基于线粒体和核基因标记研究龟鳖目部分种类的系统发育关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于线粒体12S核糖体RNA(mitochondrial 12S ribosomal RNA,12SrRNA)、线粒体16S核糖体RNA(mitochondrial 16S ribosomal RNA,16SrRNA)以及两个核基因:重组激活基因(Recombination activating genes,Rags)和RNA指纹蛋白35(RNA fingerprint protein 35,R35)的序列,初步分析部分龟鳖类的分子系统学特征,探讨其种间、属间、科间的分类地位。
     1)12SrRNA:测定了15种龟类线粒体12S rRNA基因片段的序列。比对后获得一致序列长为433bp,有191个变异位点,总变异率为43.2%,其中简约信息位点108个。A、T、G、C的平均含量分别为21.46%、34.42%、25.85%和18.27%。A+T含量(55.9%)高于G+C含量(44.2%)。在433个核苷酸位点中,有插入/缺失35个,转换为34,颠换为21,转换/颠换比率为1.67。与NCBI上其它一些龟鳖的序列进行比对后,得到414bp的一致序列,其中236个为变异位点,总变异率为57.00%;简约信息位点181个。A、T、G、C的平均含量分别为35.7%、22.2%、18.1%、24.0%。A+T含量(57.9%)高于G+C含量(42.1%)。在414个核苷酸位点中,转换为30,颠换为14,转换/颠换比率为2.12。基于Kimura双参数模型(Kimura-2-parameter,K-2-P)分析龟鳖类种间、属间、科间遗传距离,并用邻接法构建分子系统树。结果显示:7种闭壳龟种间差异在0~0.043,平均为0.022;淡水龟科属间遗传距离为0.007~0.140,平均为0.074;曲颈龟亚目9个科间(不包括平胸龟)遗传距离为0.055~0.197,平均为0.139。由此认为,淡水龟科与陆龟科间亲缘关系比龟科更近;不支持将闭壳龟属拆分为闭壳龟属和盒龟属;支持将平胸龟属归为鳄龟科的一个属。
     2)16SrRNA:通过PCR扩增获得13种龟鳖类的线粒体16S rRNA基因片段序列,结合NCBI 47种龟鳖的同源序列一并分析。结果显示:60条序列比对排序后得到480bp的一致序列,其中有可变位点229个,总变异率为47.7%;简约信息位点186个,插入/缺失80个。4种碱基平均含量分别是:A-33.6%、T-24.3%、G-18.5%、C-23.7%,转换/颠换比率为1.95。7种闭壳龟种间的遗传距离为0.004~0.063,平均为0.03;潮龟科17个属间遗传距离为0.053~0.120,平均为0.091;曲颈龟亚目8个科间(不包括平胸龟)遗传距离为0.071~0.259,平均为0.169。用60条序列构建的邻接法(Neighbor-joining,NJ)、最大简约法(Maximum-parsimony,MP)和最大似然法(Maximum Likelihood,ML)系统树两两之间的拓扑结构均存在差异。本研究结果支持陆龟科与潮龟科组成一个单系类群,然后在与龟科构成姐妹群;支持将乌龟重新归入拟水龟属、将锯缘龟纳入闭壳龟属的观点;支持闭壳龟属不应拆分的观点,即不将黄缘盒龟和黄额盒龟归入盒龟属。这些均与依据12S rRNA序列所得结论相一致。然而本文支持将平胸龟属提升为单独的一个科,这与12S rRNA序列的结果不同。
     3)核基因:通过PCR扩增和测序的方法,获得2种龟的R35内含子部分序列,以及6种龟的Rag2基因部分序列。并结合NCBI其它龟鳖的同源序列一并分析。结果显示:R35序列比对后得到941bp的一致序列,Rag2比对后得到620bp的一致序列,二者合并、比对后得到1561bp的一致序列,其中共有505个可变核苷酸位点,总变异率为32.35%;简约信息位点239个,插入/缺失139个,转换/颠换比率为1.64。碱基A、T、G、C的平均含量分别为29.5%、28.5%、22.8%、19.2%。其中海龟科和鳄龟科之间K-2-P的遗传距离最小,为0.025,鳖科和南美侧颈龟科之间的遗传距离最大,为0.182。系统树显示,陆龟科与潮龟科构成一个单系类群,再与龟科形成姐妹群;支持陆龟总科与鳄龟科+海龟总科构成姐妹群,鳄龟科和海龟总科是姐妹群的关系。
Mitochondrial 12SrRNA, 16SrRNA, and two nuclear genes (Rag2 and R35) sequence were utilized to analyze the molecular systematic characters of turtles.
