液晶光栅相控阵波前检测及性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液晶光栅作为一种光学相控阵被应用在激光雷达、卫星通信等系统中,可以实现激光束的灵活偏转。而要对定向光束的质量进行控制,就需要对液晶光栅相控阵的波前进行测试,分析其波前畸变的情况。
     要正确的测量出液晶光栅的特殊的剧烈变化的波前轮廓,就需要了解其波前分布误差对器件性能也即是对光栅衍射场的影响情况。为此,本文分析了影响液晶光栅波前轮廓的误差来源,把液晶光栅相控阵的波前误差分成周期型和非周期型两种,利用傅里叶级数分解及角谱衍射理论得出了不同类型波前误差对光栅衍射场的影响,并进行了仿真分析。
     根据波前误差的不同类型提出了针对性的波前测量方法,对这些方法进行了理论和仿真分析。对波前误差为周期型的情况,提出可通过测试各衍射级次的近场光强来近似反演液晶光栅后表面处(也可称为出口端面)的光场分布,从而求出波前分布。对波前误差为非周期型的情况,提出两种测试方法。一种是直接测量液晶光栅出口端面的波前分布。一种是测量闪耀级次的衍射光场,用逆衍射运算来反演液晶光栅出口端面的波前误差分布。
     提出采用新型四边形结构的径向剪切干涉光路来测量液晶光栅相控阵的波前,给出了适合于不同频率范围波前的三种测量方法:自载波调制法,固定载波调制法及单一衍射级反演法。研制出口径10mm×10mm的剪切干涉仪,并与商用WYKO干涉仪进行比对测试,对同一块平面样板测出的波前之差的峰谷(Peak ToValley,简称P-V)值小于/20,均方根值(Root Mean Squares,简称RMS)小于/200。用该剪切干涉仪测量了液晶光栅的静态相位分布、电压-相移特性及偏转光束波前,为液晶光栅器件的性能分析及加载电压方案提供了依据。
     提出基于4f系统的Mach-Zehnder共轭移相干涉法测试液晶光栅出口端面波前。用研制的10mm×10mm口径Mach-Zehnder共轭移相干涉仪测量出了不同周期液晶光栅的波前分布,由测试结果计算出的远场光强分布与实测远场分布基本一致,说明了测试结果的准确性。
Liquid-crystal grating, as a kind of optical phased array, has been used in laserradar system, satellite communication system and other photoelectric systems to realizeagile beam steering. In order to control directional beam quality, the wavefront of liquidcrystal grating phased array needs to be tested and the wavefront distortion needs to beanalysised.
     To properly test the special dramaticly-changed wavefront contour of the liquidcrystal grating, the impact of the wavefront distribution on device performance, or onthe grating diffraction field, needs to be understood. This paper analyzes the errorsources of liquid crystal grating wavefront contour and divides the wavefront errors ofliquid crystal grating phased array into two types: periodic and non-periodic. Using theFourier series decomposition and angular spectrum diffraction theory, the influence ofdifferent types of wavefront errors on grating diffraction field has been calculated, andthe simulation analysis has been done.
     According to the different types of wavefront errors, different wavefront measuringmethods have been proposed. And theoretical analysis and computer simulation aboutthese methods have been done. For periodic wavefront error, optical field distribution ofthe back surface of liquid crystal grating (also known as the exit end of liquid crystalgrating) can be restructured approximately by testing the near-field intensities of all thediffraction orders, and thus the wavefront distribution is obtained from it. Fornon-periodic wavefront error, two kinds of test methods have been proposed. one isgetting wavefront distribution through directly measuring optical field distribution ofthe exit end of liquid crystal grating. The other is gaining wavefront error distributionthrough measuring optical field distribution of the blazed order and the inversediffraction propagation calculation.
