta-gamma as most appropriate error distributions for this study. The results showed that the fishing efficiency differed greatly among fisheries companies and among different areas.
     (2) CPUE is an abundance index commonly used in fisheries. It is often assumed that CPUE is proportional to fish abundance. However, the relationship between CPUE and fish abundance derived from the fisheries dependent data may be influenced by behaviors of fish and fishermen, making the proportional assumption invalid.
     The paper presents a cellular automata model which simulates the reproduction and spatial movement of individual fish schools and the corresponding commercial catch and movement of individual fishing boat. The model was applied to evaluate the relationship between commercial CPUE and stock abundance in different distributional patterns of fishing boats and fish schools. The study considers four scenarios such as:①the distribution of fishing boat is random but fish schools may be either random or not,②the distribution of fish schools is random initially, but become aggregated and the movement of fishing boat is corresponding to such changes in the spatial distribution of fish schools,③the distribution of fish schools is the same as that in②, but spatial distribution of fishing boats is always aggregated; and④the distribution of fishing boat is random initially, and become aggregated, and fish school is aggregated. I found that when the distribution of fishing vessels was random the commercial CPUE was proportional to abundance otherwise there existed nonproportionality between CPUE and stock abundance. For instance, the abundance is fluctuant in reserve with CPUE as in scenarios③and in scenarios④, I find different relationship between CPUE and abundance in different exploitive stages as fishermen get more and more experience in catching. The result also shows the cellular automata model is useful to explore or analyze some theory relationship in fishery stock assessment and management.
     We analyze the relationship between the proportion of catch and effort allocated to different locations based on the ideal free distribution theory. The study shows that the prediction of ideal free distribution was approximately supported in north fishing ground, i.e. to a certain extent, the CPUE was equalized and was independent of the fish abundance, and to the contrary, the effort may be in proportion to the abundance. Although this prediction was not supported in south fishing ground, the CPUE decreased with the standardized effort as its value was larger than 26, which implied that the interference competition was present and the relationship between CPUE and fish abundance may be weakened, even break down. Finally, we suggest we need to keep an eye on CPUE equalized when using the fish dependent data to study the dynamic of fish stocks.
     (3) I laid each position of catch from 1999 to 2003 on maps of SST (sea surface temperature) and chlorophyll-a generated from remote sensing. I find that in north fishing ground, Yellow Sea warm current has an important influence on the location of chub mackerel fishing ground. Although the concentration of chlorophyll-a may not be estimated reliably by remote sensing because of the sediment, the chlorophyll-a doubtlessly limit the distribution of the fish. On the southern fishing ground, the map shows upwelling plays an important role in determining the position of the catch. Generally, the fishing ground is at the warm edge of front and the Taiwan warm current almost controls the range of distribution of chub mackerel. However, the influence of chlorophyll-a on the fish distribution is unclear. A GAM model was used to analyze the quantity connection between CPUE and ocean environmental elements estimated from remote sensing. The result shows that on the northern fishing ground the effects of SST, SST grads, sea wind and mean sea level anomaly are significant. On the southern fishing ground, the effects of SST anomaly, mean sea level anomaly, sea winds and eddies kinetic energy are significant. The effect of chlorophyll-a is not significant on both fishing ground. But the formation of fishing grounds has a tight connection with the fish migrations and the spatial structure of environmental elements. So we should take the necessary cautions in using the model for prediction. In order to explore the connection of the distribution and its corresponding evolvement of fishing ground of chub mackerel with the change of environment, we construct a cell automata model to simulate the distribution of chub mackerel by using SST, chlorophyll-a and sea depth data. The result shows that the model performs reasonably well, but need to be fine-tuned and improved in future.
     (4) The yield of mackerel is strongly affected by environmental variability. It is important to identify the influence of the ocean environment on these small pelagic fishes for developing a fishery management plan for sustainable development of fisheries. We used offshore catch data in the East China Sea from the large purse sense of China and sea surface temperature derived from TRMM/TMI to explore the relationship between them. The result of principal component analysis of the time-series images showed that the abundance of small pelagic fishes had a short period of fluctuation, positively corresponding to the same period of environmental change and the intensity of the Kuroshio current and Taiwan warm current. The sea surface temperature of spawning ground from March to April also had significant and positive effects on CPUE from the corresponding fishing ground. The spatial and temporal distribution of the fish changed as a part of response to the environment change. Finally, we make suggestions for fisheries stock assessment. First the CPUE should be standardized and adjusted according to different spatial and temporal distributions of fishing effort. The environmental variables must be incorporated in models for fisheries stock assessment and risk evaluation must be made allowing for dynamic resource induced by environmental factors.
