柔性基层沥青稳定碎石矿料接触面细观强度特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合科研项目“低温高地下水位地区柔性基层矿料附结效应研究”本文对柔性基层矿料接触面的细观强度进行了深入的研究。通过手动对各状态下的AM-20沥青稳定碎石基层混合料施加拉伸及剪切荷载,明确矿料接触面破坏机理,得出矿料接触面破坏有两种形式,一为沥青矿料间粘附失效破坏,二为结合料自身的粘结失效破坏。在薄层油膜及中厚层油膜条件下,上述两种破坏形式共存。矿料接触面细观强度包括沥青矿料间粘附强度、结合料自身粘结强度及矿料接触面总体强度。研究柔性基层矿料接触面细观强度定量测试技术,基于沥青矿料间粘附强度、粘附失效区面积、结合料粘结强度、粘结失效区面积与拉伸或剪切破坏荷载的对应关系,测试并计算不同力学效应、不同状态的矿料接触面细观强度。在定量测试的基础上,明确矿料接触面细观强度影响因素及各因素影响规律。通过矿料接触面总体拉伸强度与混合料劈裂强度随温度变化规律的对比分析,证明二者变化规律基本一致。说明采用矿料接触面细观强度预估柔性基层混合料的宏观抗裂能力是可行的。通过测试并分析正常状态、短期老化状态及长期老化状态下两种抗剥剂对混合料矿料接触面细观强度的影响效果可知,抗剥剂材料在增加沥青矿料间粘附强度的同时,有可能降低低温条件下结合料自身的粘结强度,导致矿料接触面总体强度在特定条件下显著降低,从而使得混合料的宏观抗裂性能下降,所以矿料接触面总体强度应该是今后筛选抗剥材料的合理指标。
Combining with “the study on adhesion and cohesion strengths of flexile base mineralaggregate in low temperature and high groundwork level”, this paper studied themesoscopic strength characteristics of mixture, which include adhesion strength betweenaggregates and bitumen, cohesion strength of bitumen binder and total strength of contactsurface. On the premise of knowing the failure mechanics of mineral aggregate contactsurface, quantitative test technology on mesoscopic strength of mineral aggregate contactsurface of flexile base mixture was put forward. The influence factors and influence laws ofvarious factors were analyzed from several aspects, which include the load effect, oil filmthickness, experimental temperature and the quality of bitumen. By comparing thetemperature dependent behavior of total strength and splitting strength, the method of usingthe mesoscopic strength of mineral aggregate contact surface to estimate the macroscopicanti-crack and raveling resistance abilities is feasible. On the basic of series quantitative teston mesoscopic strength, comparison decision was carried on the mesoscopic strengthcharacteristics on engineering performance of two kinds of currently used anti-strippingagents.
     Several conclusions of the paper can be drawn as follows:
     (1) There mainly exist two kinds of failure forms on contact surface, one is the rupture ofbitumen itself, which is defined as cohesion failure of binder; the other is the strippingfailure developed on contact surface and the rupture of bitumen binder, which is definedas coexistence damage of cohesion and adhesion failure. Cohesion failure and thecoexistence of cohesion and adhesion failure are universal on mineral aggregate contact surface. When the oil film is thick, there is only cohesion failure on the contact surface.Tensile and shear effect are an inevitable problem on the study. The thicker of oil film,the easier to develop cohesion failure, while the thinner of oil film, the easier to developcoexistence of adhesion and cohesion failure. Furthermore, temperature has a biginfluence on the failure form of contact surface.
     (2)When applied tensile load, the mesoscopic strength of mineral aggregate contact surfaceincludes adhesion strength between aggregates and bitumen, cohesion strength ofbitumen binder and total tensile strength of contact surface. When applied shear load,the mesoscopic strength of mineral aggregate contact surface includes the shearadhesion strength between aggregates and bitumen, shear cohesion strength of bitumenbinder and total shear strength of contact surface.
     (3)Whether applied tensile load or shear load, the failure form on contact surface is onlycohesion failure when the oil film is thick. On this premise, tensile cohesion strength andshear cohesion strength can be calculated by the corresponding relation between the areaof mineral aggregate contact surface and failure load.
     (4) Whether applied tensile load or shear load, the failure form on contact surface iscoexistence of adhesion and cohesion failure when the oil film is middle-thick or thin.Total tensile (or shear) strength is undertaken by tensile (or shear) adhesion strengthbetween aggregates and bitumen and tensile (or shear) cohesion strength of bitumenbinder.