     1) 12SrRNA: Mitochondrial 12SrRNA gene segment sequences of 15 Tortoises individuals were obtained by using PCR amplification and sequencing. After alignment, 433 bp consensus sequences of 12SrRNA were obtained. Among them, 191 variable sites were detected, accounting for 43.2% of total sequence, and 108 were parsim-informative sites. The average contents of A, T, G, and C were 21.46%, 34.42%, 25.85%, and 18.27%, respectively. The content of A+T(55.9%) is bigger than G+C(44.2%). In the 433 nucleotide sites, 34 transitional and 21 transversional sites with 35 indels were found, and the ratio between transition and transversion was 1.67. We downloaded the 12SrRNA sequences of other Tortoise species from NCBI and analyzed the phylogenetic relationships of them together with our own sequences. After alignment, 414 bp consensus sequences of 12SrRNA and 24.0%, respectively. The content of A+T (57.9%) is bigger than G+C (42.1%). 30 transition and 14 transversion in 414 nucleotide sites, and the ratio between transition and transversion were 2.12. Interspecific, intergenus, and interfamily genetic distances were calculated using the Kimura 2-parameter model with the pairwise deletion option. The NJ method was used to perform phylogenetic analysis. The results indicate that Bataguridae is closer to Testudinidae than that of Emydidae to Testudinidae. The results in this paper do not support the idea that the genus Cuora should be divided into two genera, Cuora and Cistoclemmys, and supporting the opinion that Platysternon should be refereed as a genus within Chelydridae.
     2) 16SrRNA: Mitochondrial DNA 16SrRNA gene segment sequences of 13 turtle individuals were obtained by using PCR amplification and sequencing. We downloaded the 16SrRNA sequences of other 47 turtles from NCBI and analyzed the phylogenetic characters of them together with our own 13 sequences. The genetic information indexes, including base composition,The ratio between transition and transversion (Ts/Tv ratio) and Kimura-2 parameter genetic distance (K-2-P),were calculated. 480bp consensus sequences of 16SrRNA were obtained from these 60 sequences after aligned. 229 variable sites were detected in all turtle individuals, accounting for 47.7% of total sites, with 186 parsim-informative and 80 indels. The average contents of A, T, G, and C were 33.6%, 24.3%, 18.5%, and 23.7%, respectively. The Ts/Tv ratio was 1.95. The K-2-P distances between the seven hinged turtles were 0.004~0.063, with average value 0.03; between 21 genus within Bataguridae were 0.035~0.120, with average 0.088; and between 8 families within Cryptodira (excluding Platysternon megacephalum) were 0.071~0.259, with average 0.169. Topologies of the NJ, MP and ML trees were different. The results indicate that 1) Family Emydidae is the sister taxon to Bataguridae plus Testudinidae, and Bataguridae is closer to Testudinidae than that of Emydidae to Testudinidae, 2) the taxonomica status of Chinemys should be revised, and classified into Genus Mauremys, and that Pyxidea should be classified into Cuora, 3) the results do not support the idea that the genus Cuora should be divided into two genera, i.e., Cuora and Cistoclemmys. Above conclusions are consistent with the results of mtDNA 12SrRNA sequences. However, this study supported the opinion that Platysternon should be elevated to family status (i.e. Platysternidae), contradicting with the study of mtDNA 12SrRNA sequences.
