累积叠轧纯Mg及Mg/Al多层复合板材的组织结构与力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对镁合金板材的低弹性模量、低强度、较差的耐蚀性等问题,采用累积叠轧技术(ARB)在不同工艺下制备了纯Mg板材,纯Mg/AA5052以及纯Mg/AA1050多层复合板材。采用光学显微镜、扫描电镜、透射电镜等方法,研究了ARB板材的显微组织演变和界面结构;采用中子衍射,EBSD等方法研究了ARB板材中的宏观,微观织构演变规律;并进而探讨了ARB板材的力学性能与组织演变的关系。
     对ARB纯Mg板材的研究表明:纯Mg板材晶粒细化主要发生在初始循环中,晶粒并不能随着ARB循环次数的提高而逐步细化,后续ARB循环只能使组织更加均匀。动态再结晶,ARB循环间对板材的重新加热保温是导致ARB过程中纯Mg晶粒细化不明显的主要原因。ARB纯Mg板材织构类型仍然为典型的Mg合金轧制织构,织构强度基本不随ARB循环次数的提高而发生明显改变;结合界面的引入并不能有效改变复合板材织构类型。板材强度基本不随ARB循环次数的提高而发生明显改变。后续变形仍然是改善ARB纯Mg板材界面结合强度的必需手段。
     高温下制备的ARB纯Mg/AA5052复合板材中Mg层晶粒尺寸基本不变,Al层晶粒有所细化。ARB过程当中,Al层厚度和Mg层的厚度随着应变量的增加而逐渐降低,界面结合良好。纯Mg/AA5052复合板材中Mg层织构类型为轧制织构,而Al层织构为变形织构组份为主导,剪切以及再结晶织构并存的混合织构类型。三次循环后复合板中Mg层基面织构强度降低以及Al层中变形织构组份强度下降。复合板材的强度随着ARB循环次数的上升而逐渐上升,而经过三次ARB循环的多层复合板材延轧向强度出现明显下降。Mg/Al界面处大量开裂的金属间化合物以及Al层延轧向断开是导致复合板材强度下降的主要原因。
     纯Mg/AA1050复合板材在室温ARB过程当中,两组元保持了良好的变形协调性,各金属层保持了较好的连续性,三次循环后复合板材中没有出现明显的“波浪”状结构。复合板材中Mg层晶粒尺寸基本不随应变量的升高发生明显变化,Al层晶粒随着ARB循环次数的上升而逐步细化。三次循环后,Mg/Al界面处形成了厚度为150nm的Mg17Al12层。Mg和Mg17Al12之间存在一种确定的晶体学位相关系: [(1|-)11]_(Mg17Al12)//[01(1|-)0]_(Mg)(110)//(1|-)11]_(Mg17Al12),两者之间以半共格的原子匹配方式结合,结合强度较高,而Al和Mg17Al12之间是否存在位相关系并不明显。随着ARB循环次数的上升,Mg层基面织构强度逐渐上升,Al层逐渐形成以轧制织构为主导,变形织构组份并存的混合织构类型。纯Mg/AA1050复合板材强度随着ARB循环次数的上升而逐渐上升,延伸率则逐渐下降。经过两次ARB循环后,复合板材更多的表现出来单一均匀材料的特性。
In order to improve the strength, elastic modulus and corrosion resisitance of Mg sheet, accumulative roll bonding (ARB) was utilized to fabricate ultra-fine grained pure Mg sheets, pure Mg/AA5052 and pure Mg/AA1050 laminated composites. Optical microscope, scanning electronic microscope (SEM) and transmission electronic microscope (TEM) were employed to observe microstructure and interface structure of ARBed sheets. The global texture evolution and local texture of the ARBed sheets were measured by neutron diffraction and EBSD. Then, the relationship between microstructure and mechanical properties of these ARBed sheets was investigated.
     For the ARBed pure Mg sheets, the microstructure was refined due to the large strain imposed on the sheet after 1 ARB cycle. During the following ARB cycles, the homogeneity of the microstructure was improved while the average grain size didn’t change obviously. The unnoticeable refining effect during the subsequent ARB processing can be attributed to the interval reheating and dynamic recrystallization. ARBed Mg sheet exhibited a typical rolling texture whose intensity almost kept stable during the whole ARB processing. The EBSD measurement indicated that ARB was not an effective method in grain refinement and texture modification for the pure Mg sheet. Moreover, the following rolling was still required to improve the bonding quality of the ARBed pure Mg sheet.