     In this dissertation, I also discussed the framework for expanding the dynamic production model by incorporating remote sensing data in the estimation of fisheries stock dynamics.
引文
[1]陈阿毛,丁天明.鲐鲹鱼幼鱼发生量调查报告[J].浙江水产学院学报,1995,14(1):36-40.
    [2]陈卫忠,胡芬.应用剩余产量模型专家系统(CLIMPROD)评估东海鲐鲹鱼类最大持续产量[J].水产学报,1997,2l(4):404-408.
    [3]陈卫忠,胡芬,严利平.用实际种群分析法评估东海鲐鱼现存资源量.水产学报,1998,22(4):334-339.
    [4]陈敏祥.圣婴现象对台湾鲭围网渔业影响评估.台湾国立海洋大学硕士论文,2000.
    [5]程家骅,林龙山.东海区始鱼生物学特征及其渔业现状的分析研究[J].海洋渔业,2004,26(2):73-78.
    [6]程家骅,张秋华,李圣法等.东黄海渔业资源利用[M].上海科学技术出版社,上海,2005.
    [7]崔科.东黄海鲐鲹鱼资源丰度、作业渔场时空分布及其与表温关系的研究[D].上海水产大学,硕士论文,2005.
    [8]崔雪森,樊伟,张晶.太平洋黄鳍金枪鱼延绳钓渔获分布及渔场水温浅析[J].海洋通报,2005,24(5):54-59.
    [9]邓元甲,陈雪忠,程家骅等.东海大陆架生物资源与环境[M].上海科学技术出版社,上海,2003.
    [10]丁天明,宋海棠.机轮拖网捕捞鲐碜鱼的现状及渔况分析[J].浙江水产学院学报,1995,14(1):47-52.
    [11]丁永敏.遥感水温技术在围鲐生产中的应用[J].齐鲁渔业,1995,6:43-44.
    [12]杜云艳.地理案例推理及其应用[D].中国科学院地理科学与资源研究所博士论文,2001
    [13]杜云艳,周成虎,崔海燕等.遥感与CIS支持下的海洋渔业空间分布研究[J].海洋学报,2002,24(5):57-63.
    [14]杜云艳,苏奋振,仉天宇.基于案例推理的海洋涡旋特征信息空间相似性研究[J].热带海洋学报,2005,24(3):1-9.
    [15]方水美,张澄茂,杨圣云.台湾海峡南部灯光围网捕捞的水温选择及其季节变化[J].台湾海峡,2001,20(2):245-250.
    [16]方水美,杨圣云.闽南-台湾浅滩渔场蓝圆鲹和鲐鱼群聚空间分布的研究[J].台湾海峡,2006,25(3):374-380
    [17]樊伟.卫星遥感渔场渔情分析应用研究—以西北太平洋柔鱼渔业为例[D],华东师大博士论文,2004.
    [18]官文江.利用海洋水色水温遥感数据反演海洋初级生产力的研究[D].硕士论文,国家海洋局第二海洋研究所,2003.
    [19]洪华生,何发祥,杨圣云.厄尔尼诺现象和浙江近海鲐鱼渔获量变化关系[J].海洋湖沼通报,1997,(4):8-16.
    [20]李纲,陈新军 东海鲐鱼资源和渔场时空分布特征的研究[J].中国海洋大学学报,2007,37(6):921-926.
    [21]梁强.基于遥感的东海中上层鱼类资源评估的研究[D].硕士论文,中国科学院研究生院,2002.
    [22]凌兰英,俞连福.日本对东、黄海渔业资源的利用[J].海洋渔业,2002,24(1):41-44.
    [23]刘勇,严利平,程家骅.东海北部和黄海南部鲐鱼生长特性及合理利用[J].中国水产科学,2006,13(5):814-822.
    [24]卢振彬,戴泉水,颜尤明.台湾海峡及其邻近海域鲐鲹鱼类群聚资源的评估[J].中国水产科学,2000,7(1):41-45.
    [25]毛志华,朱乾坤,潘德炉.卫星遥感业务系统海表温度误差控制方法[J].海洋学报,2003,25(5):49-57.
    [26]苗振清.东海北部近海夏秋季鲐鲹鱼渔场与海洋水文环境的关系[J].浙江水产学院学报,1993,12(1):32-39.
    [27]苗振清a.东海北部鲐鲹鱼中心渔场形成机制的统计学.水产学报,2003,27(2):143-150.
    [28]苗振清,严世强b.东海北部鲐鲹鱼渔场水文特征的统计学研究[J].海洋与湖沼,2003,34(4):397-405.
    [29]农牧渔业部水产局编.东海区渔业资源调查和区划[M].华东师范大学出版社,上海,1987.
    [30]丛丕福 赵冬至 曲丽梅.利用卫星遥感技术监测赤潮的研究[J].海洋技术,2001,20(4):69-72.
    [31]潘德炉,王迪峰.我国海洋光学遥感应用科学研究的新进展[J].地球科学进 展,2004,19(4):506-512.
    [32]商少凌,洪华生,商少平等.台湾海峡1997-1998年夏汛中上层鱼类中心渔场的变动与表层水温的关系浅析[J].海洋科学,2002,26(11):27-30.
    [33]宋海棠,丁天明.浙江渔场鲐鱼蓝园鲹不同群体的组成及分布[J].浙江水产学院学报,1995,14(1):29-35.
    [34]苏奋振、周成虎、邵全琴等.海洋渔业地理信息系统的发展、应用与前景[J].水产学报,2002,26(2):169-174.
    [35]苏奋振,周成虎,史文中等.基于粗集的环境机制发现模型及其渔业应用[J].遥感学报,2005,9(4):398-404.
    [36]孙耀,于淼,刘勇等.现场胃含物法测定鲐的摄食与生态转换效率[J].水产学报,2003,27(3):245-250
    [37]唐议,黄硕林.专属经济区制度下东海渔业资源的可持续利用[J].集美大学学报,2003,8(2):117-122.
    [38]田国良.遥感辐射特性研究的现状与展望[EB/OL].http://www.blog.edu.cn/userl/5437/archives/2005/1029132.shtml[06-10].
    [39]王凯,严利平,程家骅等.东海鲐鱼资源合理利用的研究[J].海洋渔业,2007,29(4):337-343.
    [40]王文字,邵全琴,薛允传等.西北太平洋柔鱼资源与海洋环境的GIS空间分析[J].地球信息科学,2003,1:39-44.
    [41]徐兆礼,陈亚瞿.东黄海秋季浮游动物优势种聚集强度与鲐鲹渔场的关系[J].生态学杂志,1989,8(4):13-15.
    [42]杨晓明,周应祺,陈新军.基于海洋遥感的西北印度洋鸢乌贼渔场形成机制的初步分析[J].水产学报,2006,30(5):669-675.
    [43]阎丽凤,宋同文.冬季鲐鱼渔场的温度场气压场特征[J].气象,1990,16(12):47-49.
    [44]颜尤明.福建近海鲐鱼的生物学[J].海洋渔业,1997,9(2):69-73.
    [45]杨红,章守宇,戴小杰,等.夏季东海水团变动特征及对鲐鲹渔场的影响.水产学报,2001,25(3):209-214.
    [46]#12
    [47]张洪亮,潘国良,姚光展等.浙江省群众灯光围网渔业现状的研究[J].浙江海洋学院学报,2006,25(4):397-406.
    [48]张洪亮,周永东,陈斌.2006年浙江省深水灯光围网渔业产况分析[J].海洋渔业,2007,29(3):281-284.
    [49]张晶,韩士鑫.黄、东海鲐鲹鱼渔场环境分析[J].海洋渔业,2004,26(4):321 325.
    [50]张秋华,程家骅,徐汉祥等.东海区渔业资源及其可持续利用[M].复旦大学出版社,上海,2005.
    [51]张学敏,商少平,张彩云等.闽南-台湾浅滩渔场海表温度对鲐鲹鱼类群聚资源年际变动的影响初探[J].海洋通报,2005,24(4):91-96.
    [52]《中国海洋渔业资源》编写组.中国海洋渔业资源[M].浙江科学技术出版社,1990.
    [53]中国农业年鉴编辑委员会编.中国农业年鉴[M].中国农业出版社,北京,2006.
    [54]Berger M,Kerr Y,Font J,et al.Measuring the moisture in the Earth's soil with ESA's SMOS Mission,ESA Bulletin 115,41 f.[EB/OL].2003,http://www.esa.int/esaLP/SEMHONZ990E_LPsmos_0.html.
    [55]Bigelow K A,Boggs C H,He X.Enviromental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery[J].Fisheries OceanOgraphy,1999,8(3):178-198.
    [56]Dagom L,Petit M,Stretta J M.Simulation of large-scale tropical tuna movements in relation with daily remote sensing data:the artifical life approach[J].BioSystems,1997,44:167-180.
    [57]FAO.The State of World Fisheries and Aquaculture 2006,PART 1 World review of fisheries and aquaculture[EB/OL].http://www.fao.org/sof/sofia/index_en.htm.
    [58]Gauldie R W,Sharma S K,Helsley C E.LIDAR application to fisheries monitoring problem[J].Can.J.Fish.Aquat.Sci.,1996,53:1459-1468.
    [59]Griffiths F B,Lyne V D,Harris G P,et al.Tracking fish by airbome radar-fishermen could be the winner[J].Australian fisheries,1989,48:19-21.
    [60]Hee-yong Kim,Takashige Sugimoto.Transport of larval jack mackerel (Trachurus japonicus)estimated from trajectories of satellite-tracked drifters and advective velocity fields obtained from sequential satellite thermal images in the eastern East China Sea[J],Fisheries Ocean0graphy,2002,11(6):329-336.
    [61]Hiyama Y,Yoda M,Ohshimo S.Stock size fluctuation in chub mackerel(Scomber japonicus)in the East China Sea and the Japan/East Sea[J].Fisheries oceanography,2002,11(6):347-353.
    [62]Humston R,Ault J S,Lutcavage M,et al.Schooling and migration of large pelagic fishes relative to environmental cues[J].Fisheries Oceanography,2000,9(2):136-146.
    [63]Hwang S D.Population Ecology of pacific mackerel,Scomber japonicus,off Korea[D].Chungnam national university,PhD thesis,1999(in Korean).
    [64]I-Ching Chen,Pei-Fen Lee,Wann-Nian Tzeng.Distribution of albacore(Thunnus alalunga)in the Indian Ocean and its relation to environmental factors[J].Fisherie Oceanography,2005, 14(1): 71-80.
    [65]Ichii T ,Mahapatra K,Sakai M,et al. Differing body size between the autumn and the winter-spring cohorts of neon flying squid(Ommastrephes bartramii) related to the oceanographic regime in the North Pacific: a hypothesis[J].Fisheries Oceanography,2004,13(5):295-309.
    