     (5) On the premise of prior determination and calculation of cohesion strength, quantitativetest on adhesion strength in different temperature, mechanic effect and oil filmthickness can be realized by the corresponding relation between adhesion strength,adhesion failure area, cohesion strength, cohesion failure area and failure load.
     (6)The adhesion strength value between aggregates and bitumen in shear load is generallylower than the value in tensile load. In low temperature, bitumen is easier to developstripping disease when applied shear load. Temperature has a complicated influence on adhesion strength, which presents a nonlinear characteristic. What’s more, thetemperature dependent law of adhesion strength is significant different when applieddifferent kinds of loads on contact surface, and the influence of temperature onadhesion strength has obvious fluctuation effect. Thin oil film is difficult to develop acomplete wetting to mesoscopic surface structure by hot melt bitumen. On the contrary,it is easier for thick oil film, which realizes the full fill of concave and convex surface.It is just the reason that leads to the consistent test result that the adhesion strengthvalue between aggregates and bitumen in shear load is generally lower than the value intensile load when the oil film is middle-thick or thick. The increase of oil film thicknesscan markedly improve total strength of mineral aggregate contact surface.
     (7)The temperature dependent law of splitting strength of Panjin70#bitumen, SBSmodified bitumen, rubber modified bitumen stabilized macadam mixture is basicallyconsistent with the total tensile strength in corresponding state. However, because ofdifferent test method and theory, the value of the two kinds of strength is different. Thesplitting strength can be used to estimate the raveling resistance ability ofbituminous-stabilized macadam mixture. At the same time, on the basic of quantitativetest on mesoscopic strength, comparative decision can be carried on improving theanti-crack ability of series mixture.
     (8) In normal state, adhesion effect between aggregates and bitumen is strengthened whenmixed with anti-stripping agent and the adhesion strength is markedly improved. Thereexists compatibility problem between anti-stripping agent and bitumen. In normal state,Ⅰ-type anti-stripping has a little influence on the improvement of adhesion strengthwhen the bitumen is processed by short-term and long-term aging. While, when mixedwith Ⅱ-type anti-stripping agent, the adhesion strength is obviously reduced in lowtemperature. As cohesion strength of bitumen binder is an important part of mssoscopicstrength, so the decrease of it is bad for the total strength of mineral aggregate contactsurface and adverse to related road performance.
     (9) Anti-stripping agent may be likely to decrease the cohesion strength when increases theadhesion strength. A single adhesion decision or cohesion decision may lead to largererror. The total strength is a comprehensive embodiment of adhesion and cohesionstrength and an important indicator of mesoscopic strength of mineral aggregate contactsurface.
     (10)If the study target is the long-term performance of mixture, the Ⅰ-type and Ⅱ-typeanti-stripping agents are not ideal choices. On the process of adding admixtures tobitumen, attention should be paid to the influence of admixtures on adhesion andcohesion strength, and awareness of avoiding unfavorable conditions. In the relatedstudy of improving the mesoscopic strength, corresponding technical measure should beadopted to realize the significant increase of total strength.Main innovation points of the paper:
     (1) In traditional study, researchers mostly focus on the adhesion effect between aggregatesand bitumen, and adhesion grade is grouped by the qualitative test means just likewater-boiled method. While this study did many experiments on the separation ofaggregates and came to the conclusion that the failure form of contact surface is morecomplicated. The failure form has something to do with oil film thickness, temperatureand load effect. There exists two kinds of failure forms, one is adhesion failure betweenaggregates and bitumen, the other is cohesion failure of bitumen binder. What is worthof noticing is that the failure form on contact surface is only cohesion failure when theoil film is thick.
     (2) The mesoscopic strength of mineral aggregate contact surface is comprised of adhesionstrength between aggregates and bitumen, cohesion strength of bitumen binder and totalstrength of contact surface.
     (3) The quantitative test technology on mesoscopic strength of bituminous-stabilizedmacadam mineral aggregate contact surface of highway flexile base is developed by ourown design. Through the establishment of the corresponding relationship between adhesion strength, adhesion failure area, cohesion strength and cohesion failure area andthe tensile or shear failure load, the mesoscopic strength of different mechanic effectcan be tested and calculated.
     (4) Through correlation analysis of total tensile strength of contact surface and the splittingstrength of mixture, it proves numerical size differences of the two strengths, but thetemperature dependent law is consistent, which means that the splitting strength can beused to estimate the raveling resistance ability of bituminous-stabilized macadammixture.