     The pure Mg/AA5052 laminated composite was processed by ARB at 400?C up to 3 cycles successfully. Necking and rupture of Al layers took place at the final cycle because of the difference of the flow properties between the Mg layer and Al layer, and then introduced a waviness structure into the Mg/AA5052 laminated composite Mg grains were not refined during ARB process due to high deformation temperature and interval annealing while the grain size of Al layer was decreased with increasing of ARB cycle. The texture type of Mg layer was typical rolling texture and the dominant texture of Al layer wasβfiber rolling texture with scatter around the ideal orientations. The significant waviness structure caused by the shear band reduced both the intensity and the sharpness of the rolling texture of both Mg and Al layer. Strengths of the Mg/AA5052 laminated composite were enhanced significantly after sandwich preparation and then increased slightly with the increasing of the ARB cycles till the second ARB cycle. However, strengths along the rolling direction decreased dramatically after the third ARB cycle. Obvious cracking of the coarse Mg/Al intermetallic compound and rupture of the Al layers led to the dramatic decreasing of yield strength along the rolling direction after the final cycle.
     According to the results above, it was necessary to reduce ARB temperature and avoid formation of the Mg/Al intermetallic compounds in the Mg/Al laminated composite. Thus, pure Mg/AA1050 laminated composite was processed by ARB at ambient temperature. The two constituent layers kept continous during ARB and no waviness structure could be observed in the Mg/AA1050 laminated composite. As similar as the Mg/AA5052 laminated sheet, the Mg grains in the Mg/AA1050 laminated composite were not refined during ARB process due to the dynamic recrystallization while the grain size of Al layer decreased with increasing of ARB cycle. Mg17Al12 phase with thickness of 150nm formed at Mg/Al interface after 3 cycles. There existed a definite orientation relationship between Mg17Al12 and Mg, that is [(1|-)11]_(Mg17Al12)//[01(1|-)0]_(Mg)(110)//(1|-)11]_(Mg17Al12), with good lattice matching between the two phases at the interface. The texture type of Mg layer was typical rolling texture. The major components of the Al layer were characterized as a combination texture type including evidentβfiber texture and Rotated Cube shear component. Strengths of the Mg/AA1050 laminated composite increased gradually with the increasing of the ARB cycles. After 2 cycles, the laminated composite behaved like other single phase materials.
引文
1 Y. Kojima, S. Kamado. Fundamental magnesium researches in Japan, Mater. Sci. Forum, 2005, 488-489: 9-16
    2 K. Y. Zheng, J. Dong, X. Q. Zeng, W. J. Ding. Effect of thermo-mechanical treatment on the microstructure and mechanical properties of a Mg-6Gd-2Nd-0.5Zr alloy. Mater. Sci. Eng. A 2007, 454-455: 314-321
    3 Y. Q. Cheng, Z. H. Chen, W. J. Xia. Effect of crystal orientation on the ductility in AZ31 Mg alloy sheets produced by equal channel angular rolling. J. Mater. Sci. 2007, 42(10): 3552-3556
    4 Q. D. Wang, Y. J. Chen, J. B. Lin, L. J. Zhang, C. Q. Zhai. Microstructure and properties of magnesium alloy processed by a new severe plastic deformation method. Mater. Lett. 2007, 61: 4599-4602
    5 T. Liu, Y.D. Wang, S.D. Wu, R. LinPeng, C.X. Huang, C.B. Jiang, S.X. Li. Textures and mechanical behavior of Mg-3.3%Li alloy after ECAP. Scr. Mater. 2004, 51: 1057-1061
    6 K. Xia, J. T. Wang, X. Wu,. G. Chen, M. Gurvan. Equal channel angular pressing of magnesium alloy AZ31. Mater. Sci.Eng. A, 2005, 410-411: 324-327
    7谢文,刘越,张振伟,李德松,毕敬.挤压温度对15vol% SiCP/Mg-9Al镁基复合材料拉伸性能与断口形貌的影响.复合材料学报. 2006, 23: 127-133
    8 Y. Q. Wang, K. Wu and M.Y. Zheng. Effects of reinforcement phases in magnesium matrix composites on microarc discharge behavior and characteristics of microarc oxidation coatings. Surf. Coatings Tech. 2006, 201: 353-360
    9 M. Y. Zheng, K. Wu, M. Liang, S. Kamado, Y. Kojima. Effect of thermal exposure on interface and mechanical properties of Al18B4O33w/AZ91 magnesium matrix composite. Mater. Sci. Eng. A. 2004, 72: 66-74
    10王旭东,张迎辉,徐高磊.轧制法制备金属复合材料的研究与应用.技术工程. 2008. 3: 22-25
    11于化顺.金属基复合材料及其制备技术.化学工业出版社. 2006
    12 P. Pérez, G. Garcés, P. Adeva. Mechanical properties of a Mg-10 (vol.%)Ti composite. Comp. Sci. Tech. 2004, 64: 145-151.
