青藏高原东南部下地壳流及上地幔构造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:青藏高原东南边缘大规模的地表隆起、形变和断层运动普遍认为是印度板块和欧亚板块在新生代碰撞形成的。由于缺乏浅地表、地壳和上地幔的构造信息,目前对于这种大规模地表运动的具体成因以及由碰撞引起的地壳和岩石圈形变仍未有定论,这也是当前地震学和地球动力学研究领域中的热点问题之一。
     本论文充分利用中国地震局在四川、云南、广西、贵州、广东、湖南等区域,自2007年7月到2010年7月共四年的宽频数字台网和其它台站所观测的地震波形资料。采用接收函数计算Moho深度和地壳Vp/Vs比值,并在接收函数的基础上引入了一种新的综合性方法计算了地壳各向异性参数。该综合性方法基于地壳各向异性介质中Moho面Ps转换波的到时,在径向分量和切向分量的接收函数所展现出的性质和谐波分析,估算横波分裂的快波方向和分裂时间。发现在青藏高原东南边缘的台站横波分裂时间变化较大,约0.24s-0.9s不等。而在相对青藏高原东南边缘较远的其他台站并没有发现地壳内部具有各向异性。同时Moho面深度和Vp/Vs自青藏高原东南边缘向东南方向逐渐变薄变弱。表明青藏高原东南部相对其周围区域含有丰富的铁镁质岩或存在部分熔融。该结果为青藏高原东南地区存在下地壳流模型提出了最新的地球物理证据。同时对比了上地幔SKS/SKKS分裂结果,发现地壳各向异性快波分裂方向与SKS/SKKS的上地幔处快波分裂方向基本一致,并且分裂时间与上地幔分裂时间几乎相同,说明青藏高原东南部地区地壳各向异性可能是SKS/SKKS横波分裂的主要贡献者。这表明上地幔构造可能是弱变形或者存在地壳与上地幔形变的解耦构造。
     为了进一步了解地壳与上地幔结构关系,解析上地幔岩石圈对地表抬升的作用。本文在已知地壳信息的基础上,采用有限频层析成像技术反演了该地区上地幔S波三维速度结构。由分析测量两台站所接收到穿越地球内部的地震波到时差,反演两个台站下方的构造。计算过程中选择3种不同频段的地震S波进行综合反演,分别是高频0.1-0.5hz、中频0.05-0.1hz、低频0.02-0.05hz。为了扩大研究区域,本文改进了台站对的选择方法,保证每个台站在反演矩阵中拥有合适比值。以每一个地震事件中的所有台站对首尾相连形成一个闭合圈,同时保证两个相邻台站间的地表距离大于200kmn。本文共选用3种不同地表距离分别是200km、300km、400km的走时差进行联合反演。这样既保证了射线较好地覆盖研究区域也保证了反演结果精细可靠。本文结果与前人的结果在大构造上基本一致,如四川盆地的高速异常以及在扬子克拉通在转换带处的高速异常等。除此之外,层析成像结果还显示出在青藏高原东南边缘存在一个连续的高速异常体,它沿着东经1000和1010由南往北连续分布,从北纬270约100km深处到北纬320附近约350km,其正上方覆盖着低速异常体。尽管本文结果还需要更多证据来证实,但这些新发现为岩石圈拆沉造成高原抬升提供了有力的佐证。
     针对以上研究,本文对青藏高原东南部地区的抬升有了一个综合认识。在印度板块与欧亚板块碰撞之后,青藏高原东南部地区由于印度板块的挤压力作用,在青藏高原地壳内出现下地壳流,造成了青藏高原的逐步抬升。另一方面来自于印度板块俯冲到欧亚板块中的密度大物质在重力作用下与岩石圈上部发生了部分拆沉现象,破坏了来自于岩石圈底部重物的牵引力作用,形成了岩石圈拆沉机制,从而使得岩石圈以上的地层被抬升。由此可知,青藏高原的地表抬升是多阶段非均匀、不等速过程,包括有下地壳流和岩石圈部分拆沉等多种动力学机制联合作用的产物。
Abstract:The large amount of surface uplift, deformation and strike-slip faulting around the southeast of Tibetan plateau margin is generally believed to be associated with the Cenozoic collision between Indian and Eurasian. However, details on the linkage between the surface deformation and the collision are not well understood, largely due to the lack of observations on subsurface deformation, especially in the deep crust and upper mantle. Studying the dynamics processes involoved in the deformation is one of the highlighted fields both in seismology and geodynamic field.
