KV-CBCT在线监测食管癌放疗摆位误差和实现自适应放疗的可行性探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     通过每周KV-CBCT监测食管癌三维适形放疗过程中的摆位误差和剩余摆位误差,为制定我科食管癌患者合理的CTV-PTV外放边界提供依据。使用KV-CBCT图像更新治疗计划,评价离线自适应放疗的可行性与优势,并建立一个食管癌在线自适应放疗的模型。
     资料和方法
     第一部分
     我们选取19例食管癌患者。每例患者每周采集CBCT图像,在相应的三维匹配框内与定位CT进行灰度值自动配准,若任意方向的误差超过3mm阈值,则接受重新摆位。在线重新摆位后,再次行KV-CBCT扫描,并按照同样的匹配方式与计划CT进行配准,采集校正后三维方向上的摆位误差。离线分析数据并根据van Herk公式计算出CTV-PTV理论外放边界。
     第二部分
     预处理:将19例患者的计划CT图像连同勾画好的靶区分别复制一份,采用容积密度分配的方法,给定肺组织的CT值为:-800Hu,其余组织均定义为水的密度,即Body-Lung的CT值为0Hu,将定位CT的计划(plan1)移植到密度分配好的CT2图像中,生成plan2。根据靶区和正常组织的受量及DVH图比较plan1与plan2的剂量分布差异。主要评价指标有:靶区(GTV、CTV、PTV)平均剂量及95%体积剂量覆盖率(D95);脊髓平均剂量及1%体积受量(D1);肺平均剂量(MLD)及V20。
     自适应:在第一部分结论和预处理结论的基础上,在19例患者第1周的CBCT图像上勾画靶区,生成新的CTV-PTV外放,我们称之为自适应计划(adaptive plan):planA,与本科室临床治疗计划(clinical plan)planC进行剂量学对比,评估参数有:PTV体积、95%体积PTV覆盖率(PTVD95)、99%体积GTV覆盖率(GTVD99)、脊髓D1cc、双肺V20、双肺V30。分析离线KV-CBCT图像的同时,计算瓦里安OBI系统实现在线更新治疗计划的所需时间。
     结果
     第一部分
     校正前,107次CBCT图像在左右、垂直、前后方向的摆位误差分别为0.39±0.31cm、0.24±0.23cm、0.28±0.22cm,共计有79次(74%)的摆位分次需要接受在线校位。根据van Herk公式计算不校正的CTV-PTV外放边界分别为:1.00cm、0.91cm、0.96cm。校正后,107次CBCT图像在左右、垂直、前后方向的摆位误差分别为:0.17±0.13cm,0.16±0.12cm,0.14±0.14cm。根据van Herk公式计算校正后的CTV-PTV理论外放边界(MPTV)分别为:0.50cm、0.46cm、0.49cm。
     第二部分
     容积密度分配后CT计划与常规CT计划的一致性非常好,plan1与plan2的靶区剂量差异在3%以内,正常组织剂量差异均小于2%。自适应计划并没有影响靶区的覆盖率,95%PTV覆盖率、99%GTV覆盖率与临床计划相比,差异无统计学意义。双肺V20和双肺V30较临床计划均有明显的缩小,分别是V20:18.26%±2.98%vs.12.14%±2.89%,V30:9.19%±3.45%vs.5.71%±2.63%,差异有显著统计学意义(P=0.0001,P=0.001)。在1cm3脊髓受量方面,自适应计划较临床计划减少了228cGy±127.75cGy,差异有统计学意义(P=0.04)。瓦里安OBI系统实现在线更新治疗计划从摆位到传输更新的计划,共需耗时约15分钟。
     结论
     在线KV-CBCT引导放疗可以降低摆位误差,缩小CTV-PTV外放边界。纠正摆位误差后,采用容积密度分配的方法,可以使用KV-CBCT图像更新治疗计划。第1周的离线自适应计划在不影响靶区剂量覆盖的前提下,能充分保护邻近危及器官。瓦里安的OBI系统在线更新计划约需15分钟,理论上达到了在线ART的标准,实际工作中,实现在线ART远远未达到理想状态。
Purpose
     The set-up error and the residual set-up error are monitored on esophageal patientswith three-dimensional conformal radiotherapy through the weekly KV-CBCT, forproviding the basis for reasonable esophageal CTV-PTV margin in our department. Thetreatment plan is updated through the KV-CBCT image to evaluate the feasibility andadvantage of off-line adaptive radiotherapy, and establish an esophageal on-line adaptiveradiotherapy model.