     Measuring the wavefront of liquid crystal grating phased array by means of thenovel quadrilateral radial shearing interference light path has been proposed. And threekinds of measuring methods suitable for different frequency range wavefronts havebeen given: the own carrier modulation, fixed carrier modulation and a single diffraction order inversion. A10mm×10mm aperture radial shearing interferometer hasbeen developed. Using this interferometer and a commercial WYKO interferometertesting the same plane optical element, the difference of test results is less than λ/20forpeak to valley (P-V) value and less than/200for root mean square (RMS) value. Staticphase distribution of liquid crystal grating, voltage-phase shift characteristics and thewavefront of deflection beam have been measured utilizing this shearing interferometer,which provide a basis for performance analysis and voltage load scheme of liquidcrystal grating device.
     Mach-Zehnder conjugate phase shifting interferometry based on4f system hasbeen advanced to measure the wavefront of the exit end of liquid crystal grating. Thewavefronts of different periodic liquid crystal gratings have been tested with a10mm x10mm aperture Mach-Zehnder conjugate phase shifting interferometer. The far fieldintensity distributions of diffraction fields of liquid crystal gratings calculated from theresults are the same as the far field distributions measurement, which proves theaccuracy of test results.
引文
[1] P. F. Mcmanamon, D. L. Corkum, J. L. Friedman, et al. Optical phased array technology.Proceeding of the IEEE,1996,84(2):268-298
    [2] R. A. Meyer. Optical beam steering using a multichannel lithium tantalite crystal. Appl. Opt.,1972,11(3):613-616
    [3] D. R. Wight, J. M. Heaton, B. T. Hughes, et al. Novel phased array optical scanning deviceimplemented using Gaas/Algaas technology. Appl. Phys. Lett.,1991,59(8):899-901
    [4] J. A. Thomas, Y. Fainman. Programmable Diffractive optical element using a multichannellanthanum-modified lead zirconate titanate phase modulator. Opt. Lett.,1995,20(13):1510-1512
    [5] P. F. Mcmanamon. Laser radar development. Proceedings of SPIE,1998,3380:50-57
    [6] A. Terry. Electronic beam control for advanced laser radar. Proceedings of SPIE,1999,3707:316-326
    [7] P. F. Mcmanamon. An overview of optical phased array technology and status. Proceedings ofSPIE,2005,5947:1-10
    [8] W. Bruce, M. Milind, H. Matthew. Liquid crystal beam directors for airborne free-space opticalcommunications. IEEE Aerospace Conference Proceedings,2004:1702-1709
    [9] H. Emil, S. Johan, L. Mikael, et al. Laser beam steering and tracking using a liquid crystal spatiallight modulator. Proceedings of SPIE,2003,5087:13-23
    [10] H. Emil, S. Lars, L. Mikael. Intensity variations using a quantized spatial light modulator fornonmechanical beam steering. Opt. Eng.,2003,42(3):613-619
