土中剪切带扩展机理研究和扩展过程模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土中剪切带萌生和扩展问题一直是岩土工程领域的研究热点和难点之一,并取得了大量的成果。但目前对已有剪切带扩展机理的研究较少,对剪切带等应变局部化现象的模拟也不十分理想。本文在前人研究成果的基础上,从土中剪切带扩展模型试验、扩展机理分析、数值实现到初步应用,探索了一条模拟和追踪土中剪切带扩展过程的合理途径。论文的主要新成果有:
     (1)初步探讨了人工制备结构性土中已有剪切带扩展的模型试验方法,自行研制了剪切带扩展模型试验装置,进行了多组模型试验。试验结果和对比分析表明,已有剪切带上的抗剪能力不足以提供实际所需抗剪能力时,尖端附近区域将存在应力集中和重分布,并导致尖端附近区域的应力主轴偏转现象。
     (2)土中已有剪切带尖端的应力集中和重分布将表现为尖端两侧应力状态的差异性和不连续性,使得剪切带的进一步扩展具有区域选择性。提出了一种新的更一般的区域控制剪切带扩展分析方法,该方法较全面地考虑了尖端应力集中和重分布对扩展过程和方向的影响,并可结合传统强度理论合理地解释尖端附近区域的应力主轴偏转机理。
     (3)提出了一种扩展有限元法(XFEM)中非连续区域的简易积分方法,保障了XFEM对于非线性材料本构的兼容性。构建了基于XFEM的界面接触算法,该算法合理地反映了摩擦接触的耗散机制,从而避免了零能耗散现象。改进后的扩展有限元法具备了描述土中剪切带等运动的不连续位移场的能力。
     (4)通过构造适当的算法和判据,将区域控制扩展分析方法集成到改进的XFEM程序中构建了追踪土中剪切带扩展过程的扩展有限元模拟系统,对土中剪切带扩展模型试验进行了模拟并取得了合理的结果。
     (5)应用此模拟系统对多个边值问题进行了模拟研究,取得了合理的结果,特别是较好地揭示了Carsington堤坝的失稳机理。这表明本文对土中剪切带扩展机理的分析是合理的,所提出的区域控制扩展分析方法实用可行。
The initiation and evolution of shear band in soil is one of the hotspots and key issues in geotechnical engineering and a large number of achievements have been obtained. However, so far studies on the mechanism of evolution of shear band is still inadequate, while numerical simulation of strain localization such as shear band also needs improvement. Based on those achievements, a rational approach was explored for simulating and tracing the evolution process of shear band in soil from aspects of experimental study, mechanism analysis, numerical implementation and preliminary application. The main achievements obtained in the thesis are as follows:
     A series of model tests were performed to investigate the mechanism of evolution of shear band preset in artificial structured soil samples by using a self-made geotechnical model test apparatus and the according procedures. The results and further analysis revealed that, the phenomena of stress concentration and redistribution exists around the tip of shear band preinstalled due to the lack of shear resistance on it, which then causes the stress axes deflection in the tip area.
     The difference and discontinuity of stress states between two sides of a shear band around the tip result from the stress concentration and redistribution in the tip area of shear band in soil, which causes further evolution of shear band to be local dominant. Therefore, a generalized local dominant analysis method for shear band evolution was proposed. This method can describe the influence of stress concentration and redistribution in tip area on the direction and process of evolution of shear band, and can explain the mechanism of stress axes deflection in the tip area reasonably.
     A simple integration scheme was presented for the numerical quadrature of discontinuous zone in extended finite element method (XFEM) to guarantee the compatibility of XFEM to non-linear constitutive models. A contact algorithm based on XFEM was also established, which can reflect the dissipation mechanism of frictional contact reasonably and therefore avoid the phenomenon of zero energy dissipation. The modified XFEM has the ability to describe moving discontinuities such as shear band in soil.
     A XFEM simulating system for tracing shear band evolution in soil was established by integrating the local dominant analysis method into the modified XFEM program. Model tests of evolution of shear band in soil were simulated by this system and the results agree reasonably with those experimental results.
     Numerical simulations were performed on several boundary value problems. Reasonable results were obtained, among which the simulated mechanism and process of the failure of the Carsington embankment agree well with the observed result. It proves that mechanism investigation of evolution of shear band in soil proposed by this thesis is reasonable and the local dominant analysis method is feasible and applicable.