     (5) Traditionally, the engineering performance evaluation of series anti-stripping agent isbased on water-boiled method. The paper adopts the influence effect of anti-strippingagent to mesoscopic strength, which is the first case. Combining with aging effect,engineering performance of the two anti-stripping agents are analyzed, and it provides areasonable measure to screen the anti-stripping agent in the future.
引文
[1]李福普,陈景,严二虎.新型沥青路面结构在我国的应用研究[J].公路交通科技,2006,03:10-14.
    [2]胡斌.沥青路面柔性基层(沥青稳定碎石)应用研究[D].长安大学,2005.
    [3]李君.高等级公路柔性基层(级配碎石)的研究[D].大连理工大学,2004.
    [4]王松根,房建果,王林,马世杰.大碎石沥青混合料柔性基层在路面补强中的应用研究[J].中国公路学报,2004,03:13-18.
    [5]张梅.柔性基层沥青路面的应用研究[D].山东科技大学,2011.
    [6]赵明华,刘建华,刘煜,郑焕然.滨海公路软土路基变形机理及其沉降预测研究[J].公路交通科技,2006,01:32-35.
    [7]马南飞.高速公路软土路基沉降规律监测及FLAC模拟[J].西安科技大学学报,2007,02:251-254.
    [8]郭浩,毕锋,鲁桓.高速公路软土路基施工沉降及稳定性监测[J].筑路机械与施工机械化,2007,06:19-21.
    [9]刘鹏,陈泽松,赵明,夏元友,冯仲仁.高速公路软土路基沉降预测方法分析[J].土工基础,2005,03:52-55.
    [10]谷江波.高速公路软土路基沉降影响因素与计算分析研究[D].河海大学,2005.
    [11]崔鹏,孙立军,胡晓.高等级公路长寿命路面研究综述[J].公路交通科技,2006,10:10-14.
    [12]王选仓,侯荣国.长寿命路面结构设计[J].交通运输工程学报,2007,06:46-49.
    [13]粟弼国.重载交通长寿命沥青路面结构分析[D].浙江大学,2008.
    [14] Lee Hyun Jong, Lee Jung Hun, Park Hee Mun. Performance evaluation of high modulus asphaltmixtures for long life asphalt pavements[J]. CONSTRUCTION AND BUILDING MATERIALS,2007,21(5):1079-1087.
    [15] Lee Hyun Jong, Park Hee Mun, Lee Jung Hun. Development of a simplified design procedure fordetermining layer thickness in long-life pavements[J]. TRANSPORTATION RESEARCH RECORD,2007,2037:76-85.
    [16] Wu Shaopeng, Han Jun, Pang Ling, Yu Man, Wang Teng. Rheological properties for aged bitumencontaining ultraviolate light resistant materials[J]. CONSTRUCTION AND BUILDING MATERIALS,2012,33:133-138.
    [17] Mandapaka Venkata, Basheer Imad, Sahasi Khushminder. Mechanistic-Empirical and Life-CycleCost Analysis for Optimizing Flexible Pavement Maintenance and Rehabilitation[J]. JOURNAL OFTRANSPORTATION ENGINEERING-ASCE,2012,138(5):625-633.
    [18] Alabaster D, Herrington P R, Waters J. Ultra long life low noise porous asphalt[J]. The Journal ofthe Acoustical Society of America,2012,131(4):3225-3225.
    [19]江慧娟.沥青稳定碎石级配设计方法及性能研究[D].长安大学,2006.
    [20]张迎春.沥青稳定碎石排水层的设计与试验研究[D].湖南大学,2003.
    [21]王玲娟.沥青稳定碎石基层混合料设计方法和路用性能研究[D].长安大学,2004.
    [22]范善才.沥青稳定碎石结构层设计参数的研究[D].重庆交通大学,2008.
    [23]冯新军,郝培文.沥青稳定碎石基层混合料配合比设计方法研究综述[J].公路,2007,06:162-166.
    [24]葛折圣,黄晓明.沥青稳定碎石基层混合料矿料级配的优化[J].中国公路学报,2002,04:7-9.
    [25]陈建华.橡胶粉改性沥青混凝土路用性能研究[D].吉林大学,2012.
    [26]陈丽媛.高粘改性沥青的研制[D].大连理工大学,2012.
    [27]王浩.硅烷偶联剂改性沥青玛蹄脂碎石混合料性能研究[D].吉林大学,2012.
    [28]马强.改性沥青SMA路面现场热再生工艺研究[D].大连理工大学,2012.