     3) Nuclear genes: R35 intron segment sequences of 2 turtles and Rag2 gene segment sequences of 6 turtle individuals were obtained by using PCR amplification and sequencing. We downloaded the homologous sequences of other turtles from NCBI and analyzed the phylogenetic characters of them together with our own sequences. The results are as follows: 941bp consensus sequences of R35 were obtained from these sequences after aligned. 620bp consensus sequences of Rag2 were obtained from these sequences after aligned. After aligned, 1561bp consensus sequences of combined R35/Rag2 date set ,505 variable sites were detected in all turtles individuals, accounting for 32.35%of total sites, with 239 parsim-informative and 139 indels. The average contents of A, T, G, and C were 29.5%,28.5%,22.8%and 19.2%, respectively. The Ts/Tv ratio was 1.64. The K-2-P distances between the Cheloniidae and Chelydridae was minimum (0.025); and The K-2-P distances between the Trionychidae and Podocnemididae was maximum (0.182). The phylogenetic trees indicate that 1) Family Emydidae is the sister taxon to Geoemydidae plus Testudinidae, 3) the results strong support that Testudinoidea is the sister taxon to Chelydridae plus Chelonioidea,2) the results also support that Family Chelydridae is the sister taxon to Chelonioidea.
引文
[1] Rhodin AGJ, Parham J F, Van Dijk P P, Iverson J B (2009) Turtle Taxonomy Working Group.Turtles of the World: Annotated Checklist of Taxonomy and Synonymy, 2009 Update, with Conservation Status Summary. Rhodin AGJ, Pritchard PCH, van Dijk PP, Saumure RA, Buhlmann KA, Iverson JB, and Mittermeier RA, Eds. Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group . Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm. 5.000.checklist.v2., 00039~00084. Chelonian Research Foundation.
    [2] Bour R, Dubois A. Nomenclature ordinale et familiale des tortues (Reptilia). Note complimentaire[J]. Bull. Mensuel de la SociétéLinnéenne de Lyon.1986, 55: 87~90.
    [3] Mccord W P, Iverson J B , Spinks P Q, etc. A new genus of geoemydid turtle from Asia[J]. Hamadryad, 2000, 25(2): 20~24.
    [4]周婷,李丕鹏.中国龟鳖物种多样性及濒危现状[J].四川动物, 2007, 26, (2):463~467.
    [5] Cao Y, Sorenson M D, Kumazawa Y, etc. Phylogenetic position of turtles among amniotes : evidence from mitochondrial and nuclear genes[J]. Gene, 2000, 259: 139~148.
    [6] Yasukawa Y, Hirayama R, Hikida T. Phylogenetic relationships of geoemydine turtles (Reptilia: Bataguridae) [J]. Curr. Herpetol. 2001: 105~133.
    [7] Honda M, Yasukawa Y, Hirayama R, etc. Phylogenetic relationships of the Asian box turtles of the genus Cuora sensu lato (Reptilia: Bataguridae) inferred from mitochondrial DNA sequences[J]. Zool. Sci. 2002a,17: 1305~1312.
    [8] Honda M, Yasukawa Y, Ota H. Phylogeny of the Eurasian freshwater turtles of the genus Mauremys Gray 1869 (Testudines), with special reference to a close affinity of Mauremys japonica with Chinemys reevesii[J]. J. Zool. Syst. Evol. Res. 2002b. 40: 195~200.
    [9] Stuart B L, Parham J F. Molecular phylogeny of the critically endangered Indochinese box turtle (Cuora galbinifrons) [J]. Mol. Phylogenet. Evol., 2004, 31:164~177.
    [10] Spinks P Q, Shaffer H B, Iverson J B, etc. Phylogenetic hypotheses for the turtle family Geoemydidae[J]. Mol Phylogenet Evol, 2004, 32: 164~182.
    [11] Le M, Raxworthy C J, Mccord W P, etc. A molecular phylogeny of tortoisrs (Testudines: Testudinidae) based on mitochondrial and nuclear genes[J]. Mol. Phylogenet. Evol.,2006, 40:517~531.
    [12] Eugenia N M , Le M, Fitzsimmons N N, etc. Evolutionary relationships of marine turtle: A molecular phylogeny based on nuclear and mitochondrial genes[J]. Mol. Phylogenet. Evol.,2008, 49:659~662.
    [13] Barley A J, Spinks P Q, Thomson R C, etc. Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life[J]. Molecular Phylogenetics and Evolution, 2010, 55: 1189~1194.