    [66]James Cole. Environmental conditions,satellite imagery,and clupeoid recruitment in the northern Benguela upwelling system [J].Fishery Oceanography,1999,8(1):25-38.
    [67] James Cole. Coastal sea surface temperature and coho salmon production off the north-west United States [J].Fisheries Oceanography, 2000,9(1): 1-16.
    [68]Kemmerer, A.J., Savastano, K.J., Faller, K.H., 1978. Applications of space observations to the management and utilization of coastal fishery resources. In: Godby, E.A., Otterman, J. (Eds.), COSPAR: The Contribution of Space Observations to Global Food, Information Systems. Pergamon Press, Oxford, 1978:143-155.
    [69]Kourt N, Shepherd I, Greidanus H, et al. Integrating remote sensing in fisheries control [J].Fisheries Management and Ecology, 2005, 12:295-307.
    [70]Laurs R M, Fiedler P C, Montgomery D R.Albacore tuna catch distributions relative to environmental features observed from satellites. Deep Sea Research, 1984, 31(9): 1085-1099.
    [71]Laurs R M, Polovina J J. Satellite Remote Sensing: An important tool in fisheries oceanography [M]. Fisheries oceanography: an integrative approach to fisheries ecology and management, Blackwell Science Ltd, 2001:146-160.
    [72]Molly Lutcavage, Scott Kraus.The feasibility of direct photographic assessment of giant bluefin tuna, Thunnus thynnus, in New England waters [J]. Fishery Bulletin, 1995, 93:495 -503.
    [73]Montgomery D R. Commercial Application of satellite Oceanography [J].Oceanus, 1981, 24(3):56-65.
    [74]Nishida H. Long term fluctuations in the stock of jack mackerel and chub mackerel in the western part of Japan Sea [J].Bull. Japan Soc. Fish. Oceanogr. 1997, 61:316-318(in Japanese).
    [75]Pan Delu.Present and future Chinese satellite missions for ocean remote sensing[R]. “龙计划”第二期海洋遥感高级培训班,2007,10,杭州.
    
