多形态羟基磷灰石粉体、涂层的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(HAP)具有良好的生物活性和生物相容性,是人类的牙齿和骨骼的主要无机矿物组成,在生物材料中占有重要的地位。近年来科技工作者已经合成了多种形态的HAP材料,例如:HAP非晶材料,HAP微球材料,HAP介孔材料,HAP晶须材料,HAP纤维材料等。由于临床上需要大量的人体硬组织替代材料,及人体植入体,而植入体与人体组织物理化学属性并不相同,需要在植入体的外面涂覆一层生物相容性好的HAP材料,目前常见的植入体材料包括:钛基合金、不锈钢、生物陶瓷等。人们龋病的常见性和多发性引起人们的重视,对牙釉质进行原位仿生再矿化是当前研究的热点内容。
     本文分别采用化学沉淀法、模拟体液法、共沉淀法、明胶凝胶法制备了普通羟基磷灰石粉体、磁性羟基磷灰石粉体、板条状氟羟基磷灰石粉体。以硫酸亚铁为添加剂,与HAP共沉淀,可以制备出磁性羟基磷灰石,晶粒细小分散性很好,有作为靶向载药材料的潜力。设计了一种新的方法来制备羟基磷灰石微球,利用在化学沉淀法中制备的HAP粉体制备了一定pH值的悬浊液,通过调节pH值制备了HAP中空微球,HAP中空有核微球,HAP实心微球。
     研究了硬脂酸铝、十六胺、十二烷基硫酸钠和山梨醇对羟基磷灰石晶体生长的影响,反应原料为氯化钙和磷酸氢二钠,其反应初始m(Ca)/m(P)为5:3,按照不同浓度加入外加剂,研究在多种介质下HAP颗粒的生长,并对晶粒进行了表征。
     采用高能球磨法,以分析纯的Ti粉和AI粉为原料,制备了金属间化合物Ti3Al,并以在模拟体液中制备的HAP粉体为基体,Ti3Al为第二相,制备了Ti3Al/HAP复合材料,烧结温度分别为1000℃、1050℃和1100℃,并对其进行力学性能检测.力学测试结果显示Ti3Al/HAP复合材料的力学性能并没有显著提高,抗弯强度均比纯HAP陶瓷低,而烧结温度为1100℃,Ti3Al掺入量为1%的试样断裂韧性值最高。
     分别在硅片、Ti3Al/HAP复合材料和牙切片上进行了涂层制备。研究结果显示通过电泳沉积法可以在硅片上制备出HAP的涂层,涂层的晶粒生长复合台阶式生长,每当台阶沿着晶面扫过一次,则晶体就长大了一层。以螯合剂EDTA-2Na为媒介,可分别在Ti3Al/HAP复合材料和牙釉质的表面制备出钙磷矿物涂层,涂层由六方棱柱状晶体组成,适当延长矿化时间和矿化温度,制备的涂层晶粒垂直于基底材料平行排列。采用酸性糊剂法可以在牙釉质的表面制备出一层致密的由细小晶粒组成的涂层,在一定pH值范围内,该涂层与酸性糊剂的pH值大小无关。
Hydroxyapatite (HAP) is the mainly inorganic composition of bones and teeth of humans and animals, with good bioactivity and biocompatibility. It can combine with bones firmly and is the main substitute materials of human bone s and teeth. As the growing acknowledgement of hydroxyapatite research in recent years, people have synthesized various kinds of HAP crystal structures and coatings. For instance, HAP non-crystalline materials, HAP microspheres materials, HAP mesoporous materials, HAP whisker s, HAP fibers and etc. For the sake of great need of human implant to replace human tooth and bone, researcher have to work hard to cover the implant with better biocompatible and bioactive coating, which stay in human body very well. Now the most frequently used base materials include titanium alloy, stainless steel, and bioceramics. Dental caries is a kind of conmmon and multiple disease, and people pay attention to this research field. Now In-situ biomimetic remineralization research of enamel is very hot.