    [29] De Almeida Junior Adao Francisco, Battistelle Rosane Aparecida, Bezerra Barbara Stolte. Use ofscrap tire rubber in place of SBS in modified asphalt as an environmentally correct alternative forBrazil[J]. JOURNAL OF CLEANER PRODUCTION,2012,33:236-238.
    [30] Araujo, Lins, Pasa, Fonseca Cintia Goncalves. Infrared spectroscopy study of photodegradation ofpolymer modified asphalt binder[J]. JOURNAL OF APPLIED POLYMER SCIENCE,2012,125(4):3275-3281.
    [31] Wang Jinshan, Wu Shaopeng, Han Jun, Liu Xing. Rheological properties of asphalt modified bysupramolecular UV resistant material-LDHs[J]. JOURNAL OF WUHAN UNIVERSITY OFTECHNOLOGY-MATERIALS SCIENCE EDITION,2012,27(4):805-809.
    [32]张争奇,李平,王秉纲.纤维和矿粉对沥青胶浆性能的影响[J].长安大学学报(自然科学版),2005,05:15-18.
    [33]陈华鑫,李宁利,胡长顺,张争奇.纤维沥青混合料路用性能[J].长安大学学报(自然科学版),2004,02:1-6.
    [34]邓宗才,李建辉,孙宏俊,傅智.新型纤维增强混凝土梁的抗弯冲击特性[J].公路,2004,12:163-169.
    [35]刘克非.不同纤维对SMA路用性能的影响[J].长安大学学报(自然科学版),2011,04:16-21.
    [36]陈华鑫,张争奇,胡长顺.纤维沥青路用性能机理[J].长安大学学报(自然科学版),2002,06:5-7.
    [37]叶志华,冯光乐,吴少鹏,王家主,玄东兴.沥青稳定碎石柔性基层的级配设计及施工[J].武汉理工大学学报(交通科学与工程版),2006,05:919-922.
    [38]邱仁科.沥青稳定碎石ATB-25的配合比优选及施工工艺研究[J].公路交通科技(应用技术版),2007,07:47-50.
    [39]何仁清. ATB-30沥青稳定碎石下面层在工程实践中的应用[J].公路,2005,10:125-130.
    [40]李冰.沥青混凝土路面施工工艺及机群协同作业[D].长安大学,2004.
    [41]王玲娟.沥青稳定碎石基层混合料设计方法和路用性能研究[D].长安大学,2004.
    [42]彭波.改性沥青玛蹄脂及沥青玛蹄脂碎石路用性能[J].长安大学学报(自然科学版),2005,06:18-20+85.
    [43]付其林,陈拴发,陈华鑫.级配对开级配大粒径沥青碎石路用性能的影响[J].郑州大学学报(工学版),2010,03:82-86.
    [44]李静.沥青混合料路用性能预测模型的研究[D].长安大学,2004.
    [45]杨群,黄晓明.基层模量对路面性能的影响分析[J].东南大学学报(自然科学版),2001,04:81-83.
    [46]李峰,孙立军.基层模量对沥青路面力学性能的影响分析[J].公路交通科技,2006,10:41-43+49.
    [47]马新,郭忠印.基层模量对沥青混合料路面性能影响的力学分析[J].中外公路,2008,04:46-48.
    [48]蒋应军,侯传岭,秦宪峰,陈忠达.基层顶面当量回弹模量换算新方法[J].公路交通科技,2005,05:38-42.
    [49]邱欣,杨青,钱劲松.半刚性基层沥青路面模量参数反演的影响因素分析[J].交通运输工程与信息学报,2010,08(4):43-46.
    [50]王振辉,蔡良才,顾强康,刘晓军,吴爱红.基层顶面当量回弹模量确定方法的修正[J].空军工程大学学报(自然科学版),2009,06:23-27.
    [51] В、Н、АНТИПОВ,吴佩瑜.基层和面层弹模量的快速测定法[J].华东公路,1984,04:102-103.
    [52]王刚,刘黎萍,孙立军.沥青混凝土抗剪强度及抗压回弹模量试验研究[J].建筑材料学报,2012,02:279-282.
    [53]赵薇,周刚,肖丽.沥青混凝土动态模量试验及Witczak预估模型验证[J].公路,2012,07:39-45.
    [54] Kim Yongjoo,Lee Hosin David. Performance evaluation of Cold In-Place Recycling mixtures usingemulsified asphalt based on dynamic modulus, flow number, flow time, and raveling loss[J]. KSCEJOURNAL OF CIVIL ENGINEERING,2012,16(4):586-593.