    [14]吴平,周开亚,杨群.用12S rRNA基因序列研究潮龟科(BATAGURIDAE)闭壳龟类的进化[J].应用与环境生物学报. 1998, 4 (4): 374~378.
    [15]吴平,周开亚,杨群.亚洲淡水和陆生龟鳖类12S rRNA基因片段的序列分析和系统发生研究[J].动物学报, 1999, 45(3): 260~267.
    [16]聂刘旺,宋娇莲,张颖等.基于线粒体ND4基因探讨水龟组系统发生关系[J].安徽师范大学学报(自然科学版). 2007, 30(3):343~348.
    [17]张颖,聂刘旺,宋娇莲.缅甸陆龟线粒体全基因组的测序及分析[J].动物学报, 2007, 53 (1):151~158.
    [18]颜亮,张雁,汪宁等.鳄龟科和平胸龟科线粒体控制区序列分析和结构比较[J].动物学研究, 2008, 29(2): 127~133.
    [19]万全,郑将臣,程起群等.基于12S rRNA序列研究龟鳖类的系统进化特征[J].海洋渔业, 2010, 32(3):264~274.
    [20] Hirayama R. Cladistic analysis of batagurine turtles (Batagurinae: Emydidae: Testudinoidea);A preliminary result[J]. Stud Geologia Salamanticensia Vol Esp, 1985, 1: 141~157.
    [21] Mcdowell S B. Patition of the genus Clemmys and related problems in the taxonomy of the aquatic Tesudinidae[M]. Proc Zool Soc London. 1964, 143:239~279.
    [22] Gaffney E S, Meylan P A. A phylogeny of turtles. In: M.J.Benton.(Ed.). The Phylogeny and Classification of Tetrapods[M]. Clarendon Press,Oxford,England, 1988, 157~219.
    [23] Ernst C H, Barbour R W. Turtles of the World[M]. Smithsonian Institution Press, Washington , DC. 1989: 1~313.
    [24] Sites j W, Bickham J W, Pytel B A, etc. Biochemical characters and the reconstruction of turtle phylogenies : Relationships among batagurine genera[J]. Syst Zool, 1984, 33: 137~158.
    [25] Parham J F, Feldman C R, Boore J L. The complete mitochondrial genome of the enigmatic bigheaded turtle(Platysternon): Description of unusual genomic features and the reconciliation of phylogenetic hypotheses based on mitochondrial and nuclear DNA [J]. BMC Evol Biol. 2006, 6:11~25.
    [26] Agassiz L. North American Testudinata. In: Contributions to the natural history of the United States[J]. Lettle, Brown and Co. Bost on, 1857, 1: 233~452.
    [27] Gray J E. Supplement to the catalogue of shield reptiles in the collection of the British Museum. Part 1.Testudinate(tortoises) [M]. Brit.Mus. (Nat.Hist.), London. 1870, 1~120.
    [28] Gaffney E S. A phylogeny and classification of the higher categories of turtles[J]. Bull Amer Mus Nat Hist, 1975, 155:391~436.
    [29] Haiduk M W, Bickman J W. Chromosomal homologies and evolution of Testudinoid Turtles with emphasis on the systematic placement of Platysternon[J]. Copeia, 1982, 1: 60~66.
    [30] Bickham J W, Carr J L. Taxonomy and phylogeny of the higher categories of Cryptodiran turtles based on a cladistic analysis of chromosomal data[J]. Copeia, 1983, 4: 918~932.
    [31] Cervelli M, Oliverio M, Bellini A, etc. Structural and sequence evolution of U17 small nucleolar RNA(snoRNA) and its phylogenetic congruence in chelonians[J]. J Mol Evol, 2003, 57: 73~84.
    [32] Saccone C, Gissi C, Reyes A, etc. Mitochondrial DNA in metazoa: degree of freedom in a frozen event[J]. 2002, Gene, 286: 3~12.
    [33] Gyllensten U, Wharton D, Josefsson A, etc. Paternal inheritance of mitochondrial DNA in mice. 1991, 352: 255~257.
    [34] Kornfield I. Descriptive genetics of cichlid fishes[J]. Evolutionary genetics of fishes , 1984, 591~616.