     We analyze a large amount of receiver function data recorded by regional seismic networks of the China Earthquake Administration (CEA), specifically, the provincial networks of the Sichuan, Yunnan, Guangxi, Guizhou, Guangdong and Hunan provinces. These data come from earthquakes occurring between July of2007and July of2010with broadband stations. We develop a comprehensive analysis method that facilitates the robust extraction of azimuthally seismic anisotropy from receiver function data. The method includes an estimate of fast polarization direction and splitting time by a joint analysis of radial and transverse receiver function data, and an evaluation of measurement reliability by statistical and harmonic analysis. We find significant crustal seismic anisotropy with a splitting time of0.24-0.9s beneath the SE margin of the Tibetan plateau, and the Moho depth and Vp/Vs become weak from the SE Tibet plateau margin to southeast. These results shed new light on the deformation process of the Tibetan plateau and provide strong evidence for a lower crust flow beneath the SE margin of the Tibetan plateau. Both the splitting time and fast polarization direction are comparable to those estimated from SKS/SKKS data, suggesting that crustal anisotropy is the main cause of shear wave splitting of the SKS/SKKS wave. Mantle deformations are either weak or predominantly vertical and are obviously different from those seen in the crust. A vertically flow in the upper mantle, combined with the observation of a thin lithosphere beneath the area, leads to the inference that part of the mantle lithosphere may have delaminated and is descending into the deep mantle. Stations located in the surrounding areas, on the other hand, exhibit very little to no crustal anisotropy. The estimated Moho depth and Vp/Vs ratio also show a distinct difference between the Tibetan plateau and the surrounding regions. These observations indicate the existence of a lower crustal flow may be present beneath the SE Tibetan plateau, and that the mantle lithosphere may have been mechanically decoupled from the upper crustal motions.
     In order to understand lithosphere deformation process associated with the uplift of the plateau and the relationship between the lower crust deformation and the lithosphere. We apply the finite frequency tomography method to the S waves data with differential travel times between pairs of stations in the inversion to eliminate traveltime anomalies resulting from heterogeneities outside the study area. We choose three different frequencies for ajoint inversion, there are0.1-0.5hz,0.05-0.1hz,0.02-0.05hz. To ensure the above assumption to be valid for a large-scale study area, we improve in selecting proper station pairs base on the traditional method. The stations loop in different events are designed and kept the surface distance between the neighboring stations pairs in loops within the shortest is larger than200km,300km,400km, respectively. We then conduct a joint inversion with three differential time data. Our results are consistent with previous tomography in terms of large-scale seismic anomalies, such as a high velocity anomaly beneath the Sichuan basin in the uppermost mantle and a high velocity anomaly in the transition zone that may be associated with the subducted Paleo-Pacific plate beneath the Yangtze craton. In addition to these known structures, we find relatively large-scale high velocity bodies inside the upper mantle beneath the SE margin of the Tibetan Plateau, along the longitude101°from the south to north. In particular, our images show continued high velocity bodies at~100km deep beneath latitude27°N, and further to the north, the latter high velocity body around32°N located at~350km, right below a large low velocity anomaly. Although other seismic observations are required to better constrain the nature of these high velocity structure, one possible scenario is that they may be drips or delaminated pieces of the continental lithosphere, as the consequence of the progressive uplift of the plateau.
     With the upwards systemic studies, we can get a comprehensive understanding the Southeast of Tibetan plateau. After the Indian-Eurasian collision, the lower crust flow beneath the SE Tibetan plateau margin was caused by the extrusion of Indian plate and the deformation of Eurasian crust. With this lower crust flow working, the Tibetan plateau is uplift. On the other hand, high density of the lower lithosphere detached from the upper lithosphere under downward pulling of gravity, which destroys the negative buoyancy, and then the surface of Tibetan plateau is uplifted with the positive buoyancy. In summary, uplift of the southeast borderland of the Tibetan Plateau was thought to have intensified since the late Tertiary as the whole and local deformation associated with the Indian-Eurasian collision accelerated in the region. Therefore, the uplift of Tibetan plateau is the result of joint action with multiple mechanisms, and multi-stage process with non-uniform and different velocity.
引文
[1]Tapponnier P,Peltzer G,Ledain AY,et al.Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J].Geology,1982,10: 611-616.
    [2]Bird Peter.Lateral extrusion of lower crust from under high topography in the isostatic limit [J].Geophysics.1991,96(6):10275-10286.
    [3]Royden L H,Burchfiel B C,King R W,et al.Surface deformation and lower crustal flow in eastern Tibet[J].Science,1997,276(5313):788-790.
    [4]Clark M K,Royden L H.Topographic ooze:Building the eastern margin of Tibet by lower crustal fiow[J].Geology,2000,28:703-706.
    [5]Tapponnier P,Lacassin R,Leloup P H,et al.The Ailao Shan/Red River metamorphic belt:tertiary left-lateral shear between Indochina and South China [J].Nature,1990,343:431-437.