    [55] Coleri Erdem, Harvey John T, Yang Kai, Boone John M. Development of a micromechanical finiteelement model from computed tomography images for shear modulus simulation of asphalt mixtures[J].CONSTRUCTION AND BUILDING MATERIALS,2012,30:783-793.
    [56] Li Jingcheng, Zofka Adam, Yut Iliya. Evaluation of dynamic modulus of typical asphalt mixtures inNortheast US Region[J]. ROAD MATERIALS AND PAVEMENT DESIGN,2012,13(2):249-265.
    [57] Yu Huanan, Shen Shihui. Impact of aggregate packing on dynamic modulus of hot mix asphaltmixtures using three-dimensional discrete element method[J]. CONSTRUCTION AND BUILDINGMATERIALS,2012,26(1):302-309.
    [58]孙立军,秦健.沥青路面温度场的预估模型[J].同济大学学报(自然科学版),2006,04:480-483.
    [59]秦健,孙立军.沥青路面温度场的分布规律[J].公路交通科技,2006,08:18-21.
    [60]杨学良,刘伯莹.沥青路面温度场与结构耦合的有限元分析[J].公路交通科技,2006,11:1-4+9.
    [61]贾璐,孙立军,黄立葵,秦健.沥青路面温度场数值预估模型[J].同济大学学报(自然科学版),2007,08:1039-1043.
    [62]贾璐.沥青路面高温温度场数值分析和实验研究[D].湖南大学,2005.
    [63]廖卫东.基于应力吸收层的旧水泥混凝土路面沥青加铺层结构与材料研究[D].武汉理工大学,2007.
    [64]李祖仲.应力吸收层沥青混合料路用性能研究[D].长安大学,2005.
    [65]石昆磊.高粘性沥青应力吸收层防治沥青路面反射裂缝的研究[D].哈尔滨工业大学,2006.
    [66]林梦.橡胶沥青应力吸收层路用性能研究[D].南京航空航天大学,2008.
    [67]牛智华.高性能橡胶沥青应力吸收层应用技术研究[D].长安大学,2011.
    [68]马宏岩. AASHTO沥青路面低温开裂预估模型的验证与改进[D].哈尔滨工业大学,2011.
    [69]李峰,孙立军.沥青路面Top-Down开裂成因的有限元分析[J].公路交通科技,2006,06:1-4.
    [70]董希斌,赵熙.沥青路面低温开裂的影响因素分析[J].东北林业大学学报,2006,05:76-77.
    [71]冯德成,郑天鸣,高畅.沥青路面低温开裂预估模型及其适用性分析[J].公路交通科技,2007,03:1-4.
    [72]谭红霞,黄立暌.沥青路面轴载作用下疲劳开裂损坏比的预测[J].重庆大学学报(自然科学版),2007,05:27-30.
    [73] Tsai Yi-Chang James, Li Feng. Critical Assessment of Detecting Asphalt Pavement Cracks underDifferent Lighting and Low Intensity Contrast Conditions Using Emerging3D Laser Technology[J].JOURNAL OF TRANSPORTATION ENGINEERING-ASCE,2012,138(5):649-656.
    [74] Hsie Machine, Ho Yueh-Feng, Lin Chih-Tsang, Yeh I-Cheng. Modeling asphalt pavement overlaytransverse cracks using the genetic operation tree and Levenberg-Marquardt Method[J]. EXPERTSYSTEMS WITH APPLICATIONS,2012,39(5):4874-4881.
    [75] Zhi Suo, Gun Wong Wing, Hui Luo Xiao, Bo Tian. Evaluation of fatigue crack behavior in asphaltconcrete pavements with different polymer modifiers[J]. CONSTRUCTION AND BUILDINGMATERIALS,2012,27(1):117-125.
    [76] Huang Baoshan, Shu Xiang, Vukosavljevic Dragon. Laboratory Investigation of CrackingResistance of Hot-Mix Asphalt Field Mixtures Containing Screened Reclaimed Asphalt Pavement[J].JOURNAL OF MATERIALS IN CIVIL ENGINEERING,2011,23(11):1535-1543.
    [77]马新,郑传峰.沥青混合料水稳定性评价方法的试验研究[J].公路,2008,04:182-186.
    [78]谢军,李宇峙,邵腊庚.沥青混合料水稳定性APA试验研究[J].湖南科技大学学报(自然科学版),2005,02:53-57.
