青海湖裸鲤资源水声学评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青海湖裸鲤(Gymnocypris przwalskii)俗称“湟鱼”,在青海湖区生态系统中处于核心地位,对维系青海湖区域生态系统的平衡和稳定起着不可替代的作用。上世纪中期,由于过度捕捞和其生境破坏,造成青海湖裸鲤资源急剧下降,形势极为严峻。从上世纪80年代末开始,开始实施“封湖育鱼”保护措施来促使青海湖裸鲤资源的恢复。本研究的主要目的是利用水声学技术研究评估青海湖裸鲤的资源量、密度分布特征、种群数量及个体大小分布特征等,以期为青海湖裸鲤资源的保护和合理利用提供依据。
     2007年~2010年连续四年,分别采用BioSonincs DT-X (199 kHz) (2007年和2008年);Simrad EY 60(333kHz)(2009年和2010年)和BioSonincs DT-X (210 kHz)(2010年)分裂波式回声探测仪于8月中上旬对青海湖裸鲤资源量及时空分布特征进行调查;采用VisualAnalyzer4.1和Sonar 5-Pro两种分析软件对2010年两种水声学仪器所采集的数据进行鱼类密度和目标强度分析结果的对比。主要研究结果如下所述:
     1.2007年—2010年,每年8月水声学调查结果显示,青海湖裸鲤各相应年份的资源量(95%置信区间)分别为20176.02(19167.39-21185.01)t、24342.15(23125.04~255592.58)t、27260.41(25897.38~28623.42)t和30120.73(28798.04-31443.42)t;四次调查评估青海湖裸鲤总尾数(95%置信区间)分别为9.26x107 (8.80x107~9.72x107) ind,1.05x108 (9.98x107~1.10x108) ind, 1.23x108 (1.17x108~1.29x108) ind和1.42×108(1.35×108~1.49×108)ind.;四次调查青海湖裸鲤在青海湖整体平均密度(最小值,最大值)分别为1.25±0.41 (0.007,17.3) ind./1000m3,1.46±0.28 (0.01,19.1) ind./1000m3,1.64±0.23 (0.15, 19.96) ind/1000m3和1.83±0.36(0.06,22.89) ind/1000m3。
     2.四次调查渔获物采样点分别位于布哈河口、黑马河口、二郎剑湖区及151基地湖区。对四次渔获物生物学进行统计计算,平均体长和平均体重为275±29.9 mm,267.9±11.0g(n=68)、267.9±50.7 mm,263.7±6.9g (n=54)、240.3±38.4 mm, 192.44±13.9g (n=45)、234.7±25.3 mm,162.2±50.0g (n=261)。根据四次调查渔获物统计分析,青海湖裸鲤个体规格在青海湖内分布并非一致,其中以布哈河口规格最大,151基地湖区规格最小
     3.对不同水层青海湖裸鲤密度进行单因素方差分析(ANOVA),结果显示,在P=0.05水平下,1-6 m水层密度与其它水层密度之间差异性显著(F=5.521,P<0.05),青海湖裸鲤主要集中分布于1-6 m水层,最大密度位于泉吉河口1~6 m水层为28.08±1.08 ind./1000m3,最小密度值位于海心山北湖区21-26 m水层为0.08±0.026 ind./1000m3。青海湖裸鲤在青海湖中的水平分布也显现出不均性,4次调查结果显示,鱼类密度最高值都分布在布哈河口、泉吉河口和二郎剑湖区,分别为17.3 ind./1000m3、19.1 ind./1000m3、19.96 ind./1000m3和22.89 i nd./1000m3;最小密度出现于远离湖心的湖东区,分别为0.007 ind./1000m3、0. 01 ind./1000m3、0.15 ind./1000m3和0.06 ind./1000m3。
     4.对选取的6个代表湖区所采集的原始水声学数据进行初步处理之后,采用Visual Analyzer 4.1和Sonar5-Pro分析软件分别设置4组参数组合(B1-B4)、不进行噪音处理(E0)和4组噪音处理参数组合(E1-E4)。对两种软件和9组参数所得的鱼类密度和TS值进行方差分析,结果表明:Visual Analyzer4.1和Sonar5-Pro两种分析软件之间对鱼类密度和鱼类TS值分析结果都无显著性差异(P=0.524>0.05;P=0.997>0.05);9组参数组之间鱼类密度结果分析有显著性差异(P=0.020<0.05);9组参数组之间对鱼类TS值结果分析没有显著性差异(P=0.926>0.05)。由此得出,BioSonincs DT-X和EY60两种回声仪在青海湖中都有很好的适用性,根据水声学技术指导和谭细畅等人的研究,设置BioSonincs DT-X(B3)和EY60(E3)为两种回声仪数据分析的最佳参数组合。
The naked carp, Gymnocypris przwalskii, is strictly protected by the government of Qinghai province. This fish is the key species for the food chain of Qinghai Lake ecosystem, and plays an irreplaceable role in balance and stability of ecosystem. Due to over fishing and habitat destruction, the natural population of G. przwalskii was sharply declined, and this situation was extremely seriously in the middle of the last century. Some rehabilitation measures for G. przwalskii have been conducted since 1980s. In recent years, it seems that the population of G. przwalskii obviously increased. In this study, we attempted to estimate the abundance and biomass of G. przwalskii by using hydroacoustic technology. This study hopes to provide the basis knowledge for the protection and management of G. przwalskii stock.