    [6]Clark M.K,House M.A,Royden L.H.Late Cenozoic uplift of southeastern Tibet[J].Geology,2005,33(6),525-528.
    [7]Schoenbohm L M,Burchfiel B C,Chen L.Propagation of surface uplift,lower crustal flow,and Cenozoic tectonics of the southeast margin of the Tibetan plateau[J].Geology,2006,34(10):813-816.
    [8]Chen Z,Burchfiel B C,et al.Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation[J].Journal of Geophysical Research,2000,105(B7):16215-16227.
    [9]Zhang P,Shen Z,Wang M,et al.Continuous deformation of the Tibetan Plateau from global positioning system data[J].Geology,2004,32:809-812.
    [10]Shen Z K,Lu J J,Wang M,Burgmann R.Contemporary crustal deformation around the southeast borderland of the Tibetan plateau[J].Journal Geophysics Research,2005,110,B11409.
    [11]Meltzer S S,Burgmann Rvan der Hilst R.D,et al.Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy[J].Geology,2007,35:563-566.
    [12]Bai D,Unsworth M.J,Meju M.A.Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J].Nature Geoscience,2010,3,358-362.
    [13]Wang C Y,Chan WW,Mooney W.D.Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications[J].Journal Geophysics Research,2003,108 (B9):2442(1-13).
    [14]Nicolas A,Christensen N I.Formation of anisotropy in upper mantle peridotites—a review[J].American Geophysical Union,Washington D.C,1987,16 111-123.
    [15]Mainprice D.,Nicolas A.Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust[J]. Journal of Structural Geology,1989,11 (1-2):175-189.
    [16]Tommasi A,Tikoff B,Vauchez A.Upper mantle tectonics:three-dimensional eformation,olivine crystallographic fabrics and seismic properties[J].Earth and Planetary Science Letters,1999,168:173-186.
    [17]高原,滕吉文.中国大陆地壳与上地幔地震各向异性研究[J].地球物理学进展,2005,20(1):180-185.
    [18]Silver P G.Seismic anisotropy beneath the continents:probing the depths of Geology [J].Annual Review Earth Planet Science.1996,24,385-432.
    [19]Houseman G A,McKenzie D P,Molnar P.Convective thinning of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts[J].Journal of Geophysical Research,1981,86:6115-6132.
    [20]Tilmann F,Ni J,et al.Seismic Imaging of the Downwelling Indian Lithosphere Beneath Central Tibet[J].Science,2003,300:1424-1426.
    [21]洪淑蕙,Qi B K,Liu Y,等.龙门山地区地壳及上地幔结构的应用多重尺度有限频宽走时层析成像[J].国际地震动态,2010,24(6):23-30.
    [22]Poirier J P,Price G D.Primary slip system of iron and anisotropy of the Earth's inner Core[J].Physics of the Earth and Planetary Interior,1999,110:147-156
    [23]王春玉.西藏地区上部地幔震波层析成像[J].硕士论文,1995.
    [24]Hess H H.Seismic anisotropy of the uppermost mantle under oceans.N ature,1964,203:629-631.
    [25]Anderson D L.Theory of the Earth[M].Boston,M A:Blackwell Scientific Publications,1989.
    [26]Crampin S,Zatsepin S V.Modelling the compliance of crustal rock:Ⅱ.Response to tem poral changes before earthquakes.Geophysical Journallnternation,1997,129:495-506.
    [27]Levin V,Park J.P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation[J].Geophysical Journal International,1997,131(2):253- 266.
    [28]Lev E,Long M D,van der Hilst R D,Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation [J].Earth and Planetary Science Letters,2006,251:293-304.
    [29]常利军.云南地区上地幔各向异性研究[D].北京:中国地震局地球物理研究所,2005.
    [30]Him A,Jiang M,Sapin M,et al.Seismic anisotropy as an indicator of mantle flow beneath Himalayas and Tibet[J].Nature,1995,375:571-574.
    [31]Lave T,Avouac J P,Lacassin R,et al.Seismic anisotropy beneath Tibet:evidence for eastward extrusion of the Tibetan lithosphere [J].Earth and Planetary Science Letters,1996,140:83-96.
    [32]Maggi A,Debayle E,Priestley K.Azimuthal anisotropy of the pacific region [J].Earth and Planetary Science Letters,2006,250:53-71.
    [33]Wang CY,Flesch L M,Silver P G,Chang L J,Chan W W.Evidence for mechanically coupled lithosphere in central Asia and resulting implication[J].Geology,2008,36,363-366.