    [79]程新春,章志明,杨树萍,鹿中山.沥青混合料水稳定性试验研究[J].合肥工业大学学报(自然科学版),2003,04:562-566.
    [80]沙晓鹏.沥青混合料水作用后性能的变化及抗水损害指标研究[D].长沙理工大学,2011.
    [81]成然,徐栋梁.沥青混合料水损害的室内研究[J].石油沥青,2010,04:49-54.
    [82]周志刚.交通荷载下沥青类路面疲劳损伤开裂研究[D].中南大学,2003.
    [83]王晅.随机荷载作用下柔性路面结构及路基动力响应研究[D].中南大学,2006.
    [84]杨果岳.车辆随机荷载与柔性路面相互作用的研究[D].中南大学,2007.
    [85]单景松,黄晓明,廖公云.移动荷载下路面结构应力响应分析[J].公路交通科技,2007,01:10-13.
    [86] Bhattacharjee Sudip, Swamy Aravind Krishna, Daniel Jo S. Continuous relaxation and retardationspectrum method for viscoelastic characterization of asphalt concrete[J]. MECHANICS OFTIME-DEPENDENT MATERIALS,2012,16(3):287-305.
    [87] Underwood B Shane, Kim Y Richard. Comprehensive Evaluation of Small Strain ViscoelasticBehavior of Asphalt Concrete[J]. JOURNAL OF TESTING AND EVALUATION,2012,40(4):622-632.
    [88] Narayan S P A, Krishnan J M, Deshpande A P, Rajagopal K R. Nonlinear viscoelastic response ofasphalt binders: An experimental study of the relaxation of torque and normal force in torsion[J].MECHANICS RESEARCH COMMUNICATIONS,2012,43:66-74.
    [89] Levenberg Eyal, Uzan Jacob. Exposing the nonlinear viscoelastic behavior of asphalt-aggregatemixes[J]. MECHANICS OF TIME-DEPENDENT MATERIALS,2012,16(2):129-143.
    [90]李涛.软土路基大变形固结随机有限元分析[D].浙江大学,2006.
    [91]许俊超.高速铁路软土地基沉降控制及路基结构动力分析[D].东南大学,2006.
    [92]吴赣昌,张淦生.沥青路面温缩裂缝的应力强度分析[J].中国公路学报,1996,01:37-44.
    [93]贺玲凤,潘桂梅,贺志勇,罗毅,黄培彦.沥青路面温缩裂缝稳定性的光弹性实验研究[J].华南理工大学学报(自然科学版),2001,06:68-71.
    [94]郑健龙,关宏信.温缩型反射裂缝的热粘弹性有限元分析[J].中国公路学报,2001,03:4-8.
    [95]才华,王雪光,朱宏胜,吴金国.沥青混凝土路面温缩裂缝的研究[J].沈阳建筑工程学院学报(自然科学版),2003,02:94-97.
    [96]郑娅娜.混凝土破坏过程的三维细观数值模拟与CT试验验证[D].西安理工大学,2005.
    [97]杜修力,田瑞俊,彭一江,田予东.冲击荷载作用下混凝土抗压强度的细观力学数值模拟[J].北京工业大学学报,2009,02:213-217.
    [98]张德海,朱浮声,邢纪波.混凝土拉伸断裂的细观数值分析[J].计算力学学报,2006,01:65-70.
    [99]李朝红,王海龙,徐光兴.混凝土损伤断裂的三维细观数值模拟[J].中南大学学报(自然科学版),2011,02:463-469.
    [100]张颖.混凝土材料细观结构与抗冻融性的研究[D].兰州交通大学,2007.
    [101]刘智光.混凝土破坏过程细观数值模拟与动态力学特性机理研究[D].大连理工大学,2012.
    [102]李运成,马怀发,陈厚群,胡晓.混凝土随机凸多面体骨料模型生成及细观有限元剖分[J].水利学报,2006,05:588-592.
    [103]高悦.混凝土损伤破坏过程的细观数值模拟[D].大连理工大学,2008.
    [104]谢和平,鞠杨.混凝土微细观损伤断裂的分形行为[J].煤炭学报,1997,06:28-32.
    [105]唐世斌.混凝土温湿型裂缝开裂过程细观数值模型研究[D].大连理工大学,2009.
    [106]朱万成,唐春安,滕锦光,赵文.混凝土细观力学性质对宏观断裂过程影响的数值试验[J].三峡大学学报(自然科学版),2004,01:22-26.