引文
[1]沈珠江.理论土力学.北京:中国水利水电出版社, 2000.
    [2]徐连民,王天竹,祁德庆,于春海,等.岩土中的剪切带局部化问题研究:回顾与展望.力学季刊, 2004, 25(4): 484-489.
    [3] Skepmton A W. Long-term stability of clay slopes. Geotechnique, 1964, 14(2): 77-102.
    [4] Bjerrum C. Progressive failure in slopes of overconsolidated plastic clay and clay shales. ASCE. Journal of the soil mechanics and foundations Division, 1967, 93(5): 3-49.
    [5]赵锡宏,张启辉.土的剪切带试验与数值分析.北京:机械工业出版社, 2003.
    [6] Palmer C, Rice J R. The growth of slip surfaces in the progressive failure of overconsolidated clay. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1973, 332: 527-548.
    [7] Rice J R, Cleary M P. Some basic stess diffusion solutions for fluid-saturation elastic porous media with compressible constituents. Reviews of Geophysics and Space Physics, 1976, 14(2): 227-441.
    [8] Rice J R, Simons D A. Stabilization of spreading shear faults by coupled deformation-diffusion effects in fluid-infiltration porous materials. Journal of Geophysical Research, 1976, 81(29): 5322-5334.
    [9] Puzrin A M, Germanovich L N. The growth of shear bands in the catastrophic failure of soils. Proceedings of the Royal Society, 2005, 461: 1199-1228.
    [10] Muhlhaus H B, Vardoulakis I. The thickness of shear bands in granular materials. Geotechnique, 1987, 37(3): 271-283.
    [11] de Borst R, Muhlhaus H B. Gradient-dependent plasticity: formulation and algorithmic aspects. International Journal for Numerical Methods in Engineering, 1992, 35: 521-539.
    [12] Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids, 1993, 41(12): 1825-1857.
    [13] Jirasek M. Comparative study on finite elements with embedded discontinuities. Computer Methods in Applied Mechanics and Engineering, 2000, 188: 307-330.
    [14] Mosler J, Meschke G. Embedded crack vs. smeared crack models: a comparison of elementwise discontinuous crack path approaches with emphasis on mesh bias. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 3351-3375.
    [15] Oliver J, Huespe A E, Sanchez P J. A comparative study on finite elements for capturing strong discontinuities: E-FEM vs. X-FEM. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 4732-4752.
    [16] Oliver J, Huespe A E, Blanco S, Linero D L. Stability and robustness issues in numerical modeling of material failure with the strong discontinuity approach. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 7093-7114.
    [17] Larsson J, Larsson R. Finite-element analysis of localization of deformation and fluid pressure in an elastoplastic porous medium. International Journal of Solids and Structures, 2000, 37: 7231-7257.
    [18] Regueiro R A, Borja R I. Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity. International Journal of Solids and Structures, 2001, 38: 3647-3672.
    [19] Callari C. Coupled numerical analysis of strain localization induced by shallow tunnels in saturated soils. Computers and Geotechnics, 2004, 31: 193-207.
    [20] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45: 601-620.
    [21] Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150.
    [22] Daux C, Moes N, Dolbow J, Sukumar N, et al. Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering, 2000, 48(12): 1741-1760.
    [23] Belytschko T, Moes N, Usui S, Parimi C. Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering, 2001, 50: 993-1013.
    [24] Vardoulakis I. Shear band inclination and shear modulus of sand in biaxial tests. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4: 103-119.
    [25] Vardoulakis I, Graf B. Calibration of constitutive models for granular materials using data from biaxial experiments. Geotechnique, 1985, 35(3): 299-317.
    [26] Han C, Vardoulakis I. Plane-strain compression experiments on water-saturated fine-grained sand. Geotechnique, 1991, 41(1): 49-78.
    [27] Desrues J, Viggiani G. Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28: 279-321.
    [28] Oda M, Kazama H. Microstructure of shear bands and its relation to mechanisms of dilatancy and failure of dense granular soils. Geotechnique, 1998, 48(4): 465-481.