    [34]Yao H,Beghein C,van der Hist R D.Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:Ⅱ.Crustal and upper-mantle structure[J].Geophysical Journal International,2008,173(1):205-219.
    [35]Yao H,Van der Hilst R D,Montagner J P.Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography [J].Journal Geophysics Research,2010,115(B12):B12307.
    [36]McNamara DE,Owens T J.Azimuthal shear wave velocity anisotropy in the Basin and Range Province using Moho Ps converte phases [J].Journal Geophysics Research,1993,98(B7):12003-12017.
    [37]Liu.H and Niu.F.Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data [J].Geophysical Journal International,2012,188,144-164.
    [38]Sun Y,Niu Fenglin,Liu Huafeng,Chen Youlin,Liu Jianxin.Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data [J].Earth and Planetary Science Letters,2012,349-350 186-197.
    [39]Dahlen F A,Hung S H,Nolet G.Frechet kernels for finite frequency travel-times—Ⅰ.Theory [J].Geophysical Journal International,2000,141:157-174.
    [40]Hung S H,Dahlen F A,Nolet G.Frechet kernels for finite frequency travel-times—Ⅱ.Example [J].Geophysical Journal International,2000,141:175-203.
    [41]Hung S H,Shen Y,Chiao L Y.Imaging seismic velocity structure beneath the Iceland hot spot:A finite frequency approach[J].Journal of Geophysical Research,2004,109 (B08305):1-16.
    [42]Montelli R,Nolet G,Dahlen F A,et al.Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle[J].Science,2004,303:338-343.
    [43]Tromp J,Tape C,Liu Q Y.Seismic tomography adjoint methods with time reversal and banana-doughnut kernels [J].Geophysics Journal International,2005,160(1):195-216.
    [44]Tape C,Liu Q Y,Tromp J F.Finite frequency tomography using adjoint method-methodology and examples using membrane surface waves [J].Geophysical Journal International,2007,168(3):1105-1129.
    [45]Ren Y,Shen Y.Finite frequency tomography in southeastern Tibet:Evidence for the causal relationship between mantle lithosphere delamination and the north-south trending rifts.Journal Geophysics Research,2008,113(B10):B10316(1-12).
    [46]Yuan X,Ni J,Kind R,Mechie J and Sandvol E.Lithospheric and upper mantle structure of Southern Tibet from a seismological passive source experiment [J].Journal Geophysics Research,1997,102(B12),27491-27500.
    [47]Dueker K G and Sheehan A F.Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspots track [J].Journal of Geophysical Research,1997,102(B4):8313-8327.
    [48]Langston C A. Structure under Mount Rainier Washington inferred from teleseismic body waves[J].Journal of Geophysical Research,1979,84,4749-4762.
    [49]Clayton R W,Wiggins R A.Source shape estimation and deconvolution of teleseismic body waves[J].Geophysical Journal Research Astron Social.1976,47:151-177.
    [50]Ammon C J.The isolation of receiver effect from teleseismic p waveforms [J].Bulletin of the Seismological Society of America.1991,81 (6):2504-2510.
    [51]刘启元,Rainer Kind,李顺成.接收函数复谱比的最大或然性估计及非线性反演[J].地球物理学报,1996,39(4):502-511.
    [52]Park J,Levin V.Receiver functions from Multiple-Taper Spectral Correlation estimates[J].Journal of Geophysical Research,2000,103:26899-26917.
    [53]吴庆举,曾融生.用宽频带远震接收函数研究青藏高原的地壳结构[J].地球物理学报,1998,41(5):669-679.
    [54]Chen Y.L,Niu F,Liu R.F,et al.Crustal structure beneath China from receiver function analysis[J].Journal of Geophysical Research,2010,115:B03307(l-22)
    [55]Niu F,James D E.Fine structure of the lowermost crust beneath the Kaapvaal craton and its implications for crustal formation and evolution[J].Earth and Planetary Science Letters,2002,200,121-130.
    [56]Aki K,Richards P G.Quantitative seismology[M],1980,55D Gate Five Road Sausalito,CA 94965.
    [57]Kennett B L,Engdahl N.Traveltimes for global earthquake location and phase identification [J].Geophysical Journal International,1991,105(2),429-465.
    [58]Li X Q,Yuan X H.Receiver functions in northeast China implications for slab penetration into the lower mantle in northwest Pacific subduction zone[J].Earth and Planetary Science Letters,2003,216:679-691.
    [59]Gurrola H,Minster J B.Thickness estimation of the upper-mantle transition zone from bootstrapped velocities Petrum stacks of receiver functions [J].Geophysical Journal International,1998,133(1),31-43.
    [60]Niu F,Baldwin T,Pavlis G,et al.Receiver function study of the crustal structure of the Southeastern Caribbean Plate Boundary and Venezuela [J] Journal Geophysics Research,2007,112(B11):B11308(1-15).