     During the four summer of 2007-2010, the BioSonics DT-X (199 kHz; 210 kHz) and Simrad EY 60 (333 kHz) split beam echo-sounders were used to estimate the abundance and spatial distribution of G. przwalskii in Qinghai. A comparative study was conducted among the two kinds of echo-sounders so as to determine the best analyzing parameters. The main results are as follows:
     1. The biomasses (95% confidence) of G. przwalskii in Qinghai Lake were 20176.02 (19167.39~21185.01) t,24342.15 (23125.04~255592.58) t,27260.41 (25897.38~28623.42) t and 30120.73 (28798.04~31443.42) t for each August of the year 2007,2008 2009 and 2010, respectively; accordingly the amounts (95% confidence) were 9.26×107 (8.80×107~9.72×107) ind.,1.05×108 (9.98×107~1.10×108) ind.,1.23×108 (1.17×108~1.29×108) ind. and 1.42×108 (1.35×108~1.49×108) ind.; the average density (Min value, Max value) were 1.25±0.41 (0.007, 17.3) ind./1000m3,1.46±0.28 (0.01,19.1) ind./1000m3,1.64±0.23 (0.15,19.96) ind/1000m3 and 1.83±0.36 (0.06,22.89) ind/1000 m3.
     2. Four time net sampling were located in the Buha River estuary, the Heima River estuary the Erlang Jian and 151 Base, respectively. Statistical analysis, indicated that the average body length and weight of the G. przwalskii in the four times samplings were 275±29.9 mm and 267.9±11.0 g (n=68),267.9±50.7 mm and 263.7±6.9 g (n=54),240.3±38.4 mm and 192.44±13.9 g (n=45),234.7±25.3 mm and 162.2±50.0 g (n=261). It suggested that the size distribution of G. przwalskii was inconsistently in Qinghai Lake, the largest size was at Buha river estuary, and the smallest size was at 151 Bases.
     3. One-way ANOVA analyzing on fish density among different water layer indicated that, there were significantly difference between the 1~6 m water depth and the other water depth (F=5.521, P<0.05), The G. przwalskii mainly distributes at the 1~6 m water depth. The maximum density (28.08±1.08 ind./1000m3) occurred at the 1~6 m water depth of Quanjihe river estuary, and the minimum density (0.08±0.026 ind./1000m3) occurred at the 21-26 m water depth at the north of Haixin mountain. The horizontal distribution of the fish densities was also inconsistently. The results of the four times surveys indicated that the maximum fish density were 17.3 ind./1000m3 19.1 ind./1000m3,19.96 ind./1000m3 and 22.89 ind./1000m3, respectively. They were located at the Buha river estuary, Quanji river estuary and Erlang jian area. The minimum fish density were 0.007 ind./1000m3,0.01 ind./1000m3,0.15 ind./1000m3 and 0.06 ind./1000m3, respectively, and they were located at the east area of Qinghai Lake.