     In this paper, common HAP powder, magnetic HAP nanoparticles lath like FAP were prepared by the methods of chemical deposition, in SBF, coprecipitation and gel. When FeSO4was added into the solution it could be turn into Fe2O3, which would bring magnetism to the HAP powder. The crystals in magnetism powder is very small and loose which could be used as carrier of drug. We also have design a new way to produce HAP microspheres. In the HAP suspension with different pH value, hollow sphere, hollow sphere with core and compact microspheres were produced.
     The effect of additive on the crystal growth of HAP were researched, which include Sodium stearate, cetylamine, Sodium dodecyl sulfate and Sorbitol, and the raw materials include calcium nitrate and disodium hydrogen phosphate. At the beganing of experiment the ratio of Ca/P was5:3. The different degree of additive was added into the solution and the growth of HAP crystal were studied and characterized.
     We also prepared Ti3AI/HAP composite by sintered at1000℃,1050℃and 1100℃。At first the intermetallic compound Ti3AI was prepared by mixed and ball mill. Then added the intermetallic compound Ti3AI to HAP made in SBF, the compound powder was ready for the sintered. Mechanical test result display the with the addition of Ti3AI the bend strength is reduced and the most value of fracture strength was detected in sample which was sintered under1100℃, and the amount of Ti3AI is1%.
     This paper also illustrated a possible way to produce coating on the surface of Ti3Al/HAP. The result of research experiment show that the HAP coating could grow on the surface of Si substrate, and the way of crystal growth is accord with the step growth theory. When the step pass through the crystal surface once time, the crystal grow bigger. We also prepared HAP coating on the Ti3Al/HAP composite and dental enamel with EDTA-2Na. By the SEM images the crystal of coating were observed which is a typical apatite hexagonal structures. The simple chemical method could produce enamel-like structure with prism and interprism under near-physiological conditions. The newly growth layerwas quite close to the natural enamel in chemical components, microstructure, and nanomechanical properties. The newly grown crystals have bigger size and more F content than the crystals of enamel, so it can be concluded that the newly grown layer have the better ability to resist against stronger acidic solution than that of the natural enamel. For the reason that fluoridated hydroxyapatite has excellent biocompatibility, it is a promising approach that reconstructing the early caries lesion using this simple chemical method.
引文
[1]Mohammad Hafiz Uddin, Takuya Matsumoto, Masayuki Okazaki, Atsushi Nakahira and Taiji Sohmura (2010). Biomimetic Fabrication of Apatite Related Biomaterials, Biomimetics Learning from Nature, Amitava Mukherjee (Ed.), ISBN:978-953-307-025-4, InTech, DOI:10.5772/8777.
    [2]Buddy D.Ratner, et al. Biomaterials Science:An introduction to materials in medicine (Second Edition). Elsevier Pte Ltd, Singapore,2004.
    [3]FELICIO-FERNANDES, G. LARANJEIRA, Mauro C. M.. Calcium phosphate biomaterials from marine algae. Hydrothermal synthesis and characterisation. Quim. Nova [online].2000, vol.23, n.4, pp.441-446.
    [4]Zhou P, Huang M, Hu M F, et al. Studies on the Mechanism of porous (3-TCP/HAP Biphase Ceramic-induced Osteogenesis. Joumal SiChuan University (Nature Sci. Edit),1996, 33(2):155-161.
    [5]Ruan J, Huang B, Zhou J, et al. A Study of Bioceramic Material with Biodegradation Function. Journal of Central-South Institute of Mining and Metallurgy,1993,24(4):509-65.
    [6]R Z LeGeros. Properties of osteoconductive biomaterials:calcium phosphates. Clin Orthop Relat Res 2002,395:81-98.
    [7]K D Groot. Clinical applications of calcium phosphate biomaterials:a review. Ceram Int 1993, 19:363-366.
    [8]R Z LeGeros. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 1993,4:65-88.
    [9]S V Dorozhkin, M Epple, Biological and medical significance of calcium Phosphates. Angew. Chem. Int.Ed.2002,41(17):3130-46.
    [10]H W Kim, JC Knowles, HE Kim. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. J Biomed Mater Res 2005,72A; 136-45.
