自乳化体系驱油配方研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国大部分油田都已进入中高含水期,所以三次(强化)采油技术在我国发展很快。聚合物驱和三元复合驱可以提高原油采收率10-20%。然而,40-60%左右的剩余油残留地下,迫切需要研究开发新的采油方法和技术,大幅度提高老油田的采收率。研究自乳化强化采油方法旨在尽最大限度提高原油采收率,以满足国民经济发展的需要。
     对自乳化驱油体系及自乳化机理进行了深入的研究。在油相和水相中分别加入油酸和碱,在微小的外力作用下,就能够使两相自乳化成乳状液。通过改变矿化度、油酸或碱的浓度、醇及聚合物等因素对煤油或原油的乳化率及乳液粒径分布的影响,对自乳化机理进行了探讨。通过自乳化煤油O/W型溶液在均质岩芯中的渗流实验,得到了高渗岩芯具有趋于符合达西定律的渗流规律。岩芯渗透率越低,卡堵油滴越多。自乳化体系驱油物模结果表明煤油和模拟油采收率可以在水驱基础上分别提高23%和27%。利用微观驱油实验分析了自乳化作用对残余油的影响,自乳化对柱状、岛状及卡堵油滴驱替效果明显。通过对两亲聚合物与低界面张力表面活性剂复配的研究,开发了自乳化体系驱油的实用配方。
The oil field in our country is in the period of high water-cut, so the EOR technologies are quickly developed. Oil recovery was enhanced more than 10-20% (OOIP) by Polymer flooding and ASP. But almost 40-60% residul oil still remains underground, therefore, it is urgent to develop new EOR technology to incease the recovery efficiency of the developed oil fields. The the self-emulsification method is proposed that the recovery can be increased remarkblely and satisfy the demand of oil .
     The self-emulsification would happen if separately adding the oleic acid and alkali into the oil and aqueous phase under little force.The chemical experiment research on the mechanism of self-emulsification by changing salinity of aqueous phase, concentration of oleic acid or alkali and the other factors such as polymer and alcohol was carried on the emulsification rate of kerosene or crude oil and distribution of grain-size in emulsion. The physical model flooding experiment indicated that the self-emulsification flooding formulation can enhance the oil recovery efficiecy of kerosene or crude oil to 23% and 27% after water flooding. The microscopic oil flooding experiment was analized the effection of self-emulsification on all kinds of residual oil. It concludes that self-emulsification action can efficiently flood column oil or island oil or droplet oil in pore. The new and usable oil flooding formulation is developed by the study of the combination solution of amphipathic polymer and low interfacial tension.
引文
[1]Hoar,J.P.and schulman,J.h.,Nature,1943;1952:102.
    [2]Brand,H.R.;Pleiner,H.,“Transient Orientation Order and Transient Positional Order in the Sponge(L3)Phase,”Physica A:Statistical Mechanics and its Applications 2002,312(1-2),79~85.
    [3]Gomati,R.;Bougurra,N.;Gharbi,A.,“Correlation between the Fluidity and Topology of a Sponge Phase,”Physica B:Condensed Matter 2002,322(3-4),262~269.
    [4]Hellweg,T.,“Phase Structures of microemulsion,”Current Opinion in Colloid Interface Science 2002,7(1-2),50~56.
    [5]Groves,M.J. Sponteneous Emulsification.Chemistry and Industry 1978,12,417~423.
    [6]Lopes-Montilla,J.C.,Herrer-Morales,P.E.,S,D.O.,2002. pandey,spontaneous emulsification mechanisms, phisico chemical aspect,modeling,and applications. J.Dispers. sci.Technol.23(1/3),219~268.
    [7]Davies,J.T.,Haydon,D.A.,1957.spontaneous emulsification.Int. congr. Act.2nd1,417.
    [8]Davies,J.T.,Rideal E.K.,1961.Diffusion through Interfacer.In:willmer,H.(Ed.),Interfacial phenomena,firsted. Academic press.NewYork,pp.343~450.
    [9]Miller,C.A.,1988.Spontaneous emulsification produced by diffusion: a review. colloid surf.A29,89~102.
    [10]Miller , C.A. , Raney , K.H.1993.solubilization-emulsification mechanisms of detergency.colloids Surf.A 74,169~215.
    [11]Miller,C.A,1996. solubilization and intermediate phase formation in oil-water -surfactant systerms.Tenside Surf.Det.33,191~196.
    [12]DaviesTV,Rideal EK.Inter-facial Phenomena.New York and London:AcademicPress,1961.
    [13]PrinceL-M.J.ColloidInterfaceSci.,1967,23:165~173.
    [14]GrovesMJ.ChemistryandIndustry,1978,12:417~42.
    [15]WakerlyMG,PoutonCW,etal.Phenomenain Mixed Surfactant Systems.ACSS ymp.Ser. 311(ed.ScamehornJF).242ff.
    [16]S.Friberg,J.Colloid Interface Sci.,1971,37:291.
    [17]S.Feriberg,P.O.Jansson,E.Cderberg,J.Colliod Interface Sci.,1976,55:614.
    [18]P.A.Winsor,Chem.Rev,1968,68:1.
    [19]W.Normann,Z.angeuandte Chemie,1931(44):714~717.
    [20]L.Marszall,J.Colloid Interface Sci.,1977,59:376.
    [21]L.Marszall,J.W.Vanvalkenburg,J.Am.Oil Cheml.Soc.,1982,59~84.
    [22]K.Shinoda.H.Saito,J.Colloid interface Sci,1969,30~258.