     4. Six sampling areas were selected from Qinghai Lake, and the raw data were processed with different parameters in the software Visual Analyzer 4.1 (B1~B4) and Sonar5-Pro (Eo and E1~E4). Variance analysis among fish densities and TS which calculated from two software indicated that there were no significant difference (P=0.524>0.05; P=0.997>0.05). There was significant difference (P=0.020<0.05) among fish density analyzed by the different parameters configuration groups, however there was no significant difference (P=0.926>0.05) among TS. Based on this analysis, we consider that the BioSonics DT-X and EY60 both were applicable for the fish stock assessment in Qinghai Lake. According to the previous studies and technical analysis guides, the parameters configuration B3 and E3 most probably were the best parameters configurations.
引文
1.曹文宣,常剑波,乔晔,段中华.长江鱼类早期资源.北京:中国水利水电出版社,2007
    2.常剑波.长江中华鲟繁殖群体结构特征和数量变动趋势研究.博士学位论文,武汉:中国科学院水生生物研究所,1999
    3.陈大庆,张信,熊飞,刘绍平,唐红玉.青海湖裸鲤生长特征的研究.水生生物学报,20060,3(2):173-179
    4.陈卫忠.用剩余产量模型专家系统(CLIMPROD)评估东海鲐鲹鱼类最大持续产量.水产学报,1997,4(21):404-408
    5.陈卫忠,李长松,胡芬,催雪森.渔业资源评估专家系统设计及实现.水产学报,1999,23(4):343-349
    6.陈卫忠,胡芬,严利平.用实际种群分析法评估东海鲐鱼现存资源量.水产学报,1998,22(4):334-339
    7.陈民琦,林建国,应百才.青海湖封湖3年对裸鲤种群结构的影响初探.青海师范大学学报,1990:50-56
    8.大下诚二.Acoustic Surveys of Spawning Japanese Sardine(Sardinops melanostictus) in the Waters off-Western and Southern Kyushu, Japan. Fisheries Science,1998,64(5):665-672
    9.邓景耀,叶昌臣.渔业资源学.重庆:重庆出版社,2001
    10.杜浩,班璇,张辉等.天然河道中鱼类对水深、流速选择特性的初步观测:以长江江口至涴市段为例.长江科学院院报,2010,27(10):70-74
    11.段中华,孙建怡,常剑波等.网湖鲫鱼的生长与评估.湖泊科学,1994,6(3):257—266
    12.费鸿年,张诗全.水产资源学.北京:中国科学技术出版社,1990
    13.顾金海,叶学金.水声学基础.北京:国防工业出版社,1981
    14.顾嗣明.鱼探仪的应用与维修.北京:农业出版社,1987
    15.胡安,唐诗声,龚生兴.青海湖裸鲤[Gymnocypris przewalskii prezewalskii(Kessler)]繁殖生物学的研究.青海湖地区的鱼类区系和青海湖裸鲤的生物学.北京,科学出版社,1975:49-64
    16.胡安.青海湖裸鲤资源现状及其增殖途径的探讨.北京:科学出版社,1975: 103—110
    17.胡德高,柯福恩,张国良,罗俊德,龚明华.葛洲坝下中华鲟产卵场的调查.淡水渔业,1985,3:22—24