    13 R. Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci., 2000, 45: 103-189
    14 R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, Y. T. Zhu. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM, 2006, 4: 33-39
    15 Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R. G. Hong. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scri. Mater. 1998, 39(9): 1221-1227
    16 Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai. Novel Ultra-high straining process for bulk matericals-development of the accumulative roll-bonding (ARB) process. Acta. Mater. 1999, 47(2), 579-583
    17 B. L. Li, N. Tsuji, N. Kamikawa, Microstructure homogeneity in various metallic materials heavily deformed by accumulative roll-bonding. Mater. Sci. and Eng. A, 2006, 423: 331-342
    18 M. T. Pérez-Prado, J. A. del Valle, O. A. Ruano. Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding. Scri. Mater, 2004, 51: 1093-1097
    19 M. T. Pérez-Prado, J. A. del Valle, O. A. Ruano. Achieving high strength in commercial Mg cast alloys through large strain rolling. Mater. Let. 2005, 59: 3299-3303
    20 M. Y. Zhan, Y. Y. Li, W. P. Chen, W. D. Chen, Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by accumulative roll-bonding. J. Mater. Sci. 2007, 42: 9256-9261
    21 Q. F. Wang, X. P. Xiao, X. J. Chen, W. Chen. Superplasticity in ultrafine grained magnesium alloy AZ31 prepared by accumulative roll bonding. Mater. Sci. Forum. 2007, 551-552: 249-254
    22 D. Terada, S. Inoue, N. Tsuji. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process. J. Mater. Sci. 2007, 42: 1673-1681
    23 S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, K. Hono. Bulk mechanical alloying of Cu-Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process. Acta. Mater. 2007, 55: 2885-2895
    24 G. H. Min, J. M. Lee, S. B. Kang, H. W. Kim. Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process. Mater. Lett. 2006, 60: 3255-3259
    25 M. C. Chen, H. C. Hsieh, W. Wu. The evolution of microstructures and mechanical properites during accumulative roll bonding of Al/Mg composite. J. Alloy Compound, 2006, 416: 169-172
    26 M. C. Chen, C.W. Kuo, C.M. Chang, C.C. Hsieh, Y.Y. Chang, W.T. Wu.Diffusion and Formation of Intermetallic Compounds during Accumulative Roll-Bonding of Al/Mg Alloys. Mater. Trans., 2007, 48: 2595-2598
    27 R. C. Xu, D. Tang, X. P. Ren, X. H. Wang, Y. H. Wen. Improvement of the matrix and the interface quality of a Cu/Al composite by the MARB process. Rare Metals. 2007, 26(3): 230-235
    28何春雨,许荣昌,任学平,李红.累积叠轧焊制备钛钢复合板的组织与结合界面.有色金属. 2007, 59: 1-4
    29于九明,孝云祯,王群骄,才晓英,崔光沫.金属层状复合技术及其新进展.材料研究学报. 2000, 14: 12-16
    30田建胜.爆炸焊接技术的研究与应用进展.材料导报. 2007, 21(11): 99-103
    31郑远谋.爆炸焊与异种金属的焊接.焊接技术. 2001, 30(5): 25-26
    32藤田昌大.爆炸焊及其应用.日本金属学会志. 1981, 20(5): 385-393
    33王海山.轧制复合Cu/Mo/Cu电子封装材料的研究.中南大学硕士论文2006
    34陈燕俊,周世平,杨富陶,林德仲,孟亮.层叠复合材料加工技术新进展.材料科学与工程. 2002, 20(1): 140-142
    35郭伟,赵熹华,宋敏霞.扩散连接界面理论的现状与发展.航天制造技术. 2004, 5: 36-39
    36张贵峰,张建勋,包亚峰.日本关于固相扩散焊界面空洞收缩机理的研究.焊接. 2001,10: 14-18
    37 Y. Takahashi, K. Inoue, K. Nishiguchi. Identification of void shrinkage mechanisms. Acta. Mater. 1993, 41(11): 3077-3084
    38 N. Orhan, M. Aksoy, M. Eroglu. A new model for diffusion bonding and its application to duplex alloys. Mater. Sci. Eng. A. 1999, 271: 458-468
    39何鹏,冯吉才,钱乙余.扩散连接界面物理接触行为的动态模型.焊接学报. 2001, 22(5): 60-65.