    [29] Kurukulasuriya L C, Oda M, Kazama H. Anisotropy of undrained shear strength of an over-consolidated soil by triaxial and plane strain tests. Soils and Foundations, 1999, 39(1): 21-29.
    [30] Saada A S, Bianchini G F, Liang L Q. Cracks, bifurcation and shear bands propagation in Saturated clay. Geotechnique, 1994, 44(1): 35-64.
    [31]蒋明镜,沈珠江.结构性粘土剪切带的微观分析(英文).岩土工程学报, 1998, 20(2): 102-108.
    [32] Roscoe K H. The influence of strains in soil mechanics. Geotechnique, 1970, 20(2): 129-170.
    [33] Alshibli K A, Sture S. Sand shear band thickness measurements by digital imaging techniques. Journal of Computing in Civil Engineering, 1999, 13(2): 103-109.
    [34] Morgenstern N, Tchalenko J. Microscopic structures in kaolin subjected to direct shear. Geotechnique, 1967, 17: 309-328.
    [35] Grimstad G, Thakur V, Nordal S. Experimental Observation on Formation and propagation of shear zone in Norwegian Quick clay. Proceedings of the Landslides and avalanches: 11th ICFL, Trondheim, Norway, 2005: 137-141.
    [36]沈珠江.科学家不应只是解释现象.岩土工程学报, 2005, 27(12): 1494-1495.
    [37]介玉新.加筋土的等效附加应力法分析及模型试验研究[博士学位论文].北京:清华大学水利水电工程系, 1998.
    [38]王国利,陈生水,徐光明.干湿循环下膨胀土边坡稳定性的离心模型试验.水利水运工程学报, 2005, 4(4): 6-10.
    [39]高长胜,徐光明,张凌,杨守华.边坡变形破坏离心机模型试验研究.岩土工程学报, 2005, 27(4): 478-481.
    [40]牟太平,张嘎,张建民.土坡破坏过程的离心模型试验研究.清华大学学报(自然科学版), 2006, 46(9): 1522-1525.
    [41]徐光明,王国利,顾行文,曾友金.雨水入渗与膨胀土边坡稳定性试验研究.岩土工程学报, 2006, 28(2): 270-273.
    [42]姚裕春,姚令侃,袁碧玉.边坡开挖迁移式影响离心模型试验研究.岩土工程学报, 2006, 28(1): 76-80.
    [43] Zornberg J G, Sitar N, Mitchell J K. Performance of geosynthetic reinfored slopes at failure. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(8): 670-683.
    [44] Take W A, Bolton M D. The use of centrifuge modelling to investigate progressive failure of overconsolidated clay embankments. in Centrifuge and Constitutive Modelling: Two Extremes, S. M. Springman, Ed., 2002. 191-197.
    [45] Wolf H, Konig D, Triantafyllidis T. Centrifuge model tests on sand specimen under extensional load. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29: 25-47.
    [46]孔宪宾,何卫忠,佘跃心.测量土体内部位移场的一种新方法.力学与实践, 2000, 22(3): 41-44.
    [47]张嘎,王爱霞,牟太平,张建民.边坡破坏过程离心模型试验的应力位移场研究.岩土力学, 2008, 29(10): 2637-2641.
    [48] Rudnicki J W, Rice J R. Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 1975, 23: 371-394.
    [49] Hill R. A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 1958, 6: 236-249.
    [50] Hill R. Acceleration waves in solids. Journal of the Mechanics and Physics of Solids, 1961, 10: 1-16.
    [51]钱建固,黄茂松.土体变形分叉的非共轴理论.岩土工程学报, 2004, 26(6): 777-781.
    [52]张永强,宋俐,俞茂宏.平面应变问题非连续分叉统一解.土木工程学报, 2004, 37(4): 54-59.
    [53]杨强,陈新,周维垣.岩石类材料的分叉分析及其工程应用.岩土工程学报, 2001, 23(4): 403-406.
    [54]周维垣,刘元高,赵吉东,杨强.岩体稳定的分叉局部化模型研究.中国岩石力学与工程学会第七次学术大会论文集,西安, 2002: 22-26.
    [55]赵冰.岩土介质应变局部化问题的广义塑性梯度理论研究[博士学位论文].西安:西安理工大学水利水电学院, 2005.