    [35] Avise J C , Arnold J, Ball R M, etc. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics[J]. Annual review of ecology and systematics 1987, 18: 489~522.
    [36] Avise J C. Gene trees and organismal histories: a phylogenetic approach to population biology[J]. Evolution, 1989, 43: 1192~1208.
    [37] Meyer A, Kocher T D, Basasibwaki P, etc. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences[J]. Nature. 1990,347: 550~553.
    [38] Meyer A, Wilson A C. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish[J]. Journal of molecular evolution. 1990, 31: 359~364.
    [39] Wu C I. Inferences of species phylogeny in relation to segregation of ancient polymorphisms[J]. Genetics, 1991. 127: 429~435.
    [40] Moore W S.1995. Inferring phylogenies from mtDNA variation: Mitochondrial gene trees versus nuclear gene trees[J]. Evolution, 49: 718~726.
    [41] Funk D J and Omland K E.2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insight from animals mitochondrial DNA[J]. Annu. Rev. Evol. Evol. Syst.34: 397~423.
    [42] Kuriiwa K, Hanzawa N, Yoshino T, etc. Phylogenetic relationships and natural hybridization in rabbitfishes (Teleostei: Siganidae) inferred from mitochondrial and nuclear DNA analyses[J]. Molecular Phylogenetics and Evolution, 2007, In Press, Accepted Manuscript.
    [43] Hare M P. Prospects for nuclear gene phylogeography. Trends in Ecology and Evolution, 2001, 16: 700~706.
    [44] Groth J G, Barrowclough G F. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene [J]. Molecular Phylogenetics and Evolution, 1999, 12 (2): 115~123.
    [45] Lovejoy N R, Collette B B. Phylogenetic relationship s of new world needlefishes ( Teleostei: Belonidae) and the biogeography of transitions between marine and freshwater habitats [J]. Copeia, 2001, 2 : 324~338.
    [46] Venkatesh B, Erdmann M V, Brenner S. Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates[J]. Proceedings of the National Academy of Sciences, 2001, 98(20):11382~l1387.
    [47] Sullivan J P, Lundberg J G, Hardman M. A phylogenetic analysis of the major group s of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences [J]. Molecular Phylogenetics and Evolution, 2006, 41 (3): 636~662.
    [48] Friedel R H, Stubbusch J, Barde Y, etc. A novel 7-transmembrane receptor expressed in nerve growth factor-dependent sensory neurons[J]. Mol. Cell. Neurosci. 2001, 17:31~40.
    [49] Fujita M K, Engstrom T N, Starkey D E, etc.Turtle Phylogeny: insights from a novel nuclear intron[J]. Mol. Phylogenet. Evol., 2004, 31:1031~1040.
    [50] Miyamoto M M, Boyle S. The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. The hierarchy of life. Elsevier, Amsterdam, 1989, 437~450.
    [51] Meyer A, Dolven S I. Molecules, fossils, and the origin of tetrapods[J]. Journal of molecular evolution. 1992, 35: 102~113.
    [52] Irwin, D M, Kocher T D, Wilson A C. Evolution of the cytochrome b gene of mammals[J]. Journal of molecular evolution . 1991, 32: 128~144.
    [53] Saccone C, Giorgi C D, Gissi C, etc. Evolution genomics in Metazoa:the mitochondrial DNA as a model system[J]. Gene, 1999, 238: 195~209.
    [54] Honda M, Ota H, Kobayashi M, etc. Phylogenetic relationships of Australian skinks of the Mabuya group (Reptilia:Scincidae) inferred from mitochondrial DNA sequences[J]. Genes Genet Syst, 1999, 74(4): 135~139.
    [55]陈合格,刘文斌,张轩杰.中华鳖与砂鳖线粒体DNA 12SrRNA基因序列的比较分析和分子鉴定标记[J].水产学报, 2005, 29(3): 318~322.
    [56] Orti G, Petry P, Porto J I R, etc.Patterns of nucleotide change in mitochondrial ribosomal RNAgenes and the phylogeny of Piranhas[J]. J Mol Evol , 1996, 42:169~182.