    40刘振岗,郭健,杨建民.扩散焊技术的应用.航空科学技术. 2004, 2: 38-40.
    41徐杰.镁合金活性TIG焊和真空扩散焊的研究.南京航空航天大学硕士论文. 2006
    42 L. Li, K. Nagai, F. Yin. Progress in cold bonding of metals. Sci. Tech. Adv. Mater. 2008, 9(023001):11p
    43 Y. Iwahashi, Z. Horita, M. Nemoto, T. G.. Longdon. The process of grain refinement in equal-channel angular pressing. Acta Mater. 1998, 46(9): 3317-3331.
    44 R. Z. Valiev. Structure and mechanical properties of ultrafine-grained metals.Mater. Sci. Eng. 1997, A234-236: 59~66
    45 M. Furukawa, Z. Hotita, M. Nemoto, T. G. London. Processing of metals by equal-channel angular pressing. J. Mate. Sci. 2001, 36: 2835-2843
    46吕爽,王快社,张兵,刘漫博.累积叠轧1060纯铝组织与性能的研究.材料研究与应用. 2007, 1(3): 187-190
    47 N. Tsuji, Y. Saito, S. H. Lee and Y. Minamino. ARB(Accumulative Roll-Bonding) and other new techniques to produce bulk ultrafine grained materials. 2005, 5(5), 338-344
    48 J. A. del Valle, M. T. Perez-Prado, O. A. Ruano, Accumulative roll bonding of a Mg-based AZ61 alloy, Mater. Sci. and Eng. A, 2005, 410-411: 353-357
    49 Z. P. Xing, S. B. Kang and H. W. Kim. Structure and properties of AA3003 alloy produced by accumulative roll bonding process. J. Mater. Sci. 2002, 37: 717-722
    50 C. Kwan, Z. R. Wang, S. B. Kang. Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding (ARB) processed Al alloy 1100. Mater. Sci. and Eng. A, 2008, 480: 148-159
    51 S. H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai. Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process. Scri. Mater. 2002, 46, 281-285
    52 K. T. Park, H. J. Kwon, W. J. Kim, Y. S. Kim. Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process. Mater. Sci. and Eng. A, 2001, 316: 145-152
    53 X. Huang, N. Tsuji, N. Hansen, Y. Minamino, Microstructural evolution during accumulative roll-bonding of commercial purity aluminum. Mater. Sci. and Eng. A, 2003, 340: 265-271
    54 Z. P. Xing, S. B. Kang and H. W. Kim. Softening behavior of 8011 alloy produced by accumulative roll bonding process. Scri. Mater. 2001, 45: 597-604
    55 Z. P. Xing, S. B. Kang and H. W. Kim. Structure stability of AA3003 alloy with ultra-fine grain size. J. Mater. Sci. 2004, 39: 1259-1265
    56 N. Tsuji, Y. Ito, Y. Saito, Y. Minamino. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scri. Mater. 2002, 47: 893-899
    57 N. Kamikawa, N. Tsuji, X. X. Huang, N. Hansen. Through-Thickness Characterization of Microstructure and Texture in high purity Aluminum processed to high strain by accumulative roll-bonding. Mater. Trans. 2007, 48(8): 1978-1985
    58 N. Kamikawa, N. Tsuji, X. X. Huang, N. Hansen. Quantification of annealed microstructures in ARB processed aluminum. Acta. Mater. 2006, 54: 3055-3066
    59 H. W. H?ppel, J. May and M. G?ken. Enhanced strength and ductility in Ultrafine-Grained aluminum produced by accumulative roll bonding. Adv. Eng. Mater. 2004, 6(4): 219-222