    [56]李国琛,耶那.塑性大应变微结构力学.北京:科技出版社, 1993.
    [57] Pietruszczak S, Niu X. On the Description of localized deformation. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 27: 791-805.
    [58]黄茂松,钱建固.平面应变条件下饱和土体分叉后的力学性状.工程力学, 2005, 22(1): 48-53.
    [59]钱建固,黄茂松.土体应变局部化判别准则与峰值后的力学性状.同济大学学报(自然科学版), 2005, 33(1): 11-15.
    [60] de Borst R. Simulation of strain localization: A reappraisal of the Cosserat continuum. Engineering Computations, 1991, 8(4): 317-332.
    [61] de Borst R. Generalization of J2 -flow theory for polar continua. Computer Methods in Applied Mechanics and Engineering, 1993, 103(3): 347-362.
    [62] Steinmann P. Formulation and computation of geometrically nonlinear gradient damage. International Journal for Numerical Methods in Engineering, 1999, 46(5): 757-779.
    [63]李锡夔,唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟.岩石力学与工程学报, 2005, 24(9): 1497-1505.
    [64] Peerling R H J, de Borst R, Brekelmans W A M, de Vree J H P. Gradient enhanced damage for qusi-brittle materials. International Journal for Numerical Methods in Engineering, 1996, 39: 3391-3403.
    [65] Bazant Z P, Pijaudier-Cabot G. Nonlocal continuum damage, Localization instability and convergence. Journal of Applied Mechanics, 1988, 55: 287-293.
    [66] Zervos A, Papanastasiou P, Vardoulakis I. A finite element displacement formulation for gradient elastoplasticity. International Journal for Numerical Methods in Engineering, 2001, 50: 1369-1388.
    [67]宋二祥.软化材料有限元分析的一种非局部方法.工程力学, 1995, 12(4): 93-101.
    [68] Chen J S, Zhang X, Belytschko T. An implicit gradient model by reproducing kernel strain regularization in strain localization problems. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 2827-2844.
    [69]赵吉东,周维垣,刘元高.基于应变梯度的损伤局部化研究及应用.力学学报, 2002, 34(3): 445-452.
    [70]孙红,赵锡宏.软土的损伤对剪切带形成的影响.同济大学学报(自然科学版), 2001, 29(3): 278-282.
    [71]余寿文,冯西桥.损伤力学. 1 ed.北京:清华大学出版社, 1997.
    [72] Yatomi C, Yashima A, Iizuka A. General theory of shear bands formation by a non-coaxial cam-clay model. Soils and Foundations, 1989, 29(3): 41-53.
    [73]杨强,陈新,周维垣.岩土材料弹塑性损伤模型及变形局部化分析.岩石力学与工程学报, 2004, 23(21): 3577-3583.
    [74]陈新,杨强,周维垣.岩土材料塑性损伤模型及拱坝的变形局部化分析.岩土力学, 2007, 28(5): 865-870.
    [75]沈珠江.应变软化材料的广义孔隙压力模型.岩土工程学报, 1997, 19(3): 14-21.
    [76]沈珠江.广义吸力和非饱和土的统一变形理论.岩土工程学报, 1996, 18(2): 1-9.
    [77] Rashid Y R. Analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design, 1968, 7: 334-344.
    [78] Oliver J, Cervera M, Manzoli O. Strong discontinuities and continuum plasticity models: the strong discontinuity approach. International Journal of Plasticity, 1999, 15: 319-351.
    [79] Oliver J. A consistent characteristic length for smeared cracking models. International Journal for Numerical Methods in Engineering, 1989, 28: 461-474.
    [80] Duarte C A, Oden J T. An h-p adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 237-262.
    [81] Melenk J M, BabuSka I. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 289-314.
    [82] Duarte C A, Hamzeh O N, Liszka T J, Tworzydlo W W. A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 2227-2262.
    [83]彭自强,李小凯,葛修润.广义有限元法对动态裂纹扩展的数值模拟.岩石力学与工程学报, 2004, 23(18): 3132-3137.
    [84] Stolarska M, Chopp D L, Moes N, Belytschko T. Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 2001, 51(8): 943-960.
    [85] Chessa J, Smolinski P, Belytschko T. The extended finite element method (XFEM) for solidification problems. International Journal for Numerical Methods in Engineering, 2002, 53(8): 1959-1977.