    [23]H.Saito,K.Shinoda,J.Colloid Interface Sci,1970,32~647.
    [24]K.Shinoda,H.Sagitani,J.Colloid Interface Sci.,1978,64~68.
    [25]李外郎,林钢,麻远,戴乐蓉.微小乳状液形成的条件[J].1992,9,(4):352.
    [26]戴乐蓉,姜海莲,李外郎.用混合乳化剂制备不同粒径的乳状液[J].1994,10(3):285.
    [27]杨小莉,陆婉珍.有关原油乳状液稳定性的研究[J].油田化学,1998,15(1).87~96.
    [28]黄福堂.原油在水中乳状液的特性[J].邹信方译.国外油田工程.1997,(11).28~34.
    [29]夏惠芬,张云祥,赵庆辉,等.三元复合体系在多孔介质中的渗流特性[J].油术,1999,6(3):17~23.
    [30]LAURIERL.Schramm,Emulsions:Fundamentals and Applications in the Petroleum Industry[M].Washington:ChemicalSociety,1992.
    [31]JAMALAK.Modelingo femulsion flow in porous media,journal of Canadian petroleum technology[J].The Journal of Canadian Petroleum Technology,1995,34(6):30~38.
    [32]SOOH,RADKECJ.Velocity effects in emulsion flow through porous media,journal of colloid and interface science[J].Journal of Colloid and Interface Science,1984,102(2):462~476.
    [33]Laurier LSchramm.Emulsions : Fundamentals and aplications in the petroleum industry[M].Washington:American chemical society,1992.
    [34]SooH,RadkeCJ,Velocity effects in emulsion flowthrough porous media[J].Journal of Colloid and Interface Science,1984,102(2):462~476.
    [35]于大森,黄延章,陈权.原油/水乳状液流变形态与机理研究[J].油田化学,1992,9(4):348~351.
    [36]AbouKassem J H,Farouq AliS.Flow of Non Newtonian fluid in porous media[A]. SPE15954,1986.
    [37]Clayton D Mc Auliffe.Oil in water emulsions and their flow properties in porous media[J]. Journal of Petroleum Technology,1973,25(6):727~733.
    [38]Khambharatana F,ThomasS.Macroemulsion theology and drop capture mechanism during flow in porous media[A].SPE48910,1998.
    [39]王凤琴,曲志浩,薛中天.乳状液在多孔介质中的微观渗流特征[J].西北大学学报,2003,146(5):603~ 607.
    [40]Romero L,Ziritt JL.Plugging of high permeability fractured zones using Emulsions [A].SPE,DOE35461,1996.
    [41]孔令荣,曲志浩,万发宝等.砂岩微观孔隙模型两相驱替实验[J].石油勘探与开发,1991,18(4):79~85.
    [42]朱义吾,曲志浩.长庆油田延安油层光刻显微孔隙模型水驱油研究[J].石油学报,1989,10(3):40~47.
    [43]黄延章,于大森.微观渗流实验力学及其应用[M].北京:石油工业出版社,2001.42~49.
    [44]朱怀江,杨普华.化学驱中动态界面张力现象对驱油效率的影响[J].石油勘探与开发,1994,21(2):74~80.
    [45]熊伟,萧汉敏,刘加林.辽河油田 50 块表面活性剂/碱驱油研究[J].石油勘探与开发,1999,26(4):87~88,95.
    [46]范洪富,曹晓春,刘文.油田应用化学,哈尔滨:哈尔滨工业大学出版社,2003,168.
    [47]催正刚,股福珊编.微乳化技术及应用,北京:中国轻工业出版社,1999,299~306.
    [48]陈民峰,郎兆新.新疆石油地质,2002,23(5):411~414.
    [49]Green Don W,Willhite G P.Enhanced Oil Recovery.Texas;Henry L.Doherty Memorial Fund of AIME,Society of Petroleum Engineers,Richardson,1998,239~300.
    [50]Willhite,G P.etal.SPEJ,1980,(12):459~472.
    [51]Puerto,M C,Reed,R L.SPEJ,1983,(8):699~682.
    [52]杰夫里卡莫夫,哈比布林 3A,卡比洛缚 MM.异常石油[M].王传禹,译.北京石油工业出版社,1982.31~54.
    [53]阿梅托夫 NM,巴伊基科夫 юм,鲁津 лм,等.重质油的开采[M].陈宝来,卢学成,译.北京:石油工业出版社,1990.
    [54]McAuIiffe C D.Oil-in-water emulsions and their flow popertics in porous media[J].JPT,1973,25(6):73~77.
    [55]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1984,320~400.
    [56]郑惠光.非牛顿原油渗流流变性特点及其在油田开发中的应用[J].江汉石油学院学报,2003,25(3):90~91.
    [57]Browne G E,Hass G R,Sell R D.Downhole emulsification:viscosity reduction increases production[J].JCPT,1996,35(4):34~37.
    [58]唐瑞江.稠油采油工艺的探索试验及应用研究[J].油气采收率技术,1999,6(1):26~32.
    [59]关德,陈建武,商利军,等.渤海绥中 36-1 油田化学吞吐降粘技术初探[J].中国海上油气(工程),2000,12(1):40~44.
    [60]侯吉瑞.化学驱原理及应用[M].北京:石油工业出版社,1998,168~170.
    [61]杨普华译.增效碱驱(复合驱)提高石油采收率译文集[M].北京:石油工业出版社.1993,36~47.
    [62]宋育贤,周云霞译.泡沫流体在油田上的应用[J].国外油田工程,1997,13(1):5~8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700