    18.胡德高,柯福恩,张国良,罗俊德,龚明华.葛洲坝下中华鲟产卵场的第二次调查.淡水渔业,1992,5:6—10
    19.冷永智,何立太,魏清和.葛洲坝水利枢纽截流后长江上游铜鱼的种群生物学及资源评估.淡水渔业,1984,5:21—25
    20.李德浩.青海省经济动物志.西宁:青海人民出版社,1989
    21.李迪强,蒋志刚,王祖望.青海湖地区生物多样性的空间特征及GAP分析.自然资源学报,1998,14(1):47—54
    22.李继龙,王国伟,杨文波,张彬,刘海金.国外渔业资源增殖放流状况及其对我国的启示.中国渔业经济,2009,3(27):111—123
    23.李林,时兴合,申红艳等.1960-2009年青海湖水位波动的气候成因探讨及其未来趋势预测.第七届全国优秀青年气象科技工作者学术研讨会论文集,2010年
    24.李永振,陈国宝,袁蔚文.南沙群岛海域岛礁鱼类资源的开发现状和开发潜力.热带海洋学报,2004,23(1):69—75
    25.林彦红,彭本荣.基于种群层次的渔业资源评估模型研究进展.福建水产,2008,21(4):78—88
    26.刘伯胜,雷家煜.水声学原理.哈尔滨:哈尔滨工程大学出版社,1993
    27.刘军,王剑伟,苗志国,曹文宣.长江上游宜宾江段长鳍吻鮈种群资源量的估算.2010,19(3):276—280
    28.卢振彬.厦门海域渔业资源评估.热带海洋,2000,19(2):51—56
    29.马大猷,沈壕.声学手册.北京:科学出版社,1983
    30.宁修仁,刘子琳,史君贤.渤、黄、东海初级生产力和潜在渔业生产量的评估.海洋学报,1995,17(3):72—84
    31.青海省生物研究所.青海湖地区的鱼类区系和青海湖裸鲤的生物学.北京:科学出版社,1975,37—45
    32.史健全.青海湖裸鲤研究现状与资源保护对策.青海科技,2008,5:13—16
    33.史建全,祁洪芳,杨建新.青海湖自然概况及渔业资源现状.淡水渔业,2004,34(5):3—5
    34.史健全,祁洪芳,杨建新,惠金莉,毛月风,王东辉.青海湖裸鲤人工繁殖及鱼苗培育技术的研究.淡水渔业,2000,30(2):3—6
    35.史健全,祁洪芳,杨建新.青海湖裸鲤资源评析.淡水渔业,2000,30(11):38—40
    36.沈国英,施并章.海洋生态学.厦门:厦门大学出版社,1990
    37.谭细畅,陶江平,李新辉,常剑波.回声探测仪在我国内陆水体鱼类资源调查中的初步应用.渔业现代化,2009,36(3):60—64
    38.谭细畅,史健全,张宏等.EY60回声探测仪在青海湖鱼类资源量评估中的应用.湖泊科学,2009,21(6):865-872
    39.唐启升.应用VPA方法概算黄海鲱鱼的渔捞死亡和资源量.海洋学报,1986,(8)4:476—486
    40.唐启升,王为详,陈毓桢等.北太平洋狭鳕资源声学评估调查研究.水产学报,1995,19(1):8—20
    41.陶江平,艾为明,龚昱田等.采用渔业声学方法和GIS模型对楠溪江鱼类资源量及空间分布的评估.生态学报,2010,30(11):2992—3000
    42.陶江平,乔晔,杨志,常剑波等.葛洲坝产卵场中华鲟繁殖群体数量与繁殖规模估算及其变动趋势分析.水生态学杂志,2009,2(2):37—43
    43.王婧,张超,王丹,蔺丹青,李娜娜,汤勇.清河水库鲢鳙鱼类资源量水声学调查:回波计数与回波积分法的比较.南方水产,2010,6(5):50—55
    44.王迎宾,刘群.应用世代分析法估算鱼类自然死亡率的初步研究.中国海洋大学学报,2005,35(5):725—732
    45.王增焕,李纯厚,贾晓平.应用初级生产力估算南海北部渔业资源量.海洋水产研究,2005,26(3):9—15
    46.肖方森.闽南—台湾浅滩海域生态系统渔业资源容纳量.台湾海峡,2003,22(4):450—456
    47.谢松光,李钟杰,崔奕波.用围网标志回捕法研究草型湖泊小型鱼类的密度.水生生物学报,2003,27(1):98—99
    48.熊飞,陈大庆,刘绍平,段辛斌,史建全.青海湖裸鲤不同年龄鉴定材料的年轮特征.水生生物学报,2006,30(2):185—191
    49.严利平,李建生,凌建忠.应用体长结构VPA评估东海西部日本鲭种群资源量.渔业科学进展,20]0,13(2):16—22