    [107]田威,党发宁,梁昕宇,陈厚群.混凝土细观破裂过程的CT图像分析[J].武汉大学学报(工学版),2008,02:69-72+77.
    [108]姜袁,柏巍,戚永乐,王乾峰.基于CT扫描数据的混凝土细观结构的三维重建[J].三峡大学学报(自然科学版),2008,01:52-55.
    [109]秦武,杜成斌,孙立国.基于数字图像技术的混凝土细观层次力学建模[J].水利学报,2011,04:431-439.
    [110]夏晓舟.混凝土细观数值仿真及宏细观力学研究[D].河海大学,2007.
    [111]袁敬.钢纤维混凝土界面粘结机理及细观力学有限元分析[D].河北工业大学,2007.
    [112]龙广成,谢友均,王培铭,蒋正武.活性粉末混凝土的性能与微细观结构[J].硅酸盐学报,2005,04:456-461.
    [113]艾士刚.基于细观结构的液体橡胶基混凝土破坏机理分析[D].华南理工大学,2011.
    [114]何建.轻骨料碳纤维混凝土宏观力学性能及细观结构的试验研究[D].南华大学,2007.
    [115]罗白云,熊光晶,李庚英,陈立强.减缩剂改性新老混凝土修补界面层的细观结构与粘结强度[J].硅酸盐通报,2004,06:110-112+116.
    [116]杜明干.纤维混凝土细观力学模型与应用[D].清华大学,2004.
    [117]刘锋,潘东平,李丽娟,陈应钦.橡胶混凝土应力和强度的细观数值分析[J].建筑材料学报,2008,02:144-151.
    [118]蒋泽中,张华,谢涛,邱延峻.基于图像技术的沥青混合料细观损伤演化研究[J].公路交通科技,2009,02:27-31+36.
    [119]武利强,朱晟,苏佩珍,孟凡雷.成型方法对沥青混凝土力学性质影响的细观研究[J].水电能源科学,2012,02:106-110.
    [120]张蕾.基于细观分析的沥青混合料组成结构研究[D].哈尔滨工业大学,2008.
    [121]李蕊,常明丰,李彦伟,石鑫,杜群乐.沥青混合料裂缝扩展过程细观力学模拟(英文)[J].交通运输工程学报,2011,06:1-9.
    [122]李芬,李之达,龚军安,赵显鹏.基于CT图像分维估算的沥青混凝土损伤演化研究[J].湘潭大学自然科学学报,2006,02:52-55.
    [123]李芬,沈成武,李永信,李晖.基于超声波检测技术的沥青混凝土探伤研究[J].武汉理工大学学报(交通科学与工程版),2006,02:293-296.
    [124]肖昭然,胡霞光,刘玉.沥青混合料细观结构离散元分析[J].公路,2007,04:145-148.
    [125]李立新,彭超志.沥青路面纹理特征细观结构数值分析[J].湖南交通科技,2009,04:1-4.
    [126]胡霞光.沥青混合料微观力学分析综述[J].长安大学学报(自然科学版),2005,02:6-10.
    [127]张爱霞.沥青混合料细观结构初步分析[D].长安大学,2009.
    [128]朱兴一.沥青混凝土的细观力学模型及数值模拟[D].浙江大学,2010.
    [129]李芬.沥青混凝土路面细观结构和水破坏研究[D].武汉理工大学,2006.
    [130]张蕾,焦晓磊,王哲人.沥青混合料细观结构指标的研究(英文)[J].科学技术与工程,2008,17:5092-5096.
    [131]倪文琛,王颖,崔亚楠.胶粉改性沥青混合料细观结构的力学性能研究[J].新型建筑材料,2012,03:57-59+69.
    [132]高春妹.玄武岩纤维沥青混凝土性能研究与增强机理微观分析[D].吉林大学,2012.
    [133]延西利,扈惠敏,张登良.沥青混合料线性流变模型的数值模拟[J].西安公路交通大学学报,1999,01:10-15.
    [134]李国强,黄卫,邓学钧,杨光甲.沥青砼非线性流变模型与路面缩裂温度预估[J].重庆交通学院学报,1997,01:52-61.
    [135]延西利,李满仓,吴跃东.沥青材料的动态粘度测试及流变模型[J].石油沥青,1998,04:21-25.
    [136]叶永,陈燕飞.沥青砂非线性流变模型实验研究[J].华中科技大学学报(城市科学版),2009,01:57-59+69.
    [137]刘敬辉,王端宜,刘宇.采用J积分对沥青混合料抗裂性能进行评价[J].固体力学学报,2010,01:16-22.