     Materials and methods
     Section one
     We select19cases of esophageal cancer patients. Each patient takes CBCT imageevery week, the images in the corresponding3D match box are got to be automatic greyregistration with the positioning CT images, if error of any direction more than3mmthreshold, then accept a online placement reset. After that, we do again KV-CBCTscanning, and follow the same way for images registration, the set-up error we collected isthe error after correction in3D direction. Then analysis data offline and calculatetheoretical CTV-PTV margin according to van Herk formula.
     Section two
     Pretreatment: Copy the planning CT images together with target, use the method of bulkdensity assignment, give the Lung tissue CT value is:-800Hu, the rest are defined as theorganization of the density of water, that is, Body-Lung CT value:0Hu,Transplantate CTplan (plan1) to the density distribution CT2images, named plan2. According to the targetand normal tissue dose and DVH charts, we compare the dose distribution of differences ofplan1and plan2. Main evaluating indexes: the average dose of target (GTV, CTV, PTV) and95%volume dose coverage (D95); average dose of spinal cord and1%volumequantity (D1); Lung average dose (MLD) and V20.
     Adaptive: On the basis of the first part conclusion and preprocessing conclusion, wedelineate the target and the organs at risk in the first week of CBCT image of the19patients, creat a new CTV-PTV margin, called adaptive plan: planA, and compare with theclinical plan: planC in dose distribution. Evaluation parameters are: PTV volume,95%volume PTV coverage (PTVD95),99%volume GTV coverage (GTVD99), spinal cordD1cc, total lung V20, total lung V30. When analyzing the off-line KV-CBCT images, wecalculate the required time of online updating treatment plan with Varian OBI system.
     Results
     Section one
     Before correction, the set-up error of107CBCT images in Lat, Vrt, Lng direction is0.39±0.31cm,0.24±0.23cm,0.28±0.22cm respectively, altogether79times (74%) needto accept a online correction. According to van Herk formula, the no correction CTV-PTVmargin is:1.00cm,0.91cm,0.96cm respectively. After correction, the set-up error of107CBCT images is:0.17±0.13cm,0.16±0.12cm,0.14±0.14cm respectively. According tovan Herk formula, the no correction CTV-PTV margin is:0.50cm,0.46cm,0.49cmrespectively.
     Section two
     The plan with bulk density assignment and the conventional plan show very goodconsistency. The dose difference of target about plan1and plan2is within3%, of normaltissue is less than2%. Compare with clinical treatment plan, adaptive plan have noeffection on target coverage, the difference in95%PTV coverage,99%GTV coverage wasnot statistically significant. Total lung V20and total lung V30are obviously shrinks,respectively V20:18.26%±2.98%vs.12.14%±2.89%, V30:9.19%±3.45%vs.5.71%±2.63%, there is a significant statistical difference(P=0.0001, P=0.001). In1cc dose ofspinal cord, adaptive plan is cutted by228cGy±127.75cGy, the difference is statisticallysignificant (P=0.04). A model of online updating treatment plan is builded up, frompositioning to transporting the updated plan, Varian OBI system totally need to take about 15minutes.