    50.杨应梅,刘希林,朱智键,丁金水.青海湖鱼类面临的生态危机与环境治理探讨.水利渔业,2003,23(4):47—49
    51.易伯鲁,余志堂,梁秩燊,许蕴开.葛洲坝水利枢纽与长江四大家鱼.湖北:湖北科学技术出版社,1988
    52.殷瑞,刘群.应用体重结构的实际种群分析模型估算捕捞死亡系数和资源量的初步研究.南方水产,2007,3(2):36—41
    53.虞功亮,刘军,许蕴开等.葛洲坝下游江段中华鲟产卵场食卵鱼类资源量估算.水生生物学报,2002,6(6):592—599
    54.于海圆,赵宪勇.鳀鱼(Engraulis japonicus)目标强度的模型法研究.应用声学,2007,26(5):267—276
    55.曾宏辉,夏立启,虞功亮等.鱼探仪数据记录和处理软件系统的开发.水生生物学报,1999,23(6):741—743
    56.詹秉义.渔业资源评估.北京:农业出版社,1995:265—269
    57.张慧杰,杨德国,危起伟等.葛洲坝至古老背江段鱼类的水声学调查.长江流域资源与环境,2007,16(1):86—91
    58.张慧杰.长江宜昌和宜宾江段鱼类资源的水声学初步调查.硕士学位论文,武汉:华中农业大学,2007
    59.张信,陈大庆,严莉,刘绍平,段辛斌.青海湖裸鲤资源保护面临的问题与对策.淡水渔业,2005,35(4):57—60
    60.张信.青海湖裸鲤资源量的水声学评估.硕士学位论文,武汉:华中农业大学,2005
    61.张金兰,覃永生.青海湖渔业状况及管理保护对策.青海环境,1997,7(4):158—163
    62.中科院兰州分院,中国科学院西部资源中心.青海湖近代环境演变和预测.北京:科学出版社,1994
    63.周永东,徐汉祥.应用体长股分析法估算东海海鳗资源量.浙江海洋学院学报,2007,26(4):399—403
    64.朱德山、Iversen S A.黄、东海鳀鱼及其他经济鱼类资源声学评估的调查研究.海洋水产研究,1990,11:1—143
    65. Anderson V C. Journal of Acoustical Society of America,1950,22:426—431
    66. Beverton R J H and Holt S T. On the dynamics of exploited fish population. U.K. Min. Agric. Fish. Invest.,1957,19:533
    67. Bodholt H. Fish density derived from echo-integration and in-situ target strength measurements. International Council Exploration of the Sea C.M.,1990,11:10
    68. Brede R. Kristensen F H. Solli H. and Ona E. Target tracking with a split beam echo sounder. Rapp. P.-v. Reun. Comm. Int. Explor. Scient. Mer Mediterr.,1990, 189:254-263
    69. Cech M. and Kubecka J. Sinusoidal cycling swimming pattern of reservoir fishes. Journal of Fish Biology,2002,61:456-471
    70. Chen D, Zhang X, Tan X, Wang K, Qiao Y, Chang Y. Hydroacoustic study of spatial and temporal distribution of Gymnocypris przewalskii (Kessler,1876) in Qinghai Lake, China. Environmental biology of fishes,2009,84:231-239
    71. Cochrane N A, Melvin G D. Scanning sonar as a supplement to conventional acoustic fish stock assessment in Atlantic Canada. Proceedings of ocean,1997, 97:753-766