    60 M. Slámová, P. Homola, P. Sláma, J. Cizek, I. Procházka and M. Cieslar. Microstructure, texture and property changes of high purity aluminium during accumulative roll bonding and conventional rolling. Mater. Sci. For. 2006, 503-504: 711-716
    61 S. G. Chowdhury, V. C. Srivastava, B. Ravikumar, S. Soren. Evolution of texture during accumulative roll bongding (ARB) and its comparison with normal cold rolled aluminium-manganese alloy. Scri. Mater. 2006, 54: 1691-1696
    62 W. Skrotzki, I. Hünsche, J. Hüttenrauch, C.-G. Oertel, H.-G. Brokmeier, H. W. H?ppel, I. Topic. Texture and mechanical anisotropy of ultrafine-grained aluminum alloy AA6016 produced by accumulative roll bonding. Texture, Stress, Micro. 2008, 32754, 8pp
    63 M. Raei, M. R. Toroghinejad. R. Jamaati, J. A. Szpunar. Effect of ARB process on textural evolution of AA1100 aluminum alloy. Mater. Sci. Eng. A 2010, 527: 7068-7073
    64 H. Pirgazi, A. Akbarzadeh, R. Petrov, J. Sidor, L. Kestens. Texture evolution of AA3003 aluminum alloy sheet produced by accumulative roll bonding. Mater. Sci. Eng. A 2008, 492: 110-117
    65 R. Kocich, M Greger. Development of structure and mechanical properties in AZ91 alloy using by ARB process. Act. Metal. Slovaca. 2005, 3: 277-283
    66 L. Jiang, M. T. Pérez-Prado, P. A. Gruber, E. Arzt. O. A. Ruano, M. E. Kassner. Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding. Acta. Mater. 2008, 56: 1228-1242.
    67 N. Kamikawa, T. Sakai, N. Tsuji. Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel. Acta. Mater. 2007, (55): 5873-5888
    68 M. Shaarbaf, M. R. Toroghinejad. Nano-grained copper strip produced by accumulative roll bonding process. Mater. Sci. Eng. A 2008, 473: 28-33
    69 S. A. Hosseini, H. D. Manesh. High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process. Mater. Des. 2009,30:2911-2918
    70 S. Pasebani, M. R. Toroghinejad. Nano-grained 70/30 brass strip produced by accumulative roll-bonding (ARB) process. Mater. Sci. Eng. A 2010, 527: 491-497
    71 S. Pasebani, M. R. Toroghinejad. Textural evolution of nano-grained 70/30 brass produced by accumulative roll-bonding. Mater. Sci. Eng. A 2010, 527: 2050-2056
    72 L. W. Chen, Q. N. Shi, D. Q. Chen, S. P. Zhou, J. L. Wang, X. M. Luo. Research of textures of ultrafine grains pure copper produced by accumulative roll-bonding. Mater. Sci. Eng. A 2009, 508: 37-42
    73 H. Inoue, M. Ishio, T. Takasugi. Texture, tensile properties and press formability of Mg-3Al-Zn/Ti clad sheets produced by roll-bonding. Mater. Sci. For. 2005, 495-497: 645-650
    74 M. Z. Quadir, O. Al-Buhamad, L. Bassman, M. Ferry. Development of a recovered/recrystallized multilayered microstructure in Al alloys by accumulative roll bonding. Acta. Mater. 2007, 55: 5438-5448
    75 A. Mozaffari, H. Danesh Manesh, K. Janghorban. Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J. Alloy. Comp. 2010, 489: 103-109
    76 D. Yang, P. Cizek, P. Hodgson, C. Wen. Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding. Scri. Mater. 2010, 62: 321-324.