    [138]徐世法,朱照宏.高等级道路沥青路面车辙的预估方法[J].土木工程学报,1993,06:28-36.
    [139]陈静云,周长红,王哲人.沥青混合料蠕变试验数据处理与粘弹性计算[J].东南大学学报(自然科学版),2007,06:1091-1095.
    [140]闵召辉,黄卫,钱振东.环氧树脂沥青混合料粘弹行为的力学模型分析[J].公路交通科技,2007,07:6-9+34.
    [141]张久鹏,黄晓明,王晓磊.基于粘弹塑性理论的沥青路面车辙分析[J].公路交通科技,2007,10:20-24.
    [142]胡曼.基于沥青混合料粘弹塑性本构模型实验研究与车辙计算[D].重庆交通大学,2011.
    [143]黄晓明,李汉光,张裕卿.考虑粗集料和空隙的沥青混合料粘弹性细观力学分析[J].华南理工大学学报(自然科学版),2009,07:31-36.
    [144]王端宜,刘敬辉,刘宇.沥青混合料粘弹塑性断裂参数的研究[J].华南理工大学学报(自然科学版),2009,11:7-11+21.
    [145]封基良,许爱华,席晓波.沥青路面车辙预测的粘弹性分析方法[J].公路交通科技,2004,05:12-14+28.
    [146]张熙颖.沥青混合料低温抗裂性能蠕变试验研究与分析[J].中外公路,2007,06:177-179.
    [147]延西利,封晨辉,梁春雨.沥青与沥青混合料的流变特性比较[J].长安大学学报(自然科学版),2002,05:5-8.
    [148]郑健龙,田小革,应荣华.沥青混合料热粘弹性本构模型的实验研究[J].长沙理工大学学报(自然科学版),2004,01:1-7.
    [149]钱国平,郑健龙,周志刚,田小革.沥青混合料增量型热粘弹性本构关系研究[J].应用力学学报,2006,03:338-343+505-506.
    [150]郑健龙,钱国平,应荣华.沥青混合料热粘弹性本构关系试验测定及其力学应用[J].工程力学,2008,01:34-41.
    [151]李一鸣.对水煮法检验沥青与矿料粘附性试验的商榷[J].石油沥青,1994,(02):25-27.
    [152]陈晓东,刘世川,程雯,刘彦峰.对沥青抗剥落剂性能评价试验中水煮法的改进[J].上海公路,2005,(04):15-16+4.
    [153]李剑飞,盛晓军,刘黎萍,孙立军.水煮法定量研究初探[J].公路工程,2009,(05):112-115+129.
    [154]彭余华,王林中,于玲.沥青与集料粘附性试验新方法[J].沈阳建筑大学学报(自然科学版),2009,(02):282-285.
    [155]刘祖愉,秦建忠,闫儒峰.剥落率法定量测定沥青与石料的粘附性[J].太原理工大学学报,1998,(02):44-46.
    [156]周卫峰.沥青混合料水稳性与粘附性实验方法相关性的灰关联分析[J].公路交通科技,2004,(05):18-20.
    [157]闵召辉,张翔,詹炳根.环氧沥青与石料的黏附性能研究[J].合肥工业大学学报(自然科学版),2005,(11):1452-1455.
    [158]原健安,徐希娟.评价沥青与集料相对粘附性的方法──溶剂洗脱法[J].公路,1999,(11):53-55+69.
    [159]高原,李智,刘佳辉.基于高温条件的集料与沥青粘附性评价试验[J].公路交通科技(应用技术版),2010,(09):71-74.
    [160] Peng Yuhua, Wang Linzhong, Yu Ling. A new experimental method of adhesion between asphaltand aggregate. Journal of Shenyang Jianzhu University(Natural Science)2009;25(2):282-286.
    [161] Aqra Fathi, Ayyad Ahmed. Surface tension (gamma(LV)), surface energy (gamma(SV)) andcrystal-melt interfacial energy (gamma(SL)) of metals. Current Applied Physics2012;12(1):31-35.
    [162] Arabani M., Hamedi Gh. H. Using the surface free energy method to evaluate the effects ofpolymeric aggregate treatment on moisture damage in hot-mix asphalt. Journal of Materials in CivilEngineering2011;23(6):802-811.
    [163] Howson Jonathan, Masad Eyad, Bhasin Amit. Comprehensive analysis of surface free energy ofasphalts and aggregates and the effects of changes in pH. Construction and Building Materials2011;25(5):2554-2564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700