    [61]Kanasewich E R.Time Sequence Analysis in Geophysics.University of Alberta Press,Edmonton,1973,AB:364-370.
    [62]Muirhead K J.Eliminating false alarms when detecting seismic events automatically [J].Nature,1968,217,533-534.
    [63]Sun Y,Toksoz M N.Crustal structure of China and surrounding regions from P wave traveltime tomography[J].Journal Geophysics Research,2006,111: B03310(1-20).
    [64]Zhu L,Kanamori H.Moho depth variation in southern California from teleseismic receiver functions [J].Journal Geophysics Research,2000,105(B2),2969-2980.
    [65]Vinnik L,Montagner J P.Shear wave splitting in the mantle Ps phase [J].Geophysical Research Letter,1996,23 (18):2449-2452.
    [66]Rabbel W,Mooney W D.Seismic anisotropy of the crystalline crust:What does it tell us?[J] Terra Nova,1996,8:16-21.
    [67]Babuska V,Cara M.Seismic Anisotropy in the Earth[M].1991,Kluwer Academic,Dordrecht.
    [68]张中杰,何樵登,徐中信.二维横向各向同性介质中人为边界反射的吸收-差分法弹性波场模拟[J].地球物理学报,1993,23(4):519-527.
    [69]Sherrington H F,Zandt G,Frederiksen A.Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters [J].Journal Geophysics Research,2004,109(B2):B02312.
    [70]Crampin S and Booth D C.Shear wave polarization near the North Anatolia fault,II.Interpretation in terms of crack induced anisotropy[J],Geophysical Journal International,1985,83(1):75-92.
    [71]Nataf H C,Montagner J P.Inversion of the azimuthally anisotropy of surface waves[C].AGU,San Francisco,Calif,1984,65.
    [72]Nishimura C E,Forsyth D W.Rayleigh wave phase velocities in the Pacific with implications for azimuthal anisotropy and lateral heterogeneities[J].Journal Geophysics Research,1988,94:479-501.
    [73]Hadiouche O,Jobert N,Montagner J P.Anisotropy of the African continent inferred from surface waves[J].Physics of the Earth and Planetary Interiors,1989,58(l),61-81.
    [74]Montagner J P.First results on the three dimensional structure of the Indian Ocean inferred from long period surface waves [J].Geophysical Research Letter,1986,13,315-318.
    [75]Karato S I.Seismic anisotropy in the deep mantle boundary layers and the geometry of mantle convection [J].Pure Applied Geophysics,1998,151:565-587.
    [76]Montagner J P. Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers[J].Pure Applied Geophysics,1998,151:223-256.
    [77]Montagner J P,Guillot L.Seismic anisotropy and global geodynamics [J].Reviews in Mineralogy and Geochemistry,2002,51(1):353-385.
    [78]Owens T J,Zandt G,Taylor S R.Seismic evidence for an ancient rift beneath the cumber-land Plateau Tennessee:A detailed analysis of broadband teleseimic P waveforms [J].Journal Geophysics Research,1984,89:7783-7795.
    [79]Ando M,and Ishikawa Y.Observations of shear wave velocity polarization anisotropy beneath Honshu,Japan:Two masses with different polarizations in the upper mantle[J],Journal of Physics of the Earth,1982,30(2):191-199.
    [80]高原.利用剪切波分裂研究地壳各向异性[J].安徽大学学报(自然科学版),2006,29:205-211.
    [81]Vinnik L P,Kind R,Kosarev G L et al.Azimuthal anisotropy in the lithosphere from observations of long-period S-waves[J]. Geophysical Journal International,1989,99:549-559.
    [82]Silver P QChan W W.Implications for continental structure and evolution from seismic anisotropy[J].Nature,1988,335:34-39.
    [83]Kennett B.Seismic wave propagation in stratified media [M].Cambridge University Press,1983.
    [84]Keith C M,Crampin S.Seismic body waves in anisotropic media:Reflection and refraction at an interface [J].Geophysical Journal International,1997a,49(l):181-208.
    [85]Keith C M,Crampin S.Seismic body waves in anisotropic media:Propagation through a layer [J].Geophysical Journal International,1997b,49(1):181-208.
    [86]Booth D C,Crampin S.The anisotropic reflectivity technique:theory [J].Geophysical Journal of the Royal Astronomical Society,1983,72(3):755-766.
    [87]张中杰.地震各向异性进展[J].地球物理学进展,2002,17(2):281-293
    [88]徐中信,张中杰.2D非均匀各向异性介质中地震波运动学问题正演模拟[J].石油物探,1989,25(2):37-49.