    77 M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H. Shakur Shahabi, K. Janghorban. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process. Comp. Sci. Tech. 2008, 68:2003-2009
    78 Y. F. Sun , N. Tsuji, H. Fujii, F. S. Li. Cu/Zr nanoscaled multi-stacks fabricated by accumulative roll bonding. J. Alloy. Comp. 2010, 504S: S443-447
    79 H. Sh. Shahabi, H. Danesh Manesh. Micro-structural evaluation of Cu/Nb nano-layered composites produced by repeated press and rolling process. J. Alloy. Comp. 2009, 482: 526-534
    80 H. Sh. Shahabi, H. Danesh Manesh. Evolution of mechanical properties in SPD processed Cu/Nb nano-layered composites. Mater. Sci. Eng. A. 2010, 527: 5790-5795
    81 R. Zhang, V. L. Acoff. Processing sheet materials by accumulative roll bonding and reaction anneling from Ti/Al/Nb elemental foils. Mater. Sci. Eng. A. 2007, 463: 67-73
    82 J. M. Lee, B. R. Lee, S. B. Kang. Control of layer continuity in metallic multilayers produced by deformation synthesis method. Mater. Sci. Eng. A. 2005, 406: 95-101
    83 (?). Yazar, T. Ediz, T. (?)ztürk, Control macrostructure in deformation processing of metal/metal laminates. Acta. Mater. 2005, 53:375-381
    84 R. J. Hebert, J. H. Perepezko. Deformation-induced synthesis and structural transformations of metallic multilayers. Scri. Mater. 2004, 50: 807-812
    85 L. Ghalandari, M. M. Moshksar. High-strength and high-conductive Cu/Ag multilayer produced by ARB. 2010, 506:172-178
    86 Y. N. Wang, J.C. Huang, Texture analysis in hexagonal materials. Mater. Chem. Phys. 2003, 81:11-26
    87 D. K. Xu, L. Liu, Y. B. Xu, E. H. Han. Effect of microstructure and texture on the mechanical properties of the as-extruded Mg-Zn-Y-Zr alloys. Mater. Sci. Eng. 2007, A443: 248-256T.
    88 Mukai, M. Yamanoi, H. Watanabe, K. Higashi. Ductility enhancement in AZ31 Magnesium alloy by controlling its grain structure. Scri. Mater. 2001, 45: 89-94
    89 M. J. Philippe. Texture formation in hexagonal materials. Mater. Sci. For. 1994, 157-162: 1337-1350
    90 T. B. Huang, Y. A. Tsai, F. K. Chen. Finite element analysisi and formability of no-isothermal deep drawing of AZ31B sheets. J. Mater. Process. Tech. 2006, 177: 142-145
    91 S. R. Agnew, M. H. Yoo, C. N. Tomé. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta. Mater. 2001, 49: 4277-4289
    92 A. Styczynski, Ch. Hartig, J. Bohlen, D. Letzig. Cold rolling textures in AZ31 wrought magnesium alloy. 2004, 50: 943-947
    93 A. K. Singh, R. A. Schwarzer. Evolution of texture in pure magnesium during rolling. Z. Metallkd. 2005, 96(4): 345-351
    94 X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito. Microstructure and texture of Mg-Al-Zn alloy processed by differential speed rolling. J. Alloy. Comp. 2008, 457: 408-412
    95 J. Bohlen, M. R. Nürngber, J. W. Senn, D. Letzig, S. R. Agnew. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets. Acta. Mater. 2007, 55: 2101-2112
    96 J. Bohlen, S. Yi, D. Letzig, K. U. Kainer. Effect of rare earth elements on the microstructure and texture development in magnesium-manganese alloysduring extrusion. Mater. Sci. Eng. A, 2010, 527: 7092-7098
    97 N. Stanford. The effect of calcium on the texture, microstructure and mechanical properties of extruded Mg-Mg-Ca alloys. Mater. Sci. Eng. A, 2010, 528: 314-322
    98 M. T. Pérez-Prado, J. A. del Valle, J. M. Contreras, O. A. Ruano. Microstructure evolution during large strain hot rolling of an AM60 Mg alloy. Scri. Mater, 2004, 50: 661-665
    99 Q. L. Jin, S. Y. Shim, S. G. Lim. Correlation of microstructural evolution and formation of basal texture in a coarse grained Mg-Al alloy during hot rolling. Scri. Mater. 2006, 55: 843-846