    [76]Polovina J J,Kleiber P,Kobayashi D R. Application of TOPEX-POSEIDON satellite altimetry to simulate transport dynamics of larvae of spiny lobster, Panulirus marginatus,in the Northwestern Hawaiian Islands, 1993-1996 [J].Fish. Bull., 1999,97:132-143.
    
    [77]Polovina J J,Howell E,Kobayashi D R,et al.The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources[J].Progress in Oceanography,2001,49:469-483.
    
    [78] Polovina J J..Evaluation of Remote Sensing Technologies for the Identification of Oceanographic Features Critical to Pelagic Fish Distributions around the Hawaiian Archipelago [EB/OL]. http://www.soest.hawaii.edu/PFRP/ocean/mitchum.html.
    [79] Rodhouse P G, Prince P A, Trathan P N, et al.Cephalopods and mesoscale oceanography at the Antarctic Polar Front: satellite tracked predators locate pelagic trophic interactions [J]. Marine Ecology Progress Series, 1996, 136:37-50.
    
    [80]Roithmayr C M. Airborne low-light sensor detects luminescing fish schools at night [J]. Commer. Fish. Rev., 1970, 32(12):42-51.
    
    [81]Schick R S, Goldsten J, Lutcavage M E.Bluefm tuna (thunnus thynnus) distribution in relation to sea surface temperature fronts in the gulf of marine(1994-96).Fish.Oceanogr.2004,13:225-238.
    
    [82]Sei-Ichi Saitoh,Sunao Kosaka,Joji Iisaka.Satellite infrared observations of Kuroshio warm-core rings and their application to study of Pacific saury migration[J].Deep-SeaResearch,1986,33:1601-1615.
    
    [83]Simpson, J J, Remote sensing and geographical information systems: their present and future use in global marine fisheries. Fish. Oceanogr.1992, 1(3):238-280.
    
    [84]Tzeng W N, Bolans M A. Estimation of growth parameters of two species of mackerel, Scomber japonicus and S. autralasicus, in the coastal waters of Taiwan [J]. J. Fish. Soc. Taiwan, 1994, 21 (4) :312-415.
    
    [85]Valavanis V D, Georgakarakos S, Kapantagakis A, et al. A GIS environmental modeling approach to essential fish habitat designation [J].Ecological Modelling, 2004, 178; 417-427.
    
    [86]Valavanis VD, Katara I, Palialexis A . Identification of mesoscale thermal fronts using satellite imagery and GIS. International Journal of Geographical Information Science ,2005,19(10):l 131-1147.
    
    [87]Valerie Faure,Cheikh Abdellahi Inejih,Herve Demarcq,et al. The importance of retention process in welling areas for recruitment of Octopus vulgaris: the example of the Arguim Bank (Mauritania)[J]. Fisheries OceanOgraphy, 2000, 9(4):343-355.
    
    [88]Waluda C M,Ymashiro C,Elvidge C D.Quantifying light-fishing for Dosidicus gigas in the eastern Pacific using satellite remote sensing[J].Remote sensing of environment,2004,91:129-133.
    