    [11]郑春艳,杨若夫,徐林,等.液晶闪耀光栅波前相位测量方法.中国激光,2011,38(10):1008004-1-6
    [12]杜祥琬.实际强激光远场靶面上光束质量的评价因素.中国激光,1997,24(4):327-332
    [13]鲜浩,姜文汉.波像差与光束质量指标的关系.中国激光,1999,26(5):415-419
    [14] D. P. Resler, D. S. Hobbs, R. C. Sharp, et al. High-efficiency liquid-crystal optical phased-arraybeam steering. Opt. Lett.,1996,21(9):689-691
    [15] P. F. Mcmanamon, W. Thompson. Phased array of phased arrays (PAPA) laser systemsarchitecture. Fiber and Integrated Optics,2003,22(2):79-88
    [16] S. Steven, S. Jay. Advances in liquid crystal based devices for wavefront control and beamsteering. Proceedings of SPIE,2005,5894-0K:1-13
    [17] B. Wang, G. Zhang, A. Glushchenko, et al. Stressed liquid-crystal optical phased array for fasttip-tilt wavefront correction. Appl. Opt.,2005,44(36):7754-7759
    [18] Y. H. Lin, M. Mahajan, D. Taber, et al. Compact4cm aperture transmissive liquid crystaloptical phased array for free-space optical communications. Proceedings of SPIE,2005,5892-0C:1-10
    [19] S. Jay, S. Steve. In-situ measurement of liquid crystal spatial light modulators beam steeringcharacteristics during gamma irradiation. Proceedings of SPIE,2005,6308-05:1-12
    [20] A. Linnenberger, S. Serati, J. Stockley. Advances in optical phased array technology.Proceedings of SPIE,2006,6304-0T:1-9
    [21]张健,徐林,吴丽莹,等.液晶光学相控阵可编程光束偏转的研究.光子学报,2008,37(8):1497-1502
    [22]徐林,张健,吴丽莹.液晶光学相阵列相移单元的电压-相移特性.红外与激光工程,2007,36(6):932-935
    [23]张翠玉,黄子强.二元光学液晶闪耀光栅的特性分析.光学学报,2008,28(7):1231-1235
    [24]黄子强,张翠玉.液晶二元光栅用于激光方位探测与跟瞄.红外与激光工,2008,37(S3):307-310
    [25] D. David, G. John, B. Stephen. Control algorithms of liquid crystal phased arrays used asadaptive optic correctors. Proceedings of SPIE,2006,6306:1-9
    [26] S. Restaino, D. Dayton, S. Browne, et al. On the use of dual frequency nematic material foradaptive optics systems: first results of a closed-loop experiment. Opt. Exp.,2000,6(1):2-6
    [27] J. Gourlay, G. D. Love, P. M. Birch, et al. Real-time closed-loop liquid crystal adaptive opticssystem: first results. Opt. Commun.,1997,137(1):17-21
    [28] T. S. Francis, J. Suganda, T. Aris. Applications of liquid crystal spatial light modulators tooptical information processing systems. Proceedings of SPIE,3143:92-101
    [29] A. P. Onokhov, V. A. Berenberg, A. N. Chaika, et al. Novel liquid crystal spatial lightmodulators for adaptive optics and image processing. Proceedings of SPIE,1998,3388:139-148
    [30] N. L. Ivanova, A. P. Onokhov, A. N. Chaika, et al. Liquid-crystal spatial light modulators foradaptive optics and image processing. Proceedings of SPIE,1996,2754:180-185
    [31]姜文汉,王春红,凌宁,等.61单元自适应光学系统.量子电子学报,1998,15(2):193-199
    [32] W. H. Jiang, H. Xian, F. Shen. Detecting error of Shack-Hartmann wavefront sensor.Proceedings of SPIE,1997,3126:534-544
    [33]姜文汉,鲜浩.哈特曼波前传感器的应用.量子电子学报,1998,15(2):164-168