    72. Cushing D B. Upwelling and the production of fish. Advances in marine biology, 1971,9:255-334
    73. Cushing D H. Measurments of the target strength of fish. Journal of British Institutionof Radio Engineers,1963.
    74. Dragesund O and Olsen S. On the possibility of estimating year-class strength by measuring echo-abundance of 0-group fish. FiskDir. Ski. Ser. Havllnders,1965, 1:47-75
    75. Ehrenberg J E. and Torkelson T. Application of dual-beam and split-beam target tracking in fisheries acoustics. ICES.Journal of Marine Science,1996,53:329— 34
    76. FAO. Fisheries acoustics:A practical manual for aquatic biomass estimation. 1983
    77. Foote K G. Importance of the swim-bladder in acoustic scattering by fish:a comparison of gadoid and mackerel target strengths. Journal of Acoustical Society of America,1980,67(6):2084-2089
    78. Fox W W. An exponential surplus-yield model for optimizing exploited fish population. Transactions of the American Fisheries Society,1970,99(1):80-88
    79. Furusawa M. Journal of Acoustical Society Japan 1988.9:13-24
    80. Garaway, Arthur, Chamsingh et al. A social science perspective on stock enhancement outcomes:Lessons learned from inland fisheries in southern Lao PDR. Fisheries Research,2006,80(1):37-44
    81. Goldewska M, Colon M, Doroszczyk L, Dlugoszewski B, Verges C, Guillard J. Hydroacoustic measurements at two frequencies:70 and 120 kHz consequences for fish stock estimation. Fisheries Reasearch,2009,96:11—16
    82. Gulland. J. A. Manual of methods for fish stock assessment. Fisheries Biological Technology Report,1965,72
    83. Graham M. Modern theory of exploiting a fishery, and application to North Sea trawling. Journal of Conservision International Exploration,1935,10:264-274
    84. Hagstroem O, Palmen L E, Haakansson N. Anacoustic survey on pelagic fish in the Gulf of Bothnia in August 1991. Aquatic Fennica,1995,25:57-70
    85. Helge B. Development of hydroacoustic methods for fish detection in shallow water. Norway: University of Oslo,2001:191-208
    86. Huang B and Walter C J. Cohort analysis and population dynamics of large yellow coraker in the China Sea. North American Journal of Fisheries management,1983,3:295-305
    87. Jolly G. and Hampton L. A stratified random transect design for acoustic surveys of fish stocks. Canadian Journal of Fisheries and Aquatic Sciences,1990,47, 1282-1291
    88. Jones R E. Stock and recruitment with special reference to cod and haddock. Rapp. P. -V. Reun. Comm. Int. Explor. Scient. Mer Mediterr,1974,164:156-173
    89. Kevin M B. Matthe W P. and Charles A. Hydroacoustics as a Tool for Assessing Fish Biomass and Size Distribution Associated with Discrete Shallow Water Estuarine Habitats in Louisiana. Estuarine, Coastal and Shelf Science,2007, 4(30):607-617
    90. Kieser R, Mulligan T J. Analysis echo counting data:A model. Canadian Journal of Fisheries and Aquatic Sciences,1984,41:451-458
    91. Knudsen F R and Saegrov H. Benefits from horizontal beaming during acoustic survey:application to three Norwegian lakes. Fish. Res.2002,56:205-211
    92. Kubecka J, Duncan A and Butterworth A. Echo counting or echo integration for fish biomass assessment in shallow water. In: Proceedings of the European Conference on Underwater Acoustics (ed. M. Weydert),1992,129-132
    93. Kubecka J and Duncan A. Diurnal changes of fish behaviour in a lowland river monitored by a dual-beam echosounder. Fish. Res.1998,35:55-63
    94. Kubecka J, wittingerova M, Horizontal beaming as a crucial component of acoustic fish stock assessment in fresh water reservoirs. Fisheries Research,1998, 35:1-99
    95. Kuznetsov V V, Gruzevich A K. Monitoring of walleye Pollack stock status. Rybn Khoz Mosc,2000,2:22-24
    96. Love R H. Target strength of an individual fish at any aspect. Journal of Acoustical Society of America,1977,62:1397-1403
    97. Maclennan D N. Simmonds E J. Fisheriesacoustics. London:Chapman and Hall, 1992:325