    [89]Yatsu A, Watanabe T, Ishida M, et al. Enviromental effects on recruitment and productivity of Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus with recommendations for management [J]. Fisheries oceanography, 2005, 14(4):263-278.
    [1]陈德文,商少平,商少凌等.台风期间台湾岛周边海域海面风场特征的卫星遥感研究[J].2007,46(1):141-145.
    [2]陈锐.卫星高度计资料在中国海和西北太平洋的数据处理、印证和若干海洋学应用[D].青岛海洋大学博士学位论文,2002.
    [3]陈新军.渔业资源与渔场学[M].海洋出版社,2004,北京.
    [4]丁永敏.遥感水温技术在围鲐生产中的应用[J].齐鲁渔业,1995,12(6):43-44.
    [5]郭炳火,邹娥梅,熊学君等.黄海、东海水交换的季节变异[J].海洋学报(增刊),2000,22:13-23.
    [6]郭炳火,黄振宗,李培英等.中国近海及邻近海域海洋环境[M].中国海洋出版社,北京,2004.
    [7]韩士鑫,刘树勋.海渔况速报图的应用[J].海洋渔业,1993,15(2):78-80.
    [8]官文江.利用海洋水色水温遥感数据反演海洋初级生产力的研究[D].国家海洋局第二海洋研究所硕士论文,2003.
    [9]官文江,何贤强,潘德炉等.渤、黄、东海海洋初级生产力的遥感估算[J].水产学报,2005,29(3):367-372.
    [10]何贤强,潘德炉,黄二辉等.中国海透明度卫星遥感监测[J].中国科学,2004,6(9):33-37.
    [11]何贤强.利用海洋水色遥感反演海水透明度的研究[D].国家海洋局第二海洋研究所硕士论文,2002.
    [12]黄润恒,王其茂。卫星遥感在东海渔场速报中的应用[J].海洋预报, 1990,7(4):63-68.
    [13]黄韦艮,林传兰,楼琇林等.台湾海峡及其邻近海域海面温度锋的卫星遥感观测[J].海洋学报,2006,28(4):49-55.
    [14]李四海.近海海洋水色遥感机理及其应用[D].华东师范大学博士学位论文,2001.
    [15]李志,魏恩泊,田纪伟.一个L波段海表盐度遥感反演的新经验模式[J].物理学报,2007,56(5):3028-3030.
    [16]梁强.基于遥感的东海中上层鱼类资源评估的研究[D].中国科学院研究生院硕士论文,2002.
    [17]刘良民.卫星海洋遥感导论[M].武汉大学出版,2004.
    [18]刘忠臣,刘宝华,黄振宗等.中国近海及邻近海域地形地貌[M].海洋出版社,北京,2005.
    [19]卢振彬,戴泉水,颜尤明.台湾海峡及其邻近海域鲐鲹鱼类群聚资源的评估[J].中国水产科学,2000,7(1):41-45.
    [20]毛志华,潘德炉,潘玉球.利用卫星遥感SST估算海表流场[J].海洋通报,1996,15(1):85-90.
    [21]宁修仁,刘子琳,史君贤.渤、黄、东海初级生产力和潜在渔业生产量的评估[J].海洋学报,1995,17(3):72-84.
    [22]丛丕福.海洋叶绿素遥感反演及海洋初级生产力估算研究[D].中国科学院研究生院(遥感应用研究所),2006.
    [23]丘仲锋.东海赤潮高发区水色遥感算法及赤潮遥感监测研究[D].中国科学院研究生院(海洋研究所),2006年.
    [24]苏育嵩,苏洁.利用卫星图像对黄海表层水系的分析[J].海洋与湖沼(增刊),1995,26(5):16-22.
    [25]唐军武.海洋光学特性模拟与遥感模型[D].中国科学院遥感应用研究所博士学位论文,1999.
    [26]王杰,矫玉田,曹勇等.海表面盐度遥感技术的发展与应用[J].海洋技术,2006,25(3):76-81.
    [27]冯倩.卫星散射计数据处理及其应用[D].青岛海洋大学硕士论文,2001.
    [28]吴培中.海洋初级生产力的卫星探测[J].国土资源遥感,2000,45(3):7-15
    [29]吴晓京,陈云浩,郑新江等.洋面风场的QuikSCAT/Sea Winds遥感探测[J].自然灾害学报,2007,16(2):7-15.
    [30]邢小罡,赵冬至,刘玉光等.叶绿素a荧光遥感研究进展[J].遥感学报,2007,11(1):137-144.
    [31]阎俊岳,陈乾金,张秀芝等.中国近海气候[M].科学出版社,北京,1993.
    [32]张秋华,程家骅,徐汉祥等.东海区渔业资源及其可持续利用[M].复旦大学出版社,上海,2005.
    [33]张晶,韩士鑫.黄、东海鲐鲹鱼渔场环境分析[J].海洋渔业,2004,26(4):321-325.
    [34]张霄宇,林以安,唐仁友等.遥感技术在河口颗粒态总磷分布及扩散研究中的应用初探[J].海洋学报,2005,27(1):51-56.
    [35]赵冬至.我国赤潮灾害分布规律与卫星遥感探测模型[D].华东师范大学,2004.
    [36]朱建荣.长江口外上升流动力机制研究[R].华东师范大学研究报告,1997.
    [37]冯士筰,李风歧,李少菁.海洋科学导论[M].高等教育出版社,北京,1999.
    [38]Behrenfeld,M J,Falkowski P G.Photosynthetic rates derived from satellite-based chlorophyll concentration[J].Limnology and Oceanography,1997,42:1-20.
    [39]Li X F,Pichel W,Maturi P,et al.Deriving the operational nonlinear multichannel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3[J].Ini.J.Remote Sensing,2001,22(4):699-704.
    [40]Morel A,Berthon J E.Surface pigments,algal biomass profiles and potential production of the euphotic layer:relationships reinvestigated in view of remote-sensing applications.Limnol.Oceanogr.1989,34:1545-1562.
    [41]Ebuchi N,Braber H C,Creuso M J.Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean data[J].Journal of Atmospheric and Oceanic Technology,2002,19:2049-2062
    [42]Traon L.Satellite Altimetry[R].ESA-MOST Dragon Programme 2~(nd)Advanced Training Course in Remote Sensing,2007,Hangzhou,China.
    [43]Ullman D S,Comillon P C.Satellite-derived sea surface temperature fronts on the continental shelf off the northeast U.S.coast[J].J.Geophys.Res.,1999,104:23459-23478.
    [44]Yang j iming,Gu chuancheng,Li liyun,et al.Satellite remote sensing prediction of Japanese pilchard fishing ground in the Huanghai Sea and the East China Sea[J].Science in China(Series B),1995,38(3):336-344.
    [45]Zainuddin M,Kiyofuji H,Saitoh K,et al.Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore(Thunnus alalunga)in the northwestern North Pacific[J].Deep-Sea Research Ⅱ,2006,53:419-431.
    [1]陈新军,赵小虎,刘金立.印度洋西北海域鸢乌贼钓捕技术试验[J].海洋渔业,2005,Vol27(3):201-205.
    [2]陈新军.GLM模型和GAM模型研究东黄海鲐鱼资源渔场与环境因子的关系[J].水产学报,2008,32(2).待刊.
    [3]薛小杰,谭克龙.元胞自动机模型在地学中的研究进展[J].中国煤田地质,2005,17(3):12-14.
    [4]田思泉.西北太平洋柔鱼资源评价及其与海洋环境关系的研究[D].上海水产大学,博士学位论文,2006.
    [5]赵文杰,刘兆理.元胞自动机在环境科学中的应用[J].东北师大学报(自然科学版),2003,35(2):87-92.
    [6] 周成虎,孙战利,谢一春.地理元胞自动机研究[M]北京:科学出版社,1999.
    
    [7] Abrahams M V. Patch choice under perceptual constraints: a cause for departures from an ideal free distribution [J]. Behav. Ecol. Sociobiol, 1986, 19:409-415.
    [8] Abrahams M V, Healey M C. Variation in the competitive abilities of fishermen and its influence on the spatial distribution of the British Columbia salmon troll fleet [J]. Can. J. Fish. Aquat. Sci.1990,47:1116-1121.
    
    [9] Berry D A. logarithmic transformation in ANOVA [J]. Biometrics, 1987, 43:439-456.
    [10] Campbell R A.CPUE standardisations and the construction of indices of stock abundance in a spatially varying fishery using general linear models [J]. Fisheries Research, 2004, 70:209-227.
    