    [34] G. R. Cao, X. Yu. Accuracy analysis of a Hartmann-Shack wavefront sensor operated with afaint object. Opt. Eng.,1994,33(7):2331-2335
    [35] G. R. Cao. Study on the Hartmann-Shack wavefront sensor. Proceedings of SPIE,1752:112-119
    [36]鲜浩,李华贵,姜文汉,等.用Hartmann-Shack传感器测量激光束的波前相位.光电工程,1995,22(2):38-45
    [37]姜文汉,鲜浩,沈峰.夏克-哈特曼波前传感器的探测误差.量子电子学报,1998,15(2):218-227
    [38]李华强.夏克-哈特曼波前传感器的若干问题分析:[博士学位论文].成都:中国科学院光电技术研究所,2008
    [39]张昂,不同子孔径像素数时的夏克-哈特曼波前传感器探测性能研究:[博士学位论文].成都:中国科学院光电技术研究所,2006
    [40]蒋志凌.哈特曼波前传感器特性和应用研究:[博士学位论文].武汉:中国科学院武汉物理与数学研究所,2005
    [41] R. C. Csstan. Testing of telescope optics: a new approach. Proceedings of SPIE,1236:756-766
    [42] N. Roddier. Algorithms for wavefront reconstruction out of curvature sensing data. Proceedingsof SPIE,1542:120-129
    [43] F. Roddier. Seeing monitor based on wavefront curvature sensing. Proceedings of SPIE,1236:474-479
    [44] N. Roddier. Curvature sensing and compensation: a computer simulation. Proceedings of SPIE,1114:92-96
    [45] F. Roddier. Curvature sensing and compensation: a new conceptin adaptive optics. Appl. Opt.,1988,27(7):1223-1225
    [46] P. Hickson. Wave-front curvature sensing from a single defocused image. J. Opt. Soc. Am. A,1994,11(5):1667-1673
    [47] F. Rigaut, B. L. Ellerbroek, M. J. Northcott. Comparison of curvature-based andShackHartmann-based adaptive optics for the Gemini telescope. Appl. Opt.,1997,36(13):2856-2868
    [48] C. Schwartz, E. Ribak, S. G. Lipson. Bimorph adaptive mirrors and curvature sensing. J. Opt.Soc. Am. A,1994,11(2):895-902
    [49] M. Milman, D. Redding, L. Needel. Analysis of curvature sensing for large aperture adaptiveoptics systems. J. Opt. Soc. Am. A,1996,13(6):1226-1238
    [50]李敏,李新阳,姜文汉.一种线性相位反演波前测量方法的实验研究.强激光与粒子束,2007,19(4):611-615
    [51]李敏,李新阳,姜文汉.对一种线性相位反演波前测量方法的数值仿真.强激光与粒子束,2007,19(7):1107-1111
    [52]李敏,李新阳,姜文汉.线性相位反演传感器与哈特曼传感器的实验研究对比.光学学报,2008,28(4):619-625
    [53]李新阳,李敏.一种线性相位反演波前测量方法的原理和性能初步分析.光学学报,2007,27(7):1211-1216
    [54]陈波,李敏,李新阳,等.基于线性相位反演技术的自适应光学闭环实验研究.光学学报,2008,28(9):1633-1637
    [55] R. A. Gonsalves. Small-phase solution to the phase-retrieval problem. Opt. Lett.,2001,26:684-685
    [56]杨国光.近代光学测试技术.浙江:浙江大学出版社,2001,60
    [57]金国藩,李景镇.激光测量学.北京:科学出版社,1998,337
    [58] L. J. Friedman, D. S. Hobbs, S. Lieberman, et al. A spatially resolved phase imaging of aprogrammable liquid-crystal grating. Appl. Opt.,1996,35(31):6236-6240
    [59]徐德衍.剪切干涉仪及其应用.北京:机械工业出版社,1987
    [60]熊树生,陈勇,詹樟松,等.剪切干涉法用于测量燃烧温度的研究.农业机械学报,2000,31(3):81-83
    [61] W. J. Bates. A wavefont shearing interferometer. Proc. Phys. Soc.,1947,59:940-952
    [62] K. Matsuda, S. Watanabe, T. Eiju. Real-time measurement of large liquid surface deformationusing a holographic shearing interferometer. Appl. Opt.,1985,24(24):4443-4447
    [63] G. Harbers, P. J. Kunst, G. W. Leibbrandt. Analysis of lateral shearing interferogram. Appl.Opt.,1996,35(31):6162-6172