    100 Y. Chino, K. Sassa, A, Kamiya, M. Mabuchi. Stretch formability at elevated temperature of a cross-rolled AZ31 Mg alloy sheet with different rolling routes. Mater. Sci. Eng. A, 2008, 473:195-200
    101 Y. Chino, M. Mabuchi. Enhanced stretch formability of Mg-Al-Zn alloy sheets rolled at high temperature (723K). Scri. Mater. 2009, 60: 447-450
    102 X. Huang, K. Suzuki, N. Saito. Enhancement of stretch formability of Mg-3Al-1Zn alloy sheet using hot rolling at high temperatures up to 823K and subsequent warm rolling. Scri. Mater. 2009, 61: 445-448
    103 X. Huang, K. Suzuki, N. Saito. Textures and stretch formability of Mg-6Al-1Zn magnesium alloy sheets rolled at high temperatures up to 793K. Scri. Mater. 2009, 60: 651-654
    104 X. Huang, K. Suzuki, N. Saito. Microstructure and mechanical properties of AZ80 magnesium alloy sheet processed by differential speed rolling. Mater. Sci. Eng. A, 2009, 508:226-233
    105 X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito. Effects of thickness redcution per pass on microstructure and texture of Mg-3Al-1Zn alloy sheet processed by differential speed rolling. Scri. Mater. 2009, 60: 964-967
    106 L. W. F. Mackenzie, M. O. Pekguleryuz. The recrystallization and texture of magnesium-Zinc-cerium alloys. 2008, 59: 665-668
    107 J. A. del Valle, O. A. Ruano. Effect of annealing treatments on the anisotropy of a magnesium alloy sheet processed by severe rolling. Mater. Lett. 2009, 63: 1551-1554
    108 M. T. Perez-Prado, O. A. Ruano. Texture evolution during grain growth in annealed Mg AZ61 alloy. Scri. Mater. 2003, 48:59-64
    109 M. T. Perez-Prado, O.A. Ruano. Texture evolution during annealing of magnesium AZ31 alloy. Scri. Mater. 2002, 46:149-155
    110毛为民.材料织构分析原理与检测技术.冶金工业出版社. 2008, 28-41
    111 Cl. Maurice, J. H. Driver. Hot rolling textures of f.c.c. metals-Part I experimental results on Al single and polycrystals. Acta. Mater. 1997, 45(11): 4627-4638
    112 S. Li, F. Sun, H. Li. Observation and modeling of the through-thickness texture gradient in commercial-purity aluminum sheets processed by accumulative roll-bonding. Acta. Mater. 2010, 58: 1317-1331
    113 H. E. Vatne, R. Shahani, E. Nes. Deformation of cube-oriented grains and formation of recrystallized cube grains in a hot deformed commercial AlMgMn aluminium alloy. 1996, 44(11): 4447-4462
    114 I. Samajdar, P. Ratchev, B. Verlinden, E. Aernoudt. Hot working of AA1050-relating the microstructural and textural developments. 2001, 49: 1759-1769
    115 A. Duckham, R. D. Knutsen, O. Engler. Influence of deformation variables on the formation of copper-type shear bands in Al-1Mg. 2001, 49: 2739-2749
    116 M. Y. Huh, S. Y. Cho, O. Engler. Randomization of the annealing texture in aluminum 5182 sheet by cross-rolling. Mater. Sci. Eng. A, 2001, 315:35-46
    117 H. G. Brokmeier. Texture course in Harbin Institute of Technology, 2008
    118 L. Jiang, M. T. Pérez-Prado, O. A. Ruano, M. E. Kassner. Bonding strength of Ultrafine grained Zr Fabricated by accumulative roll bonding. Mater. Sci. For. 2008, 584-586: 243-248
    119 G. Krallics, J. G. Lenard. An examination of the accumulative roll-bonding process. J. Mater. Process. Tech. 2004, 152: 154-161
    120 S. B. Yi, I. Schestakow, S. Zaefferer. Twinning-related microstructural evolution during hot rolling and subsequent annealing of pure magnesium. Mater. Sci. Eng. A 2010, 516: 58-64
    121 S. E. Ion, F. J. Humphreys, S. H. White. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta. Metall. 1982, 30: 1909-1919
    122 O. Stidikov, R. Kaibyshev. Dynamic recrytallization in pure magnesium. Mater. Trans. 2001, 42(9): 1928-1937
    123 A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta. Mater. 2001, 49: 1199-1207
    124 J. A. del Valle, M. T. Pérez-Prado, O. A. Ruano. Texture evolution of during large-strain hot rolling of the Mg AZ61 alloy. Mater. Sci. Eng. A 2003, 355: 68-78