     Conclusions
     The set-up error can be reduced and the CTV-PTV margin can be narrowed throughon-line KV-CBCT guided radiotherapy. After the correction of set-up error, we can use thebulk density assignment method, making the KV-CBCT images to participate in replanning.In the premise of not affect the target coverage, the first week of offline adaptive plan canavailably protect the organs at risk. Varian OBI system totally need to take about15minutesfor online updating the plan, theoretically up to the online ART standard, however,implementing online ART is far away to be reached.
引文
[1]赵快乐,施学辉,蒋国梁.用剂量体积直方图评估放射性肺损伤[J]中华放射肿瘤学杂志,2002,11(1):69-70.
    [2]许泽苹,林连兴,许少生等,食管癌三维适形放疗中肺损伤的相关因素分析[J]当代医学,2011,17(26):109-110.
    [3] NCCN, Practice guidelines in oncology-v.2.2009
    [4]于金明,李宝升.调强放射治疗的临床应用现状与存在的问题[J].中华肿瘤杂志,2005,27(3):188-190.
    [5]张永谦,戴建荣,器官运动对剂量分布的影响[J].中华放射医学与防护杂志,2007,27(2):206-208.
    [6] Hossain S, Xia P,Huang K, et al. Dose gradient near target-normal structure interfacefor nonisocentric CyberKnife and isocentric intensity-modulated body radiotherapy forprostate cancer[J].Int J Radiat Oncol Biol Phys,2010,78(1):58.
    [7]戴建荣,胡逸民.图像引导放疗的实现方式[J].中华放射肿瘤学杂志,2006,15(2):132-135.
    [8] Chen YJ, Han C, Liu A, et al.Setup variations in radiotherapy of esophagealcancer:Evaluation by daily megavoltage computed tomographic localization [J].Int JRadiat Oncol Biol Phys,2007,68:1537-1545.
    [9]胡庆,许文,王阁.自适应放射治疗的研究进展[J].山东医药,2011,51(11):106-107.
    [10] Smitsmans MH, de Bois J, Sonke JJ,et al.Automatic prostate localization oncone-beam CT scans for high precision image-guided radiotherapy[J].Int J RadiatOncol Biol Phys,2005,63(4):975-984.
    [11] van Herk M.Errors and margins in radiotherapy[J].Semin Radiat Oncol,2004,14(1):52-64.
    [12] Letourneau D, Martinez AA, Lockman D, et al. Assessment of residual error foronline cone-beam CT-guided treatment of prostate cancer patients[J].Int J RadiatOncol Biol Phys,2005,62(4):1239-1246.
    [13] Yan D,Vicini F,Wong J,et a1.Adaptive radiation therapy[J].Phys Med Biol,1997,42(1):123-132.
    [14] Ramsey CR, Langen KM, Kupelian PA, et al. A technique for adaptive image-guidedhelical tomotherapy for lung cancer[J].Int J Radiat Oncol Biol Phys,2006,64(4):1237-1244.
    [15]肖泽芬.食管癌//殷尉伯,余子豪,徐国镇,等主编.肿瘤放射治疗学(第四版).北京:中国协和医科大学出版社,2008:558.
    [16]高献书主编.食管癌放射治疗指南.北京:中国医药科技出版社,2011:17-19.
    [17]赵快乐.食管癌的精确放射治疗[J].中国癌症杂志,2008,18(5),350-353.
    [18] Yan D,Lockman D,Brabbins D,et a1.An off-line strategy for constructing apatient-specific planning target volume in adaptive treatment process for prostatecancer[J].Int J Radiat Oncol Biol Phys,2000,48(1):289-302.
    [19]中国非手术治疗食管癌临床分期专家小组.非手术治疗食管癌的临床分期标准[J].中华放射肿瘤学杂志,2010,19:179-180.
    [20]许峰,柏森,王瑾等,用锥形束CT图像测量放疗摆位误差[J].中华放射肿瘤学杂志,2007,16(6):461-464.