    [11] Damalas D, Megalofonou P, Apostolopoulou M. Environmental, spatial, temporal and operational effects on swordfish (Xiphias gladius) catch rates of eastern Mediterranean Sea longline fisheries, Fisheries Research, 2007, 84:233-246.
    [12] Dick E J. Beyond 'lognormal versus gamma': distribution among error distributions for generalized linear models [J]. Fisheries Research, 2004, 70:351-366.
    [13] Firth D. Multiplicative errors: log-normal or gamma? Journal of the Royal Statistical Society, Ser. B, 1988,2: 266-268.
    [14] Fretwell S D, Lucas H L. On territorial behavior and other factors influencing habitat distribution in birds [J]. Acta. Biotheor., 1970, 19:16-36.
    [15] Garvaris S. Use of a multiplicative model to estimate catch rate and effort from commercial data[J]. Can. J. Fish. Aquat. Sci.1980, 37:2272-2275.
    [16] Gillis D M, Peterman R M, Tyler A V. Movement dynamics in a fishery: application of the ideal free distribution to spatial allocation of effort [J]. Can. J. Fish. Aquat. Sci.1993, 50:323-333.
    
    [17] Gillis D M,Peterman R M.Implications of interference among fishing vessels and the ideal free distribution to the interpretation of CPUE[J]. Can. J. Fish. Aquat. Sci.1998, 55:37-46.
    [18] Haddon M. Modelling and quantitative methods in fisheries [M].Chapman & Hall/CRC, 2001:25-39.
    [19] Hanchet S M, Blackwell R G,Dunn A. Development and evaluation of catch per unit effort indices for southern blue whiting (Micromesistius australis) on the Campbell Island Rise, New Zealand[J].ICES J. Mar. Sci.,2005,62:1131-1138.
    [20] Harley S J, Myers R A, Dunn A. Is catch-per-unit-effort proportional to abundance? [J]. Can. J. Fish. Aquat. Sci.2001, 58:1760-1772.
    [21] Hilborn R, Walters C J.Quantitative Fisheries Stock Assessment: choice, dynamics and uncertainty [M].Chapman and Hall, New York, 1992.
    [22] Houston A I, McNamara J M. The ideal free distribution when competitive abilities differ: an approach based on statistical mechanics [J]. Anim. Behav., 1988, 36:166-174.
    [23] Hinton1 M G, Maunder M N. Methods for standardizing CPUE and how to select among them [J]. Col. Vol. Sci. Pap. ICCAT, 2004, 56(1): 169-177.
    [24] Maunder M N, Punt A E. Standardizing catch and effort data: a review of recent approaches [J]. Fisheries Research, 2004, 70:141-159.
    [25] Meer J V D, Ens B J. Models of interference and their consequences for the spatial distribution of ideal and free predators [J]. Journal of animal ecology, 1997, 66:846-858.
    
    [26] Moustakas A, Silvert W, Dimitromanolakis A.A spatially explicit learning model of migratory fish and fishers for evaluating closed areas [J]. Ecological modeling, 2006, 192:245-258.
    [27] Penning M. Efficient estimators of abundance, for fish and plankton surveys [J]. Biometrics, 1983, 39:281-286.
    [28] Porch C E, Scott G P. A numerical evaluation of GLM methods for estimating indices of abundance from West Atlantic bluefin tuna catch per trip data when a high proportion of the trips are unsuccessful [J]. Col. Vol. Sci. Pap. ICCAT, 1994, 42(1):240-245.
    [29] Punt A E, Walker T I, Taylor B L et al. Standardization of catch and effort data in a spatially-structure shark fishery [J]. Fisheries Research, 2004, 70:129-145.
    [30] Quinn T J, Deriso B R. Quantitative Fish Dynamics [M]. Oxford University Press, New York, 1999: 18-20.
    
    [31] Richards L J, Schnute J T. An experimental and statistical approach to the question: is CPUE an index of abundance? Can. J. Fish. Aquat. Sci. 1986, 43:1214-1227.
    [32] Rijnsdorp A D, Dol W, Hoyer et al. Effects of fishing power and competitive interactions among vessels on the effort allocation on the trip level of the Dutch beam trawl fleet[J].ICES Journal of Marine Science,2000,57:927-937.
    [33] Robson D S. Estimating of the relative fishing power of individual ships [J]. ICNAF Res. Bull., 1966, 3:5-14.
    
    [34] Schonfisch B, Kinder M. a fish migrate model[C]. Cellular Automata: 5th International Conference on Cellular Automata for Research and Industry, ACRI 2002, Geneva, Switzerland, October 9-11, 2002. Proceeding. Bandini S, Chopard B, Tomassini M (Eds.). Springer Berlin, Heidelberg, 2002:210-219
    
    [35] Stefansson G. Analysis of groundfish survey abundance data combining the GLM and delta approaches [J]. ICES Journal of Marine Science, 1996, 53:577-588.
    [36] Stocker S. Models for tuna school formation [J]. Mathematical Biosciences, 1999, 156: 167-190.
    [37] Sutherland W J. Aggregation and the 'Ideal Free'distribution [J]. Journal of Animal Ecology, 1983, 52:821-828.
    
    [38] Swain D P, Sinclair A F. Fish Distribution and Catchbility: What Is the Appropriate Measure of Distribution [J]. Can. J. Fish. Aquat. Sci. 1994, 51:1046-1054.
    
    [39] Swain D P, Wade E J. Spatial distribution of catch and effort in a fishery for snow crab (chionoecetes opilio): test of predictions of the ideal free distribution [J]. Can. J. Fish. Aquat. Sci.2003, 60:897-909.
    
    [40] VabO R, NOttestad L. An individual based model of fish school reactions: predicting antipredator behaviour as observed in nature [J]. Fisheries Oceanography, 1997,6 (3) : 155-171.
    
    [41] Venables W N, Dichmont C M. GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research [J]. Fisheries Research, 2004, 70:319-337.
    