    [86] Moes N, Belytschko T. Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics, 2002, 69: 813-833.
    [87] Sukumar N, Chopp D L, Moes N, Belytschko T. Modeling holes and inclusions by level sets in extended finite-element method. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 6183-6200.
    [88] Chessa J, Belytschko T. Arbitrary discontinuities in space-time finite elements by level sets and X-FEM. International Journal for Numerical Methods in Engineering, 2004, 61(15): 2595-2614.
    [89] Ventura G, Budyn E, Belytschko T. Vector level sets for description of propagating cracks in finite elements. International Journal for Numerical Methods in Engineering, 2003, 58(10): 1369-1388.
    [90] Zi G, Belytschko T. New crack-tip elements for XFEM and applications to cohesive cracks. International Journal for Numerical Methods in Engineering, 2003, 53(15): 2221-2240.
    [91] Chessa J, Wang H, Belytschko T. On the construction of blending elements for local partition of unity enriched finite elements. International Journal for Numerical Methods in Engineering, 2003, 57: 1015-1038.
    [92] Simo J C, Rifai M S. A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 1990, 29: 1595-1638.
    [93] Samaniego E, Belytschko T. Continuum-discontinuum modelling of shear bands. International Journal for Numerical Methods in Engineering, 2005, 62(13): 1857-1872.
    [94] Areias P M A, Belytschko T. Non-linear analysis of shells with arbitrary evolving cracks using XFEM. International Journal for Numerical Methods in Engineering, 2005, 62: 384-415.
    [95] Song J-H, Areias P M A, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868-893.
    [96] Areias P M A, Belytschko T. Two-scale shear band evolution by local partition of unity. International Journal for Numerical Methods in Engineering, 2007, 72(6): 658-696.
    [97] Belytschko T, Gracie R. On XFEM applications to dislocations and interfaces. International Journal of Plasticity, 2007, 23: 1721-1738.
    [98]李录贤,王铁军.扩展有限元法(XFEM)及其应用.力学进展, 2005, 35(1): 5-20.
    [99]杜效鹄.基于单位分解的富集方法及其在混凝土断裂分析中的应用[博士学位论文].北京:清华大学水利水电工程系, 2005.
    [100]杜效鹄,段云岭,王光纶.用连续–非连续方法分析混凝土梁的破坏过程.岩石力学与工程学报, 2005, 24(23): 4335-4340.
    [101]方修君.基于扩展有限元方法的连续-非连续过程静动力模拟研究[博士学位论文].北京:清华大学水利水电工程系, 2007.
    [102] Zienkiewicz O C, Huang M. Localization problems in plasticity using finite elements with adaptive remeshing. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19: 127-148.
    [103] Zienkiewicz O C, Zhu J Z. A simple error estimator and adaptive procedure for practical engineering analysis. International Journal for Numerical Methods in Engineering, 1987, 24: 337-357.
    [104] Xu X P, Needleman A. Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line. International Journal of Fracture, 1994, 74: 253-275.
    [105] Ortiz M, Suresh S. Statistical properties of residual stresses and intergranular fracture in ceramic material. Journal of Applied Mechanics, 1993, 60: 77-84.
    [106] Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 1999, 44: 1267-1282.
    [107] Cundall P A. A computer model for simulating progressive, large scale movements in blocky rock system. Proceedings of the Symposium of the international Society Rock Mechanics, Nancy, France, 1971, 2: 129-136.
    [108] Cundall P. Explicit finite-difference methods in geomechanics. American Society of Mechanical Engineers, Applied Mechanics Division, AMD, 1976, 1: 132-150.
    [109] Cundall P. Shear band initiation and evolution in frictional materials. Proceedings of the ASCE Engineering Mechanics Specialty Conference, Columbus, OH, USA, 1991: 1284-1289.
    [110]石根华.数值流形方法与非连续变形分析.北京:清华大学出版社, 1997.
    [111]刘凯欣,高凌天.离散元法研究的评述.力学进展, 2003, 33(4): 483-490.
    [112]陈文胜,王桂尧,刘辉,郑榕明.岩石力学离散单元计算方法中的若干问题探讨.岩石力学与工程学报, 2005, 24(10): 1639-1644.