    [57] Wang X, Li J, He S. Molecular evidence for the monophyly of East Asian group s of Cyp rinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences[J]. Molecular Phylogenetics and Evolution, 2007, 42 (1) :157~170.
    [58] Rieppel O, Debraga M. Turtles as diapsid reptiles[J]. Nature, 1996, 384: 453~455.
    [59]吴平,周开亚.龟鳖目系统学研究概况[J].动物学研究, 1998, 33(6): 38~45.
    [60] Zardoya R, Meyer A. Cloning and characterization of a microsatellite in the mitochondrial control region of the African side-necked turtle , Pelomedusa subrufa[J]. Gene, 1998,216(1): 149~153.
    [61] Yoshinori K, Mutsumi N. Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles[J]. Mol Biol Evol, 1999, 16(6): 784~792.
    [62]周婷.龟鳖分类图鉴[M].北京:中国农业出版社, 2004:1~285.
    [63] Sambrook J, Russell D W. Molecular Cloning: A Laboratory Mannual[M]. 3rd edn. New York: Cold Spring Harbor Laboratory Press. 2001, 463~471.
    [64] Kocher T D, Thomas W K, Meyer A, etc. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers[J]. Proc Natl Acad Sci USA.1989, 86(16): 6196~6200.
    [65] Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences[J]. J Mol Evol, 1980, 16: 111~120.
    [66] Xia X H, Xie Z, Salemi M, etc. An index of substitution saturation and its application[J]. Mol Phylogenet Evol, 2003, 26: 1~7.
    [67] Xia X, Xie Z. DAMBE: Data analysis in molecular biology and evolution[J]. J Hered, 2001, 92: 371~373.
    [68] Tamura K, Dudley J, Nei M, etc. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Mol Biol Evol, 2007, 24: 1596~1599.
    [69] Iverson J B. A revised checklist with distribution maps of the turtles of the world[M]. Privately printed, Richmond Ind, 1992.
    [70] Bramble D M. Emydid shell kinesis: Biomechanics and evolution[J]. Copeia ,1974: 707~727.
    [71] Palumbi S R, Martin A P, Romano S, etc. The Simple Fool's Guide to PCR, S. Palumbi, Dept. Zoology, Univ. Hawaii, Honolulu, HI, 96822.1991.
    [72] Thompson J D, Gibson T J, Plewniak F, etc. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Res. 1997, 25: 4876~4882.
    [73] Librado P, Rozas J. DnaSP5.0: A software for comprehensive analysis of DNA polymorphism data [J]. Bioinformatics, 2009, doi:10.1093/ bioinformatics/btp187.
    [74] Swofford D L. PAUP* 4.0610: Phylogenetic Analysis Using Parsimony(*and other methods),beta version. Sinauer Associates, Sunderland. 2002.
    [75] Templeton A R. Phylogenetic inference from restriction endonuclease cleavage site maps eith particular reference to the evolution of humans and apes [J]. Evolution , 1983, 37:221~244.
    [76] Shaffer H B , Meylan P , Mcknight M L. Tests of turtle phylogeny: molecular, morphological, and paleontological approaches[J]. Syst. Biol., 1997, 46: 235~268.
    [77] Krenz J G, Naylor G J P, Shaffer H B, etc. Molecular phylogenetics and evolution of turtles [J]. Mol. Phylogenet. Evol. 2005, 37:178~191.
    [78] Le M, Raxworthy C J, McCord W P, etc. A molecular phylogeny of tortoises (Testudines: Testudinidae) based on mitochondrial and nuclear genes[J]. Mol. Phylogenet. Evol. 2006, 40: 517~531.
    [79] Farris J S, K?llersj?, M, Kluge A G, etc. Testing significance of incongruence[J]. Cladistics, 1994, 10:315~320.
    [80] Posada D, Crandall K A. Modeltest: testing the model of DNA substitution [J]. Bioinformatics,1998, 14(9):8l7~818.
    [81]成庆泰,郑葆珊(主编).鲭科,中国鱼类系统检索(上/下册)[M].北京,科学出版社, 1987.
    [82]官文江.基于海洋遥感的东、黄海鲐鱼渔场与资源研究[学位论文].华东师范大学, 2008.