    [21] Yeung AR, Li JG, Shi W, et al.Tumor Localization Using Cone-Beam CT ReducesSetup Margins in Conventionally Fractionated Radiotherapy for Lung tumors[J].Int JRadiat Oncol Biol Phys,2009,74(4):1100-1107.
    [22]梁军,张涛,张寅等,肺癌锥形束CT图像不同配准方式的误差分析[J]中华放射肿瘤学杂志,2011,20(2):106-108.
    [23]曲颂,朱小东,李龄等,三种配准方式下腹部肿瘤IGRT摆位误差的比较[J].肿瘤防治研究,2011,38(12):1434-1437.
    [24] Bijhold J, van Herk M, Vijlbrief R, et al.Fast evaluation of patient set-up duringradiotherapy by aligning features in portal and simulator images[J].Phys MedBiol,1991,36(12):1665-1679.
    [25] van Herk M, Remeijer P,Rasch C,et al.The probability of correct targetdosage:dose-population histograms for deriving treatment margins in radiotherapy[J].Int J Radiat Oncol Biol Phys,2000,47(4):1121-1135.
    [26]王鑫,胡超苏,应红梅等.鼻咽癌适形放射治疗中的摆位误差分析[J].中国癌症杂志,2006,16(4):272-276.
    [27] Barler J.JR, Garden A.S, Ang K.K, et al. Quantification of volumetric and geometricchanges occurring during fractionated radiotherapy for head-and-neck cancer using anintegrated CT/linear accelerator system[J].Int J Radiat Oncol BiolPhys,2004,59(4):960-970.
    [28] kiX. Brian T. Eduard S. Overview of image-guided radiation therapy[J].MedDosimetry,2006,31:91-112.
    [29] Zeidan MA, Langen KM, Meeks SL, et al.Evaluation of image-guidance protocols inthe treatment of head and neck cancers[J].Int J Radiat Oncol BiolPhys,2007,67(3):670-677.
    [30] Chen YJ, Han C, Liu A. et al. Setup variations in radiotherapy of esophagealcancer:evaluation by daily megavoltage computed tomographic localization[J].Int JRadiat Oncol Biol Phys,2007,68(5):1537-1545.
    [31] Morin O,Chen J,Aubin M.et al.Dose calculation using megavoltage cone-beamCT.International journal of radiation oncology biology,physics2007,67(4):1201-1210.
    [32]Yoo S, Yin FF. Dosimetric feasibility of cone-beam CT-based treatment planningcompared to CT-based treatment planning. International journal of radiation oncology,biology, physics2006,66(5):1553-61.
    [33]蒋晓芹,柏森,钟仁明等,IGRT锥形束CT图像的CT值与物理密度关系的研究[J].中华放射肿瘤学杂志,2007,16(5):372-376.
    [34]卢杰,尹勇,李建彬等,基于锥形束CT和CT的脑瘤三维适形放疗计划的比较研究[J].中华放射肿瘤学杂志,2009,18(1),68-69.
    [35]李齐欣,柏朋刚,陈传本等,基于头颈部千伏级锥形束CT的剂量计算研究[J].中华放射肿瘤学杂志,2011,20(4),334-337.
    [36]Yang Y,Schreibmann E,Li T,et al.Evaluation of on-board KV cone beam CT-baseddose calculation. Physics in Medicine and Biology,2007,52(3):685-705.
    [37]van ZM, Dirkx M, Heijmen B. Correction of cone beam CT values using a planningCT for derivation of the “dose of the day”. Radiother Oncol,2007,85:195-200.
    [38]Thomas SJ. Relative electron density calibration of CT scanners for radiotherapytreatment planning.British journal of radiology1999,72(860):781-786.
    [39]Langen KM, Meeks SL, Poole DO, et al. The use of megavoltage CT(MVCT) imagesfor dose recomputations.Physics in medicine and biology2005,50(18):4259-4276.
    [40]Depuydt T,Hrbacek J,Slagmolen P,et a1.Cone·beam CT Hounsfield unit correctionmethod and application on images of the pelvic region.Radiother Oncol,2006,81Suppl:1-29.