    [89]Cerveny V. Seismic rays and ray intensities in inhomogeneous anisotropic media[J].Geophysical Journal International,1972,29(1):1-13.
    [90]徐震,徐鸣洁,王良书,等.用接收函数Ps转换波研究地壳各向异性——以哀牢山一红河断裂带为例[J].地球物理学报,2006,49(2):438-4481.
    [91]徐鸣洁,王良书,刘建华.利用接收函数研究哀牢山-红河断裂带地壳上地幔特征[J].中国科学D辑,2005,35(8):729-737.
    [92]Peng X,Humphreys E D.Moho dip and crustal anisotropy in northwestern Nevada from teleseismic receiver functions [J].Bulletin Seismological Society America,1997,87(3):745-754.
    [93]Savage M K.Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand[J].Journal Geophysics Research,1998,103,15069-15087.
    [94]Girardin N,Farra V.Azimuth anisotropy in the upper mantle from observations of Ps converted phases:Application to southeast Australia [J].Geophysical Journal International,1998,133(3):615-629.
    [95]Ozacar A A,Zandt G.Crustal seismic anisotropy in central Tibet:Implications for deformational style and flow in the crust [J]. Geophysical Research Letter,2004,31(23):L23601(1-4).
    [96]Nagaya M,Oda H,Akazawa H,et al.Receiver Functions of Seismic Waves in Layered Anisotropic Media:Application to the Estimate of Seismic Anisotropy[J].Bulletin Seismology Society America,2008,98(6),2990-3006.
    [97]Ando M,Kaneshima S.Estimation of upper mantle anisotropy from a short period shear wave splitting study[C].EOS,Trans America Geophysical Chim.1990,71,443.
    [98]Frederiksen AW,Bostock M G.Modeling teleseismic waves in dipping anisotropic structures [J].Geophysical Journal International,2000,141:401-412.
    [99]Silver P G,Chan W W. Shear wave splitting and subcontinental mantle deformation[J]. Journal of Geophysical Research,1991,96(B 10):16429-16454.
    [100]McNamara D E,Owens T,Silver P G.Shear-wave anisotropy beneath the Tibetan Plateau[J].Journal Geophysics Research,1994,99:13655-13665.
    [101]Iidaka T,Niu F.Mantle and crust anisotropy in the eastern China region as inferred from waveform splitting of SKS and PpSms[J].Earth Planets Space.2001,53:159-168.
    [102]Bowman J R,Ando M.Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone[J]. Geophysical Journal International,1987,88 (1): 25-41.
    [103]Wolfe C J,Silver P.G.Seismic anisotropy of oceanic uppermantle:shear wave splitting methodologies and observations.Journal of Geophysical Research,1998,103,749-771.
    [104]Li J,Niu F.Seismic anisotropy and mantle flow beneath northeast China inferred from regional seismic networks [J].Journal of Geophysical Research,2010,115,B12327
    [105]Masy J,Niu F,Levander A,Schmitz M.Mantle flow beneath northwestern Venezuela:seismic evidence for a deep origin of the Merida Andes[J],Earth planet Science Letter,2011.305,396-400.
    [106]Shiomi K,Park J.Structural features of the subduction slab beneath the Kii Peninsula,central Japan:seismic evidence of slab segmentation,dehydration and anisotropy [J].Journal Geophysics Research,2008,113,B10318.
    [107]Dahlen F A,Baig A M.Fr'echet kernels for body-wave amplitudes [J].Geophysical Journal International.2002,150:440-466.
    [108]Liang X,Shen Y,Chen YJ,et al.Crustal and mantle velocity models of southern Tibet from finite frequency tomography [J]. Journal Geophysics Research,2011,116(B2):B02408(l-17).
    [109]Menke W.Geophysical data analysis:Discreste inverse theory [M].Academic press,1984.
    [110]Paige C C,Saunders M A.LAQR An algorithm for spares linear equations and sparse lease squares [J].ACM Transactions on Mathematical software,1982,8,43-71.
    [111]VanDecar J C,Crosson R S.Determination of the teleseismic relative phase arrival times using multichannel cross-correlation and least squares [J].Bullutin of the seismological Society of America,1990,80(1):150-169.
    [112]Ammon C J,Randall G E,Zandt G,etal.On the nonuniqueness of receiver function inversions[J].Journal of Geophysical Research,1990,95(B 10):15303-15318.
    [113]Liang X F,Sandvol E,Chen Y,etal.A complex Tibetan upper mantle:A fragmented Indian slab and no south-verging subduction of Eurasian lithosphere[J].Earth and Planetary Science Letters,2012,333-334:101-111.