    98. MacLennan D N, Magurran A E, Pitcher T J and Hollingworth C E. Behavioural determinants of fish target strength. Rapp. P.-V. Reun. Comm. Int. Explor. Scient. Mer Mediterr,1990,189:245-253
    99. MacLennan D N, Simmonds E J. Fisheries Acoustics. London:Chapman & Hall. 1992:1-325
    100. Martyn C L, Etienne B. Methods for studying spatial behavior of freshwater fishes in the natural environment. Fish and fisheries,2000,1:283-316
    101. Mason, W.P. Phyaical acoustics, Principle and methods. London:Academic Press, 1964
    102. McQuinn I H. and Winger P D. Tilt angle and target strength:target tracking of Atlantic cod (Gadus mar/uta) during trawling. ICES Journal of Marine. Science, 2003,60:575-583
    103. Murphy G J. Population biology of the pacific sardine proceeding. Journal of the Fisheries Research. Board of Canada,1965,9:450-491
    104. Nakken O, Olsen K. Rapp. Rapp. P.-V. Reun. Comm. Int. Explor. Scient. Mer Mediterr,1977,170:52-69
    105. Pauly D, Morgan G R. Length-based methods in fisheries research. ICLARM Conf. Proc.13.1987:468
    106. Pope J G. An investigation of the accuracy of virtual population analysis using cohort analysis. Fish. Res. Bull.1972,9:65-74
    107. Pedersen J. Discrimination of fish layers using the three-dimensional information obtained by a split-beam echo-sounder. ICES Journal of Marine. Science,1996, 53:371-376
    108. Pedersen J. Hydroacoustic measurement of swimming speed of North Sea saithe in the field. Journal of Fish Biology,2001,57:1073-1085
    109. Petitgas P. Geostatistics for fish stock assessments:a review and an acoustic application. ICES Journal of Marine. Science,1993,50:285-298
    110. Qiao Y. Tang X. Brosse S. Chinese Sturgeon (Acipenser sinensis) in the Yangtze River:a hydroacoustic assessment of fish location and abundance on the last spawning ground. Journal of Applied Ichthyology,2006,22(1):140-144
    111. Ricker W E. Computation and interpretation of biological statistics of fish population. Bulletin of the Fisheries Research Board of Canada,1975,191:1-382
    112. Sand J, Maclennan D. Fisheries Acoustics:Theory and Practice. Second Edition. Black well,2005:1-437
    113. Rose G and Leggett W. Hydroacoustic signal classification of fish schools by species. Canadian Journal of Fisheries and Aquatic Sciences,1988.45:597-604
    114. Russell E S. Some theoretical considerations on the overfishing problem. Journal of Conservation International Exploration,1931,6:3-27
    115. Stanton T K. Sound scattering by cylinders of finite length.I:Fluid cylinders. Journal of Acoustical Society America,1988,83(1):55-63
    116. Tarbox K E and Thorne R E. Assessment of adult salmon in near-surface waters of Cook Inlet, Alaska. ICES Journal of Marine. Science,1996,53:397-402
    117. Trevorrow M V. Salmon and herring school detection in shallow waters using side scan sonars. Fisheries Research.1998,35:5-14
    118. Wei Q W, Kynard B, Yang D G, Chen X H, Du H, Shen L, Zhang H. Using drift nets to capture early life stages and monitor spawning of the Yangtze River Chinese sturgeon (Acipenser sinensis). Journal of Applied Ichthyology,2009, 25(2):100-106
    119. Weston D E and Andrews H W. Seasonal sonar observations of the diurnal shoaling times of fish. Journal of Acoustical Society America 1988,87:673-680.
    120. Weston D E and Andrews H W. Monthly estimates offish numbers using a long-range sonar. Journal of Conservation. International Exploration,1990,47: 104-111.
    121. Zhang H, Wei Q W, Du H, Shen L, Li Y H and Zhao Y. Is there evidence that the Chinese paddlefish (Psephurus gladius) still survives in the upper Yangtze River? Concerns inferred from hydroacoustic and capture surveys,2006-2008. Journal of Applied. Ichthyology,2009,25 (2):95-99
    122. Zhao X. In situ target-strength measurment of young hairtail (Trichiurus haumala) in the Yellow Sea. ICES Journal of Marine. Science,2006,63:46-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700