    [41]Prabhakar R, Julka PK, Ganesh T, Munshi A, Joshi RC, Rath GK: Feasibility of usingMRI alone for3D radiation treatment planning in brain tumors. Jpn J Clin Oncol2007,37:405-411.
    [42]Kristensen BH, Laursen FJ, Logager V, Geertsen PF, Krarup-Hansen A: Dosimetricand geometric evaluation of an open low-field magnetic resonance simulator forradiotherapy treatment planning of brain tumours. Radiother Oncol2008,87:100-109.
    [43]Pasquier D, Betrouni N, Vermandel M, Lacornerie T, Lartigau E, Rousseau J: MRIalone simulation for conformal radiation therapy of prostate cancer: technical aspects.Conf Proc IEEE Eng Med Biol Soc2006,1:160-163.
    [44]Eilertsen K, Vestad LN, Geier O, Skretting A: A simulation of MRI based dosecalculations on the basis of radiotherapy planning CT images. Acta Oncol2008,47:1294-1302.
    [45] Joakim H, Magnus G, Karlsson M, et al. Treatment planning using MRI data: ananalysis of the dose calculation accuracy for different treatment regions[J]. RadiationOncology2010,5:62.
    [46]ICRU Report50.prescribing,recording,and reporting photon beam therapy[R],1993.
    [47]ICRU Report62.prescribing,recording,and reporting photon beam therapy(Supplementto ICRU Report50)[R],1999.
    [48]ICRU Report NO.24. Determination of absorbed dose in a patient irradiated by beamsof X-or γ-rays in radiotherapy procedures,1976.
    [49]Jaffray DA, Siewerdsen JH, Wong JW, et al. Flat-panel cone-beam computedtomography for image-guided radiation[J].Int J Radiat Oncol BiolPhys,2002,53(5):1337-1349.
    [50]张英杰,李建彬,于金明等.CBCT影像引导非小细胞肺癌三维适形放疗靶区位置及体积变化分析.中华放射医学与防护杂志,2008,28(6),626-627.
    [51]Haxkins MA, Brooks C, Hansen VN, et al.Cone beam computed tomography—derivedadaptive radiotherapy for radical treatment of esophageal cancer[J].Int J Radiat OncolBiol Phys,2010,77(2):378-383.
    [52] Yan D, Wong J,Gustafson G,et al.A new model for “accept or reject”strategies in off-line and on-line megavoltage treatment evaluation[J].Int J RadiatOncol Biol Phys1995,31(4):943-952.
    [53] Nuver TT,Hoogeman MS,Remeijer P,et a1.An adaptive off-line procedure forradiotherapy of prostate cancer[J].Int J Radiat Oncol Biol Phys,2007,67(5):1559.
    [54]Rehbinder H, Lundin A, Sharpe M, et a1.Can PTV margins for head and neck cancerbe reduced based on a single adaptive replanning event?[J].Int J Radiat Oncol BiolPhys,2006,66(3):S101.
    [55]Gao X, Qiao X, Wu F, et al.Pathological analysis of clinical target volume margin forradiotherapy in patients with esophageal and gastroesophageal junction carcinoma[J].Int J Radiat Oncol Biol Phys,2007,67(2):389-396.
    [56] Graham MV, Purdy JA, Emami B, et al.Clinical dose-volume histogram analysis forpneumonitis after3D treatment for non-small cell lung cancer(NSCLC)[J].Int J RadiatOncol Biol Phys,1999,45(2):323-329.
    [57]西门子医疗集团放疗事业部.在线自适应放疗技术的临床应用[R].第二届现代放疗技术进展学术论坛,北京,2010.
    [58]Kaus MR, Brock KK, Pekar V, et al. Assessment of a model-based deformable imageregistration approach for radiation therapy planning[J].Int J Radiat Oncol Biol Phys,2007,68(2):572-580.