    [83]程家骅,林龙山.东海区始鱼生物学特征及其渔业现状的分析研究[J].海洋渔业, 2004, 26 (2):73~78.
    [84]张学敏,商少平,张彩云等.闽南一台湾浅滩渔场海表温度对鲐鲶鱼类群聚资源年际变动的影响初探[J].海洋通报, 2005, 24(4):91~96.
    [85]刘勇,严利平,程家骅.东海北部和黄海南部鲐鱼生长特性及合理利用[J].中国水产科学, 2006, 13(5):814~822.
    [86]李纲,陈新军.东海鲐鱼资源和渔场时空分布特征的研究[J].中国海洋大学学报, 2007, 37 (6):921~926.
    [87]张洪亮,周永东,陈斌. 2006年浙江省深水灯光围网渔业产况分析[J].海洋渔业, 2007, 29 (3):281~284.
    [88]李钢,陈新军.夏季东海渔场鲐鱼产量与海洋环境因子的关系[J].海洋学研究, 2009, 27(1):1~8.
    [89]严利平,李建生,凌建忠等.应用体长结构VPA评估东海西部日本鲭种群资源量[J].渔业科学进展, 2010, 31(2):16~22.
    [90]郑晓琼,李纲,陈新军.基于环境因子的东、黄海鲐鱼剩余产量模型及应用[J].海洋湖沼通报, 2010, 3:41~48 .
    [91]陈俅,王有君,李培君等.黄渤海区日本鲐的洄游与分布[J].水产学报, 1983, 7(1):6~13.
    [92]丁仁福,俞连福,颜尤明.东海区渔业资源调查和区划[M].上海:华东师范大学出版社, 1987: 392~401.
    [93]邓景耀,赵传姻.海洋渔业生物学[M].北京:农业出版社, 1991: 413~452.
    [94] Kappner I, Bieler R. Phylogeny of Venus clams(Bivalvia: Venerinae) as inferred from nuclear and mitochondrial gene sequences[J]. Molecular Phylogenetics and Evolution, 2006, 40:317 ~331.
    [95]程起群,马春艳,庄平等.基于线粒体Cyt b基因标记探讨凤鲚3群体遗传结构和进化特征[J].水产学报, 2008, 32(1):1~7.
    [96] Yuan T, He M X, Huang L M. Intragpecifie genetic variation in mitochondrial 16S rRNA and COI genes in domestic and wild populations of Huaguizhikong scallop Chlamys nobilis Reeve[J]. Aquaculture, 2009, 289: 19~25.
    [97] Ma C Y, Cheng Q Q, Zhang Q Y, etc. Genetic variation of Coilia ectenes (Clupeiformes: Engraulidae) revealed by the complete cytochrome b sequences of mitochondrial DNA[J]. Journal of Experimental Marine Biology and Ecology , 2010, 385:14~19.
    [98] Xiao W H, Zhang Y P, Liu H Z. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a specialgroup restricted in East Asia[J]. Molecular Phylogenetics and Evolution , 2001, 18:163~173.
    [99] Nei M. Molecular evolutionary genetics [M]. New York: Columbia University Press, 1987, 1~511.
    [100] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism [J].Genetics, 1989, 123: 585~ 595.
    [101] Fu Y X, Li W X. Statistical tests of neutrality of mutations[J]. Genetics, 1993, 133:693~709.
    [102] Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection [J]. Genetics, 1997, 147:915~925.
    [103] Excofier L, Laval G, Schneider S. Arlequin ver.3.0: An integrated software package for population genetics data analysis[J].Evolutionary Bioinformatics Online,2005, 1:47~ 50.
    [104] Exoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes; application to human mitochondrial DNA restriction data[J]. Genetics, 1992, 131: 47~491.
    [105] Tajima F, Nei M. Estimation of evolutionary distance between nucleotide sequence [J]. Mol Biol Evol, 1984, 1: 269~285.
    [106] Wright S. The genetical structure of populations[J]. Ann Eugen, 1951, 15: 323~354.
    [107] R?hl A. NETWORK: A Program Package for Calculating Phylogenetic Network.Version 2.0b. 1999.