    [114]Guibert J,Poupinet G,Jiang M.A study of azimuthal P residuals and shear-wave splitting across the Kunlun range (northern Tibetan Plateau) [J].Physics of the Earth and Planetary Interiors,1996,95(3-4):167-174.
    [115]丁志峰,曾融生.青藏高原上地幔横波各向异性的探测研究[J].地球物理学报,1996,39(2):211-220.
    [116]王椿镛,常利军,吕智勇.青藏高原东部上地幔各向异性及相关的壳幔耦合型式[J].地球科学,2007,37(4):495-503.
    [117]Xu L,Rondenay S,van der Hilst R D.Structure of the crust beneath the southeastern Tibetan plateau from teleseismic receiver functions [J].Physics.Earth Planet Interior,2007,165(3-4):176-193.
    [118]Watson M,Hayward A B,Parkinson D N,Zhang Z M.Plate tectonic history,basin development and petroleum source rock deposition onshore China [J].Marine and Petroleum Geology,1987,4(3),205-225.
    119] Pan S,Niu F.Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan plateau from receiver function analysis [J].Earth and Planetary Science Letters,2011,303,291-298.
    [120]Christensen N I.Poisson's ratio and crustal seismology[J] Journal of Geophysical Research,1996,101(B2),3139-3156.
    [121]Tarkov A P,Vavakin V V.Poisson's ratio behavior in crystalline e rocks:Application to the study of the Earth's interior [J].Earth and Planetary Science Letters,1982,29:24-29.
    [122]Watanabe T.Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors [J].Geophysical Research Letter,1993,20 (2):933-2936.
    [123]Tatham D J,Lloyd GE,Butler R,Casey M.Amphibole and lower crustal seismic properties [J].Earth and Planetary Science Letters,2008,267:118-128.
    [124]Lloyd G,Butler R,Casey M,Mainprice D.Deformation fabrics and the seismic properties of the continental crust [J].Earth and Planetary Science Letters,2009,288:320-328.
    [125]Shen Z K,Lu J J,Wang M,Burgmann R.Contemporary crustal deformation around the southeast borderland of the Tibetan plateau.Journal Geophysical Research.2005,110,B11409.
    [126]Hacker B R,Gnos E,Ratsbacher L,etal.Hot and dry deep crustal xenoliths from Tibet[J].Science,2000,287(5462),2463-2466.
    [127]Niu F.Mapping lithosphere thickness beneath China with ScS reverberation data: what controls the intraplate seismicity in Mainland China[C].Abstract S23E-02 presented at 2011 Fall Meeting AGU,San Francisco,Calif,5-9 December 2011.
    [128]Brace W F,Kohlstedt D L.Limits on lithospheric stress imposed by laboratory experiments [J].Journal of Geophysical Research.1980,85(B11):6248-6252.
    [129]Dunbar J A,Sawyer D S.Continental rifting at pre-existing lithospheric weaknesses.Nature,1988,333:450-452.
    [130]Cammaranoa F,Goesa S,Vacher P.Inferring upper-mantle temperatures from seismic velocities [J].Physics of the Earth and Planetary Interiors,2003,138 (3-4) 197-222.
    [131]Schmandt B,Humphreys E.Complex subduction and small-scale convection revealed by body-wave tomography [J].Earth and Planetary Science Letters,2010,297(3-4):435-445.
    [132]Hammond W C,Humphreys E D.Upper mantle seismic wave velocity affects of realistic partial melt geometries [J].Journal Geophysics Research,2000,105(B5): 10975-10986.
    [133]Molnar P,England P,Martinod J.Mantle dynamics uplift of the Tibetan plateau and the Indian monsoon[J].Review of Geophysics,1993,31:357-396.
    [134]谢窦克,毛建仁,彭维震等.华南岩石圈与大陆动力学[J].地球物理学报.1997,40增刊:154-163.
    [135]Sun Y,Li X,Kuleli S,Morgan F D,etal.Adaptive moving window method for 3D Pvelocity tomography and its application in China[J].Bullutin Seismology Socical Amercial,2004,94,740-746.
    [136]Sun Y,Toksoz M N,Pei S,Morgan F D.The layered shear-wave velocity structure of the crust and uppermost mantle in China[J].Bullutin Seismology Socical Amercial,2008,98,746-755.
    [137]Bassin C,Laske G,Masters G.The current limits of resolution for surface wave tomography in North America.EOS Trans.2000,AGU,81,897.
    [138]Ritzwoller M H,Shapiro N M,Barmin M P,Levshin A L.Global surface wave diffraction tomography[J].Journal Geophysical Research,2002,107,2335.
    [139]Liang C,Song X.A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography [J]. Geophysical Research Letters,2006,33(22):L22306(l-5).