    [59] Goldman SP,Trumbull D.Johnson C,et a1.Real-time fast inverse dose optimization for image guided adaptive radiation therapy—Enhancements to fast inversedose optimization(FIDO).J Appl Phys,2009,105:2008-2O11.
    [60]Haasbeek CJ, Lagerwaard FJ, Cuijpers JP, et al. Is adaptive treatment planningrequired for stereotactic radiotherapy of stage I non-small-cell lung cancer [J].Int JRadiat Oncol Biol Phys,2007,67(5):1370-1374.
    [61] Ramsey CR, Langen KM, Kupelian PA, et al. A technique for adaptive image-guidedhelical tomotherapy for lung cancer [J].Int J Radiat Oncol Biol Phys,2006,64(4):1237-1244.
    [1]于金明,李宝升.调强放射治疗的临床应用现状与存在的问题[J].中华肿瘤杂志,2005,27(3):188-190.
    [2]张永谦,戴建荣,器官运动对剂量分布的影响[J].中华放射医学与防护杂志,2007,27(2):206-208.
    [3]Hossain S, Xia P,Huang K, et al. Dose gradient near target-normal structure interfacefor nonisocentric CyberKnife and isocentric intensity-modulated body radiotherapyfor prostate cancer[J].Int J Radiat Oncol Biol Phys,2010,78(1):58.
    [4] Astreinidou E, Bel A, Raaijmakers CPJ, et al.Adequate margins for random setupuncertainties in head-and-neck IMRT[J].Int J Radiat Oncol Biol Phys,2005,61(3):938-944.
    [5]International Commission on Radiation Units and Measurements,Quantities and Unitsin Ionizing Radiation, ICRU Report60,(Bethesda, DC,1998).
    [6]Hurkmans CW, Remeijer P, Lebesque JV, et al. Set-up verification using portal imaging;review of current clinical practice[J].Radiation and Oncology2001,58(2):105-120.
    [7] van Herk M. Errors and margins in radiotherapy[J]. Semin Radiat Oncol,2004,14(1):52-64.
    [8] Yan D,Lockman D,Brabbins D,et a1.An off-line strategy for constructing apatient-specific planning target volume in adaptive treatment process for prostatecancer[]].Int J Radiat Oncol Biol Phys,2000,48(1):289-302.
    [9] Mackie TR,Holmes TW,Swerdloff S,et a1.Tomotherapy:a new concept for thedelivery of dynamic conformal radiotherapy[J]. Med Phys,1993,20(6):1709-1719.
    [10] Mackie TR, Holmes TW, Reckwerdt PJ, et a1. Tomotherapy: optimizedplanning and delivery of radiotherapy.Int J Imaging Sci.Technol.6(1):43-55.
    [11] Mackie TR,Kapatoes J,Ruchala K,et a1.Image guidance for precise conformalradiotherapy[J].Int J Radiat Oncol Biol Phys2003,56(1):89-105.
    [12]Hawkins MA, Aitken A, Hansen VN, et al. Set-up errors in radiotherapy foroesophageal cancers–Is electronic portal imaging or conebeam more accurate?[J].Radiation and Oncology2011,98(2):249-254.
    [13] Yan D, Wong J,Gustafson G,et a1.A new model for “accept or reject”strategies in off-line and on-line megavoltage treatment evaluation[J].Int J RadiatOncol Biol Phys1995,31(4):943-952.
    [14] Yan D,Vicini F,Wong J,et a1.Adaptive radiation therapy[J].Phys Med Biol,1997,42(1):123.
    [15]胡庆,许文,王阁.自适应放射治疗的研究进展[J].山东医药,2011,51(11):106-107.
    [16] Castadot P,Lee JA,Geets X,et al.Adaptive radiotherapy of head and neckcancer [J].Semin Radiat Oncol,2010,20(2):84-93.