    [42] Wang J, Pierce G J, Sacau M, et al. Remotely sensed local oceanic thermal features and their influence on the distribution of hake (Merluccius hubbsi) at the Patagonian shelf edge in the SW Atlantic [J]. Fisheries Research, 2007, 83:133-144.
    
    [43] Walters C.Folly and fantasy in the analysis of spatial catch rate data [J]. Can. J. Fish. Aquat. Sci.2003, 60:1433-1436.
    
    [44] Zagaglia C R, Lorenzzetti J A, Stech J L. Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic[J]. Remote Sensing of Environment, 2004, 93: 267-281.
    [1]崔科.东黄海鲐鲹鱼资源丰度、作业渔场时空分布及其与表温关系的研究[D].上海水产大学,硕士论文,2005.
    [2]程家骅,林龙山.东海区鲐鱼生物学特征及其渔业现状的分析研究[J].海洋渔业,2004,26(2):73-78.
    [3]陈敏祥.圣婴现象对台湾鲭围网渔业影响评估[D].台湾国立海洋大学,硕士论文,2000.
    [4]陈新军.GLM模型和GAM模型研究东黄海鲐鱼资源渔场与环境因子的关系[J].水产学报,2008,32(2).待刊
    [5]陈卫忠,李长松,俞连福.用剩余产量模型专家系统(CLIMPROD)评估东海鲐鲹鱼类最大持续产量[J].1997,21(4):404-408.
    [6]郑元甲,陈雪忠,程家骅等.东海大陆架生物资源与环境[M].上海,科技出版社,2003.
    [7]丁永敏.南北方鲐鲹围网渔场的安排[J].海洋渔业,1992,6:267-270.
    [8]杜云艳.地理案例推理及其应用[D].博士论文,中国科学院地理科学与资源研究所,2001.
    [9]樊伟.卫星遥感渔场渔情分析应用研究—以西北太平洋柔鱼渔业为例[D],华东师大博士论文,2004
    [10]费鸿年,张诗全.水产资源学[M],中国科学技术出版社,北京,1990.
    [11]郭炳火,黄振宗,李培英等.中国近海及邻近海域海洋环境[M].中国海洋出版社,北京,2004.
    [12]官文江,陈新军,潘德炉.遥感在海洋渔业中的应用与研究进展[J].大连水产学院学报,2007,1,62-66.
    [13]何发祥,洪华生.厄尔尼诺现象与东海黑潮区及其邻近海域水文结构和环流的变异[J].海洋湖沼通报,1999,4:16-24.
    [14]黄传平.浙江渔场夏秋汛机帆船灯围作业渔况分析[J].浙江水产学院学 报,1995,14(1):41-46.
    [15]李纲.我国近海鲐鱼资源评估及风险评价[D].上海水产大学博士学位论文,2008.
    [16]梁强.基于遥感的东海中上层鱼类资源评估的研究[D].硕士论文,中国科学院研究生院,2002.
    [17]卢振彬,戴泉水,颜尤明.台湾海峡及其邻近海域鲐鲹鱼类群聚资源的评估[J].中国水产科学,2000,7(1):41-45.
    [18]刘勇,严利平,胡芬,等.东海北部和黄海南部鲐鱼年龄和生长的研究[J].海洋渔业,2005,27(2):133-138.
    [19]苗振清.东海北部近海夏秋季鲐鲹鱼渔场与海洋水文环境的关系[J].浙江水产学院学报,1993,12(1):32-39.
    [20]宁修仁,,刘子琳,史君贤.渤、黄、东海初级生产力和潜在渔业生产量的评估.海洋学报,1995,17(3):72-84.
    [21]商少凌,洪华生,商少平等.台湾海峡1997-1998年夏汛中上层鱼类中心渔场的变动与表层水温的关系浅析[J].海洋科学,2002,26(11):27-30.
    [22]桧山义明,依田真里,大下诚二等.平成16年マサバ对马暖流系群の资源評 [EB/OL].[2007-10-28].http://abchan.job.affrc.go.jp/digests16/deta ils/1606.pdf.
    [23]苏奋振.海洋渔业资源时空动态研究[D].中科院地理所博士论文,2001.
    [24]田思泉.西北太平洋柔鱼资源评价及其与海洋环境关系的研究[D].上海水产大学博士论文,2006.
    [25]徐建华.现代地理学中的数学方法[M].高等教育出版社,北京,2002.
    [26]杨建新,王平.地理坐标和直角坐标相互转换可逆算法的研究[J].火力与指挥控制,2003,28(增刊):66-69.
    [27]俞连福.东海中南部鲐鲹渔场的调查与研究[J].海洋渔业,1997,12(1):72-75.
    [28]#12
    [29]詹秉义.渔业资源评估[M].中国农业出版社,北京,1995.
    [30]张秋华,程家骅,徐汉祥等.东海区渔业资源及其可持续利用[M].复旦大学出版社,上海,2007:513.
    [31]张学敏,商少平,张彩云等.闽南-台湾浅滩渔场海表温度对鲐鲹鱼类群聚资源年际变动的影响初探[J].海洋通报,2005,24(4):91-96.
    [32] Agenbag J J, Richardson A J, Demarcq H, et al. Estimating environmental preferences of South African pelagic fish- species using catch size and remote sensing data [J]. Progress in Oceanography,2003, 59: 275-300.
    [33]Beck N, Jackman S.Beyond Linearity by Default Generalized Additive Models[J]. American Journal of Political Science,! 998,42:596-627.
    [34] Campbell R A.CPUE standardisations and the construction of indices of stock abundance in a spatially varying fishery using general linear models [J]. Fisheries Research, 2004, 70:209-227.
    
    [35] Ciannelli L, Fauchald P, Chan K S, et al. Spatial fisheries ecology: Recent progress and future prospects[J]. Journal of Marine Systems, 2007, doi: 10.1016/jjmarsys.2007.02.031.
    