    125 R. Gehrmann, M. M. Frommert, G. Gosttstein. Texture effects on plasticdeformation of magnesium. Mater. Sci. Eng. A 2005, 395: 338-349
    126 X. Yang, H. Miura, T. Sakai. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation. Mater. Trans. 2003, 44(1): 197-203
    127 S. W. Xu, S. Kamado, T. Honma. Recrystallization mechanism and the relationship between grain size and Zener-Hollomon papameter of Mg-Al-Zn-Ca alloys during hot compression. Scri. Mater. 2010, 63: 293-296
    128 M. D. Nave, M. R. Barnett. Microstructure and textures of pure Magnesium deformed in plane-strain compression. Scri. Mater. 2004, 51: 881-885
    129 M. R. Barnett, M. D. Nave, C. J. Bettles. Deformation microstructures and textures of some cold rolled Mg alloys. Mater. Sci. Eng. A 2004, 386: 205-211
    130 J. C. Tan, M. J. Tan. Dynamic continuous recrystallization characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet. Mater. Sci. Eng. A 2003,339: 124-132
    131 J. Koike, R. Ohyama. Geometrical criterion for the activation of prismatic slip in AZ61 Mg alloy sheets deformed at room temperature. Acta. Mater. 2005, 53: 1963-1972
    132 F. Kaiser, D. Letzig, J. Bohlen, A. Styczynski, Ch. Hartig, K. U. Kainer. Anisotropic properties of magnesium sheet AZ31. Mater. Sci. For. 2003, 315: 419-422
    133 P. G. Partridge. The crystallography and deformation modes of hexagonal close-packed metals. Matel. Rev. 1967: 169-194
    134刘智勇.包铝镁板复合轧制及界面特征研究.西南大学硕士论文. 2009
    135刘鹏. Mg/Al活性异种金属焊接界面微观结构及元素扩散的研究.山东大学博士论文. 2006
    136 W. C. Liu, J. G. Morris. Effect of hot and cold deformation on theβfiber rolling texture in continuous cast AA5052 aluminum alloy. 2005, 52: 1317-1321
    137 W. C. Liu, J. G. Morris. Effect of recovery on the recrystallizaion texture of an Al-Mg alloy. 2007, 57: 833-836
    138 M. Z. Quadir, M. Ferry, O. Al-Buhamad, P. R. Munroe. Shear banding and recrytallization texture development in a multilayered Al alloy sheet produced by accumulative roll bonding. Acta. Mater. 2009, 57: 29-40
    139 H. Matsumoto, S. Watanabe, S. Hanada. Fabrication of pure Al/Mg-Li alloy clad plate and its mechanical properties. J. Mater. Process. Tech. 2005, 169: 9-15
    140 S. Nambu, M. Michiuchi, J. Inoue, T. Koseki. Effect of interfacial bonding strength on tensile ductility of multilayerd steel composites. Comp. Sci. Tech.2009, 69: 1936-1941
    141 S. Nambu, M. Michiuchi, Y. Ishimoto, K. Asakura, J. Inoue, T. Koseki. Transition in deformation behavior of martensitic steel during large deformation under uniaxial tensile loading. 2009, 60: 221-224.
    142梁书锦. AZ31镁合金反向温度场塑性加工与组织性能的研究.哈尔滨工业大学博士论文. 2009
    143 M. Jotoku, A. Yamamoto, H. Tsubakino. Plastic deformation of high magnesium at room temperature. J. J. Ins. Light. Metal. 2006, 56(12): 711-715
    144 B. Beausir, S. Biwas, D. I. Kim, L. S. Tóth. S. Suwas. Analysis of microstructure and texture evolution in pure magnesium during symmetric and asymmetric rolling. Acta. Mater. 2009, 57: 5061-5077
    145 T. Sakai, S. Hamada, Y. Saito. Improvement of the r-value in 5052 aluminum alloy sheets having through-thickness shear texture by 2-pass single-roll drive unidirectional shear rolling. Scri. Mater. 2001, 44: 2569-2573
    146 J. Lee, D. N. Lee. Texture control and grain refinement of AA1050 Al alloy sheets by asymmetric rolling. Int. J. Mech. Sci. 2008, 50: 869-887
    147 A. Misra, M. Verdier, H. Kung, J. D. Embury, J. P. Hirth. Deformation mechanism maps for polycrystalline metallic mulitilayers. Scri. Mater. 1999, 41: 973-979
    148 A. Misra, X. Zhang, D. Hammon, R. G. Hoagland. Work hardening in rolled nanolayered metallic composites. Acta. Mater. 2005, 53: 221-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700