    [17]许峰,柏森,王瑾等.用锥形束CT图像测量放疗摆位误差[J].中华放射肿瘤杂志,2007,16(6):461-464.
    [18] Sidhu K, Ford EC, Spirou S, et a1. Optimization of conformal thoracicradiotherapy using cone-beam CT imaging for treatment verification[J].Int J RadiatOncol Biol Phys,2003,55(3):757-767.
    [19] Nuver TT,Hoogeman MS,Remeijer P,et a1.An adaptive off-line procedure forradiotherapy of prostate cancer[J].Int J Radiat Oncol Biol Phys,2007,67(5):1559.
    [20] Rehbinder H, Lundin A, Sharpe M, et a1.Can PTV margins for head and neckcancer be reduced based on a single adaptive replanning event?[J].Int J RadiatOncol Biol Phys,2006,66(3):S101.
    [21]西门子医疗集团放疗事业部.在线自适应放疗技术的临床应用[R].第二届现代放疗技术进展学术论坛,北京,2010.
    [22] Martinez AA, Yan D, Lockman D, et a1.Improvement in dose escalation using theprocess of adaptive radiotherapy combined with three-dimensional conformal orintensity-modulated beams for prostate cancer [J].Int J Radiat Oncol Biol Phys,2001,50(5):1226-1234.
    [23]俞伟,马林.前列腺癌自适应放疗研究进展[J].实用癌症杂志,2011,26(2):208-209.
    [24] Yoo S,Yin FF.Dosimetric feasibility of cone-beam CT-based treatment planningcompared to CT-based treatment planning.International journal of radiationoncology,biology,physics2006,66(5):1553-1561.
    [25]Yang Y,Schreibmann E,Li T,et al.Evaluation of on-board KV cone beam CT-baseddosecalculation.Physics in Medicine and Biology,2007,52(3),685-705.
    [26]蒋晓芹,柏森,钟仁明等,IGRT锥形束CT图像的CT值与物理密度关系的研究[J].中华放射肿瘤学杂志,2007,16(5),372-376.
    [27]李齐欣,柏朋刚,陈传本等,基于头颈部千伏级锥形束CT的剂量计算研究[J].中华放射肿瘤学杂志,2011,20(4),334-337.
    [28] Chen L, Price RA Jr, Nguyen TB, Wang L, Li JS, Qin L, Ding M, Palacio E, Ma CM,Pollack A: Dosimetric evaluation of MRI-based treatment planning for prostate cancer.Phys Med Biol2004,49:5157-5170.
    [29] Pasquier D, Betrouni N, Vermandel M, Lacornerie T, Lartigau E, Rousseau J: MRIalone simulation for conformal radiation therapy of prostate cancer: technical aspects.Conf Proc IEEE Eng Med Biol Soc2006,1:160-163.
    [30] Eilertsen K, Vestad LN, Geier O, Skretting A: A simulation of MRI based dosecalculations on the basis of radiotherapy planning CT images. Acta Oncol2008,47:1294-1302.
    [31] Goldman SP,Trumbull D.Johnson C,et a1.Real-time fast inverse dose optimization for image guided adaptive radiation therapy—Enhancements to fast inversedose optimization(FIDO).J Appl Phys,2009,105:2008-2O11.
    [32] Haasbeek CJ, Lagerwaard FJ, Cuijpers JP, et al. Is adaptive treatment planningrequired for stereotactic radiotherapy of stage I non-small-cell lung cancer [J].Int JRadiat Oncol Biol Phys,2007,67(5):1370-1374.
    [33] Ramsey CR, Langen KM, Kupelian PA, et al. A technique for adaptive image-guidedhelical tomotherapy for lung cancer [J].Int J Radiat Oncol Biol Phys,2006,64(4):1237-1244.
    [34] Fowler JF,Welsh JS,Howard SP.Loss of biological effect in polonged fractiondelivery[J].Int J Radial Oncol Biol Phys,2004,59(1):242-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700