    [36] Cole J. Environmental conditions, satellite imagery, and clupeoid recruitment in the northern Benguela upwelling system [J].Fishery Oceanography, 1999, 8(1):25-38.
    
    [37] Cury P, Roy C. Optimal Environmental Window and Pelagic Fish Recruitment Success in Upwelling Areas [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1989,46: 670-680.
    [38] Fletcher R I. On the restructuring of the Pella -Tomlinson system [J]. U.S. Fish. Bull., 1978,76,43:169-176.
    [39] Grote B, Ekau W, Hagen W, et al. Early life-history strategy of Cape hake in the Benguela upwelling region [J]. Fisheries Research, 2007, 86:179-187.
    [40] Herrick Jr S F, Norton J G, Mason J E, et al. Management application of an empirical model of sardine-climate regime shifts[J]. Marine Policy ,2007,31: 71-80.
    [41] Hiborn R, Walters C J. Quantitative fish stock assessment: choices, dynamics and uncertainty [M]. New York: Chapman and Hall, 1992.
    
    [42] Hiyama Y, Yoda M, Ohshimo S. Stock size fluctuation in chub mackerel(Scomber japonicus) in the East China Sea and the Japan/East Sea[J]. Fisheries oceanography,2002,11(6):347-353.
    [43]Hsieh C H, Reiss C S, Hunter J R, et al. Fishing elevates variability in the abundance of exploited species [J]. Nature, 2006, 443(19)(doi: 1038):859-862.
    [44]Hwang S D. Population Ecology of pacific mackerel, Scomber japonicus, off Korea [D]. Chungnam national university, PhD thesis, 1999(in Korean).
    [45] Jacobson L D, Bograd S J, Parrish R H, et al.An ecosystem-based hypothesis for climatic effects on surplus production in California sardine (Sardinops sagax) and environmentally dependent surplus production models [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62: 1782-1796.
    [46] Jensen A L. Analysis of harvest and effort data for wild populations in fluctuating environments[J]. Ecological Modelling,2002,157:43-49.
    [47]Jensen A L. Harvest in a fluctuating environment and conservative harvest for the Fox surplus production model[J]. Ecological Modelling,2005,182:1-9.
    [48] Li X F, Pietrafesa L J, Lan S F, et al. Significance test for empirical orthogonal function( EOF) analysis of meteorological and oceanic data[J]. Chinese Journal of Oceanology and Limnology, 2000,18(1):10-17.
    [49] Ludwig D, Walters C J. Are age-structured models appropriate for catch-effort data?[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1985, 42:1066-1071.
    [50]Maunder M N, Punt A E. Standardizing catch and effort data: a review of recent approaches [J]. Fisheries Research, 2004, 70: 141-159.
    
    [51]Nishida H. Long term fluctuations in the stock of jack mackerel and chub mackerel in the western part of Japan Sea [J].Bull. Japan Soc. Fish. Oceanogr. 1997, 61:316-318(in Japanese).
    [52]Quinn II T J, Deriso R B. Quantitative Fish Dynamics[M]. Oxford University Press, New York, 1999.
    [53] Park J H and Choi K H. A study on the formation of fishing ground and the prediction of the fishing conditions of mackerel, Scomber japonicus Houttuyn [J]. Bulletin of National Fisheries Research and Development Agency, Korea, 1995, 49: 25-35.
    [54] Pella J J, Tomlinson PK.A generalized stock production model. Int.-Amer. Trop. Tuna Comm. Bull. 1969,13:419-496.
    [55] Piwowar J M, Derksen C P, Ledrew E F. Principle Components Analysis of the Variability of Northern Hemisphere Sea Ice Concentrations:1979-1999[C]. Proceeding, 23~(rd) Canadian Symposium on Remote Sensing, Ste-Foy PQ, August 2001,pp619-628.
    [56] Punt A E, Walker T I, Taylor B L et al. Standardization of catch and effort data in a spatially-structure shark fishery [J]. Fisheries Research, 2004, 70:129-145.
    [57] Venables W N and Dichmont C M. GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research [J]. Fisheries Research, 2004a, 70: 319-337.
    
    [58] Venables W N, Dichmont C M. A generalised linear model for catch allocation: an example from Australia's Northern Prawn Fishery [J].Fisheries Research, 2004b, 70:409-426.
    [59] Wood S N. Low Rank Scale Invariant Tensor Product Smooths for Generalized Additive Mixed Models [J]. Biometrics, 2006,62(4):1025-1036.
    
    [60] Yasunaka S, Hanawa K. Regime shifts found in the Northern Hemisphere SST field [J]. Journal of the Meteorological Society of Japan, 2002, 80:119-135.
    [61] Yatsu A, Watanabe T, Ishida M, et al. Enviromental effects on recruitment and productivity of Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus with recommendations for management[J]. Fisheries oceanography, 2005,14(4):263-278.
    
    [62] Zainuddin M, Kiyofuji H, Saitoh K, et al. Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific[J]. Deep-Sea Research 11,2006,53: 419-431.
    [63] Zhang C I, Yoon S C, Lee J B. Effects of the 1988/89 climatic regime shift on the structure and function of the southwestern Japan/East Sea ecosystem [J] Journal of Marine Systems, 2007, 67: 225-235.
    [1]杜云艳.地理案例推理及其应用[D].博士论文,中国科学院地理科学与资源研究所,2001.
    [2]苏奋振.海洋渔业资源时空动态研究[D].中科院地理所博士论文,2001.
    [3]田思泉.西北太平洋柔鱼资源评价及其与海洋环境关系的研究[D].上海水产大学博士论文,2006.
    [4]张洪亮,潘国良,姚光展等.浙江省群众灯光围网渔业现状的研究[J].浙江海洋学院学报,2006,25(4):397-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700