    [113] Powrie W, Ni Q, Harkness R M, Zhang X. Numerical modelling of plane strain tests on sands using a particulate approach. Geotechnique, 2005, 55(4): 297-306.
    [114] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256.
    [115] Belytschko T, Krongauz Y, Organ D, Fleming M, et al. Meshless methods:An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 3-47.
    [116]张雄,宋康祖,陆明万.无网格法研究进展及其应用.计算力学学报, 2003, 20(6): 730-742.
    [117]顾元通,丁桦.无网格法及其最新进展.力学进展, 2005, 35(3): 323-337.
    [118]卢波,葛修润,孔祥礼.有限元法、无单元法及自然单元法之比较研究.岩石力学与工程学报, 2005, 24(5): 780-786.
    [119] Shi G H. Manifold method of material analysis. Proceedings of the Transactrions of the 9th Army Conference on Applied Mathematics and Computing, Minneapolish, Minnesoda, 1991: 51-56.
    [120]张国新.流形元法与结构模拟分析.中国水利水电科学研究院学报, 2003, 1(1): 63-69.
    [121]周维垣,杨若琼,剡公瑞.流形元法及其在工程中的应用.岩石力学与工程学报, 1996, 15(3): 193-200.
    [122]韩有民,罗先启,王水林,张润峰.裂纹扩展时物理覆盖与流形单元的生成算法.岩土工程学报, 2005, 27(6): 662-666.
    [123] Karihaloo B L, Xiao Q Z. Modelling of stationary and growing cracks in FE framework without remeshing: A state-of-the-art review. Computers and Structures, 2003, 81: 119-129.
    [124] Strouboulis T, Babuska I, Copps K. The design and analysis of the generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 2000, 181: 43-69.
    [125]李建红.基于细观破损机理的胶结结构性土本构模型研究[博士学位论文].北京:清华大学水利水电工程系, 2008.
    [126]喻葭临,张其光,于玉贞,孙逊.扩展有限元中非连续区域的一种积分方案.清华大学学报(自然科学版), 2009, 49(3): 351-354.
    [127] Areias P M A, Belytschko T. Analysis of three-dimensional crack initiation and propagation using the extended finite element method. International Journal for Numerical Methods in Engineering, 2005, 63: 760-788.
    [128] Wells G N, Sluys L J. A new method for modelling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering, 2001, 50: 2667-2682.
    [129]方修君,金峰,王进廷.基于扩展有限元法的粘聚裂纹模型.清华大学学报(自然科学版), 2007, 47(3): 344-347.
    [130]方修君,金峰,王进廷.用扩展有限元方法模拟混凝土的复合型开裂过程.工程力学, 2007, 24(增): 46-52.
    [131] Dolbow J, Moes N, Belytschko T. An extended finite element method for modeling crack growth with frictional contact. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 6825-6846.
    [132] Hillerborg A, Modeer M, Peterson P E. Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Researtch, 1976, 6: 773-782.
    [133] Planas J, Elices M, Guinea G V, Gómez F J, et al. Generalizations and specializations of cohesive crack models. Engineering Fracture Mechanics, 2003, 70(14): 1759-1776.
    [134] Eberhard P, Hu B.现代接触动力学.南京:东南大学出版社, 2003.
    [135]张丙印,师瑞峰,王刚.高面板堆石坝面板脱空问题的接触力学分析.岩土工程学报, 2003, 25(3): 361-364.
    [136]沈珠江.粘土的双硬化模型.岩土力学, 1995, 16(1): 1-8.
    [137]周小文.盾构隧道土压力离心模型试验及理论研究[博士学位论文].北京:清华大学水利水电工程系, 1999.
    [138]牟太平.土坡破坏过程的离心模型试验研究[硕士学位论文].北京:清华大学水利水电工程系, 2006.
    [139] Skempton A W. Geotechnical aspects of the Carsington dam failure. Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1985, 5: 2581-2591.
    [140] Potts D M, Dounias G T, Vaughan P R. Finite element analysis of progressive failure of Carsington embankment. Geotechnique, 1990, 40(1): 79-101.
    [141] Potts D M, Zdravkovic L. Finite element analysis in geotechnical engineering: application. London: Thomas Telford Publishing, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700