    [64] T. Yatagai, T. Kanou. Aspherical surface testing with shearing interferometer using fringescanning detection method. Opt. Eng.,1984,23(4):357-360
    [65] D. S. Brown. Radial shear interferometry. J. Sci. Instrum.,1962,39:71-72
    [66] P. HariHaran, D. Sen. Interferometric measurements of the aberrations of microscope objectives.Opt. Acta.,1962,9:159-175
    [67] W. H. Steel. A radial-shear interferometer for use with a laser source. Opt. Acta.,1970,17(10):721-724
    [68] Q. S. Ru, N. Ohyama, T. Honda. Constant radial shearing interferometry with two spiral phasegrating. Opt. Commun.,1989,70(6):445-449
    [69] J. C. Fouere, C. Roychoudhuri. A holographic, radial and lateral shear interferometer. Opt.Commun.,1974,12(1):29-31
    [70] R. P. Shukla, M. Moghbel, P. Venlcateswarlu. Compact in-line laser radial shear interferometer.Appl. Opt.,1992,31(21):4125-4131
    [71] D. Malacara. Mathematical interpretation of radial shearing interferometer. Appl. Opt.,1974,13(8):1781-1784
    [72] P. Hariharan, B. F. Oreb, W. Z. Zhou, Digital radial shearing interferometry: testing mirrorswith a central hole. Opt. Acta.,1986,33(3):251-254
    [73] P. HariHaran, D. Sen. Radial shearing interferometer. J. Sci. Instrum.,1961,38(11):71-72
    [74] M. V. R. K. Muriy. A compact radial shearing interferometer based on the law of refraction.Appl. Opt.,1964,3(7):853-857
    [75] O. Bryngdahl. Shearing interferometry with constant radial displacement. J. Opt. Soc. Am. A,1971,61(2):169-172
    [76] Q. S. Ru, N. Ohyama, T. Honda, et al. Constant radial shearing interferometry with circulargrating. Appl. Opt.,1989,28(1):3350-3353
    [77] J. C. Fouere, D. Malacara. Holographic radial shear interferometer. Appl. Opt.,1974,13(9):2035-2039
    [78] D. R. Kohler, L. Gamiz. Interferogram reduction for radial-shear and local reference-holographic interferometer. Appl. Opt.,1986,25(10):1650-1652
    [79] P. Hariharan, B. F. Oreb, W. Z. Zhou. Measurement of aspheric surfaces using amicrocomputer-controlled digital radial-shear interferometer. Opt. Acta.,1984,31(9):989-999
    [80] R. W. Gerchberg, W. O. Saxton. Phase determination for image diffraction plane pictures in theelectron microscope. Optik,1971,34:275-284
    [81] R. W. Gerchberg, W. O. Saxton. A practical algorithm for the determination of phase fromimage and diffraction plane pictures. Optic,1972,35:227-246
    [82] J. R. Fienup. Phase retrieval algorithm: a comparison. Appl. Opt.,1982,21:2758-2769
    [83]曾发,谭峭峰,魏晓峰,等.一种可对复杂光场进行相位恢复的算法.中国激光,2006,33(3):339-342
    [84] B. Lauren. Numerical phase retrieval from intensity measurements in three planes. Proceedingsof SPIE,4932:590-598
    [85]黄利新,姚新,蔡冬梅,等.一种快速高精度的相位恢复迭代法.中国激光,2010,37(5):1218-1221
    [86]刘兰琴,吴毅.光束波前畸变的契伯俗山克斯顿测量方法探讨.光学学报,2000,20(9):1259-1562