    [108] Grant W S, Bowen B W. Shallow population histories in deep evolutionary lineages of marine Wshes: insights from sardines and anchovies and lessons for conservation[ J]. The Journal of Heredity, 1998, 89(5):415~426.
    [109] Ewens W J. The sampling theory of selectively neutral alleles[J]. Theor Popul Biol, 1972, 3: 87~112.
    [110] Slatkin M, Hudson R R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations[J]. Genetics, 1991, 129 (2):555~562.
    [111] Rogers A R, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences[J]. Molbiol Evol, 1992, 9:552~569.
    [112] Nei M. Molecular Evolutionary Genetics[M]. Columbia University Press, New York. 1987.
    [113] Avise J C. Phylogeography[M]. Cambridge, Mass: Harvard University Press. 1998.
    [114] Scoles D R,Collette B B, Graves J E. Global Phylogography of mackerels of the genus Scomber [J].Fishery Bull, 1998, 96:823~842.
    [115]马春艳.鳀科鱼类分子系统进化及凤鲚、刀鲚遗传多样性研究[学位论文].华东师范大学, 2010.
    [116] Shaklee J B. Speciation and evolution of marine fishes studied by electrophoresis analysis of proteins[J]. Pac Sci, 1982, 36: 141~157.
    [117] Billington N, Hebert P D N. Mitochondrail DNA diversity in fishes and its implications for introductions[J]. Can J Fish Aquat Sci, 1991, 48(sup.): 80~94.
    [118]曹祥荣,束峰珏,张锡然等.毛冠鹿与3种麋属动物的线粒体细胞色素b的系统进化分析[J].动物学报, 2002, 48: 44~49.
    [119] Yang X G, Wang Y Q, Zhou K Y. The authentication of Oviductus Ranae and their original animals by using molecular marker[J]. Bio Pharm Buu, 2002, 25: 1035~1039.
    [120] Kimura M. Evolutionary rate at the molecular level[J]. Nature, 1968, 217: 624~626.
    [121] Baker C S, Cipriano F, Palumbi S R. Molecular genetic identif ication of whae and dolphins products f rom commercial markets in Korea and Japan [J]. Molecular Ecology, 1996, 5: 671~685.
    [122] Lee W J, Conroy J, Howell W H, etc. Structure and evolution of teleost mitoehondrial control regions[J]. J Mol Evol, 1995, 41(1):54~66.
    [123]吕国庆,李思发.鱼类线粒体DNA多态研究和应用进展[J].中国水产科学, 1998, 5(3):94~99.
    [124] Moritz C, Faith D P. Comparative phylogeography and the identification of genetically divergent areas for conservation[J]. Molecular Ecology, 1998, 7:419~429.
    [125] Milot E, Gibbs H L, Hobson K A. Phylogeography and genetic structure of nohem population of the yellow warbler(Dendroica petechia)[J]. Molecular Ecology, 2000, 9:667~681.
    [126] Hedrick P W, Miller P S. Conservation genetics: techniques and fundamentals[J]. Ecological Applications, 1992, (2):30~46.
    [127]程起群,马春艳,缪炯等.基于线粒体12SrRNA序列研究凤鲚两个野生群体的遗传多样性[J].大连水产学院学报, 2007, 22 (5):188~193.
    [128] Tzeng T D, Wang D, Haung H L etc. Genetic Diversity and Population Expansion of the Common Mackerel (Scomber japonicus) off Taiwan[J]. J. Fish. Soc. Taiwan, 2007, 34(3): 281~289.
    [129] Slatkin M. Gene flow and the geographic structure of natural populations[J]. Science,1985, 236 : 787~792.
    [130] Hartl D L, Clark A G. Principle of Population Genetics, 2nd edn. Sunderland: Sinauer, 1989.
    [131] Neigel J E. Is Fst obsolete?[J]. Conserv Genet, 2002, 3: 167~173.
    [132] Balloux F, Lugon-Moulin N. The estimation of population differentiation with miscrosatellite markers[J]. Molecular Ecology, 2002, 11:155~165.
    [133]高天翔,任桂静,刘进贤等.海洋鱼类分子系统地理学研究进展[J]。中国海洋大学学报, 2009, 5:897~902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700