    [140]Li C,Van der Hilst R D,Meltzer A S,et al.Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma [J].Earth and Planetary Science Letters,2008,274 (1-2):157-168.
    [141]Liang C,Song X,Huang J.Tomographic inversion of Pn travel times in China[J].Journal Geophysics Research,2004,109(Bl):B11304(1-19).
    [142]Wang S Y.Velocity structure of uppermost mantle beneath China continent from Pn tomography [J].Science in China:Series D,2002,45(2):143-150.
    [143]Li C,Van der Hilst R D.Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography[J]. Journal Geophysics Research,2010,115,B07308.
    [144]Van der Hilst R D,Engdahl E R,Spakman W,Nolet G.Tomography imaging of subducted lithosphere below northwest Pacific island arcs [J].Nature,1991,353,37-43.
    145] Van der Hilst R D,Engdahl E R,Spakman W.Tomographic inversion of P and pP data for a spherical mantle structure below the northwest Pacific region [J].Geophysical Journal International,1993,115,264-302.
    [146]Fukao Y,Obayashi M,Inoue H,et al.Subduction slabs stagnant in the mantle transition zone [J] Journal Geophysics Research,1992,97(B4):4809-4822.
    [147]Fukao Y,Widiyantoro S,Obayashi M.Stagnant slabs in the upper and lower mantle transition region[J].Review of Geophysics,2001,39(3):291-323.
    [148]Huang J,Zhao D,Zheng S.Lithospheric structure and its relationship to seismic and volcanic activity in southwest China[J].Journal Geophysics Research,2002,107 (B10):1-13.
    [149]Miller M S,Kennett B L,Toy V G.Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin [J] Journal Geophysics Research,2006,111(B2),B02401.
    [150]Qin J,Qian X,Huangpu G.The seismicity feature of the volcanic are in Tengchong (in Chinese). Seismology Geomagnetic Observation Research,1996,17,19-27.
    [151]Kan R,Zhao J,Kan D.The tectonic evolution and volcanic eruption in Tengchong volcanic and geothermal region (in Chinese). Seismology Geomagnetic Observation Research,1996,17,28-33.
    [152]Huang W C,Ni J,Tilmann F,et al.Seismic polarization anisotropy beneath the central Tibetan Plateau[J] Journal Geophysics Research,2000,105(B12):27979--27989.
    [153]Hearn T.M,Wang S,Ni J.F,Xu Z,etal.Uppermost mantle velocities beneath China and surrounding regions[J].Journal Geophysics Research,2004,109,B11301.
    [154]Lebedev S,Nolet G.Upper mantle beneath southeast Asia from S velocity tomography[J].Journal Geophysics Research,2003,108,Bl,2048.
    [155]Huang J,Zhao D.High-resolution mantle tomography of China and surrounding regions[J].Journal Geophysics Research,2006,111(B9):1-22.
    [156]李齐,陈文寄,马宝林,等.华北扬子板块碰撞后热演化史的初步研究[J].地震地质,1995,17(3):193-198
    [157]杨晓松,金振民.壳内部分熔融低速层及其研究意义[J].地球物理学进展,1998,13(3):38-45.
    [158]Zhou Y,Dahlen F A,Nolet GThree-dimensional sensitivity kernels for surface wave observable[J].Geophysical Journal International,2004,158:142-168.
    [159]滕吉文,西藏高原地区地壳上地慢地球物理研究概论[J].地球物理学 报,1985,28(1):1-15.
    [160]Gerya T V,Yuen D A.Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties [J].Physics of the Earth and Planetary Interiors,2003,140(4):293-318.
    [161]Ringwood A E.Role of the transition zone and 660 km discontinuity in mantle dynamics [J].Physics Earth Planet Interiors,1994,86(1-3):5-24.
    [162]Hirose K F,Ying W,Ma Y,Mao H K.The fate of subducted basaltic crust in the Earth's lower mantle [J].Nature,1999,397:53-56.
    [163]Tackley P J.Self-consistent generation of tectonic plates in time-dependent three-dimensional mantle convection simulations.Part 1.Pseudo-plastic yielding [J]. Geochemistry Geophysics Geosystems,2000,1(1):832-877.
    [164]Tackley P J.Self-consistent generation of tectonic plates in time-dependent,three-dimensional mantle convection simulations.Part 2.Strain weakening and asthenosphere[J].Geochemistry Geophysics Geosystems,2000,8(l):456-501.
    [165]Lustrino M.How the delamination and detachment of lower crust can influence basaltic magmatism[J].Earth Science Reviews,2005,26:832-877.
    [166]张先虎,喜凤,等.四川盆地及其西部边缘震区居里等温面的研究[J].1996,18(1):83-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700