    [87] V. Y. Lvanov, V. P. Sivokon, M. A. Vorontsov. Phase retrieval from a set of intensitymeasurements: theory and experiment. J. Opt. Soc. Am. A,1992,9(9):1515-1524
    [88] B. Z. Dong, Y. Zhang, B. Y. Gu, et al. Numerical in vestigation of phase retrieval in a fractionalFourier transform. J. Opt. Soc. Am. A,1997,14(10):2709-2714
    [89] T. E. Gureyev, A. Pogany, D. M. Paganin, et al. Linear algorithms for phase retrieval in theFresnel region. Opt. Commun.,2004,231:53-70
    [90]黄子强.液晶显示原理.北京:国防工业出版社,2006,116-124
    [91] S. T. Wu, U. Efron, L. D. Hess. Birefringence measurements of liquid crystals. Appl. Opt.,1984,23(21):3911-3915
    [92]孔令讲,朱颖,杨建宇,等.一种新的液晶相控阵组件波控方法.光学学报,2009,29(7):1962-1966
    [93]陈君,孔令讲,杨建宇,等.液晶相控阵组件动态测试系统波控数据获取方法研究.第十届雷达学术年会,2008,895-899
    [94]秦绪玲,孙炳全.二元光学元件衍射效率的分析与计算.辽宁师专学报,2002,4(3):8-9
    [95]廖延彪.光学原理与应用.北京:电子工业出版社,2006,204
    [96]秦克诚.傅里叶光学导论(第三版).北京:电子工业出版社,2006,50-51
    [97]王仕璠.现代光学原理.成都:电子科技大学出版社,1998,94-96
    [98]同济大学应用数学系.高等数学(第五版下册).北京:高等教育出版社,2003,254-255
    [99]张健,方运,吴丽莹,等.液晶光束偏转技术.中国激光,2010,37(2):325-334
    [100]吕乃光.傅里叶光学.北京:机械工业出版社,2007,87
    [101] L. Xu, L. Y. Wu, J. Zhang, et al. Effect of phase valley on diffraction efficiency of liquidcrystal optical phased array. Proceedings of SPIE,7133:71333L
    [102]叶玉堂.光学教程.北京:清华大学出版社,2005,128-130
    [103]吴健,严高师.光学原理教程.北京:国防工业出版社,2007,100-101
    [104]郁道银,谈恒英.工程光学.北京:机械工业出版社,2006,349-350
    [105]李俊昌.激光的衍射及热作用计算.北京:科学出版社,2002,157-160
    [106]李大海,陈怀新,陈祯培,等.径向剪切干涉波面重构算法和不同倍数下重建精度的研究.中国激光,2002,A29(6):504-508
    [107]刘东,杨甬英,夏佐堂.近红外瞬态脉冲波前高精度干涉检测技术.光学学报,2006,26(9):1372-1376
    [108]郑春艳,刘艺,吴健,等.一种准直偏转光束波前测试仪及其测试方法.中国专利,200910216634,2010-06-02
    [109]李大海.激光光束波前畸变的径向剪切干涉诊断及其控制新方法研究:[博士学位论文].成都:四川大学,2002
    [110] M. Takeda, I. Hideki, S. Kobayashi. Fourier-transform method of fringe-pattern analysis forcomputer-based topography and interferometry. J. Opt. Soc. Am. A,1982,72(1):156-160
    [111]陆元彪.近红外脉冲波前畸变的干涉检测及研究:[硕士学位论文].浙江:浙江大学,2005
    [112] W. Macy. Two-dimensional fringe-pattern analysis. Appl. Opt.,1983,22(23):3898
    [113] P. Hariharan, B. F. Oreb, T. Eiju. Digital phase-shifting interometry: a simpleerror-compensation phase calculation algorithm. Appl. Opt.,1987,26(13):2504-2506
    [114] Y. Y. Cheng, J. C. Wyant. Phase shifter calibration in phase-shifting interferometry. Appl. Opt.,1985,24(18):3049-3052
    [115] V. B. Hedser. Phase-step calibration for phase-stepped interferometry. Appl. Opt.,1999,38(16):3549-3555
    [116] X. Chen, M. Gramaglia, J. A. Yeazell. Phase-shift calibration algorithm for phase-shiftinginterferometry. J. Opt. Soc. Am. A,2000,17(11):2061-2066
    [117] C. S. Guo, Z. Y. Rong, J. L. He, et al. Determination of global phase shifts betweeninterferograms by use of an energy-minimum algorithm. Appl. Opt.,2003,42(32):6514-6519
    [118]梁志国,张大治,孙璟宇,等.四参数正弦波曲线拟合的快速算法.计测技术,2006,26(1):4-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700