    [11]徐淑华,罗承萍,王迎军.TZP增韧HA复合材料的电镜研究[J].华南理工大学学报报(自然科学版),2002,30(3):35-39.
    [12]TayaM, Hayshi S, Kobayshi A S. Thoughening of a Particulate-Reinforced Cermics-Matrix Composite by Themal Residual Stress[J]. J. Am.Ceram. Soc,1990,73:1328.
    [13]H.Wang, N.Eliaz, Z.Xiang, et al. Early bone apposition in vivo on plasma-sprayed and electrochemically deposited hydroxyapatite coatings on titanium alloy, Biomaterials, 2006,27:4192-4203.
    [14]Y.W Fan,K Duan, RZ Wang. A composite coatingby electrolysis-induced collagen self-assembly and calcium phosphate mineralization [J]. Biomaterials,2005,26:1623-1632.
    [15]A Rabiei,B Thomas,C. Jin, et al. A study on functionally graded HA coatings processed using ion beam assisted deposition with in situ heat treatment, Surf.Coat.Tech.2006,200:6111-6116.
    [16]K Tan, P Cheang, IA W Ho, P Y P Lam, K M Hui. Nanosized bioceramic particles could function as efficient gene delivery vehicles with target specificity for the spleen, Gene Therapy, 2007,14,828-35.
    [17]Y Boonsongrit, H Abe, K Sato, M Naito, M Yoshimura, H Ichikawa, Y Fukumori. Controlled release of bovine serum albumin from hydroxyapatite microspheres for protein delivery system. Materials Science and Engineering:B,2008,148:162-5.
    [18]T Matsumoto, M Okazaki, M Inoue, et al. Hydroxyapatite particles as a controlled release carrier of protein. Biomateials,2004,25(17):3807-12.
    [19]]H W Kim, J C Knowles, H E Kim. Hydroxyapatite/poly(e-caprolactone) composite coatings on hydroxya-patite porous bone scaffold for drug delivery. Biomaterials,2004,25:1279-87.
    [20]S.P. Pathi, D.D.W Lin, J.R. Dorvee. Hydroxyapatite nanoparticle-containing scaffolds for the study of breast cancer bone metastasis. Biomaterials.2011,32(22):5112-22.
    [21]Han Y C, Li S P, Wang X, et al. Influence of apatite nanoparticles on cancer cells. Nanoscience,200611(2):102-6.
    [22]Li S, Zhang S, Chen W, et al. Effects of hydroxyapatite ultra-fine powder on colony formation and cytoskeletons of MGC-803 cell]. Bioceramics,1996,9:225-7.
    [23]M. Jimenez-Reyes, M. Solache-Rios. Sorption behavior of fluoride ions from aqueoussolutions by hydroxyapatite, Journal of Hazardous Materials,2010,180(2):297-302.
    [24]Sheng-Heng Tan, Xue-Gang Chen, Ying Ye, Jie Sun, Ling-Qing Dai, Qian Ding. Hydrothermal removal of Sr2+ in aqueous solution via formation of Sr-substituted hydroxyapatite, Journal of Hazardous Materials,2010,179(1):559-563.
    [25]张俊,王德平,姚爱华,黄文曷.羟基磷灰石吸附性能与制备工艺研究新进展,材料导报,2008,22(11):55-6
    [26]G.N. Kousalyaa, Muniyappan Rajiv Gandhib, C. Sairam Sundaramc, S. Meenakshi. Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removal of Fe(Ⅲ).Carbohydrate Polymers,2010,82(3):594-9.
    [27]刘羽,彭明生.磷灰石在废水治理中的应用[J].安全与环境学报,2001,1(1):9-12.
    [28]彭继荣,李珍,经基磷灰石的应用研究进展,中国非金属矿工业导刊,2005,46(2):12-19.
    [29]张定林,赵华文,赵先英,刘毅敏,陈华,李贤均. 羟基磷灰石作催化剂和催化剂载体的应用[J].化学进展,2011,23(4):687-94.
    [30]赵欣,王德平.纳米羟基磷灰石作为药物载体材料的研究进展[J].材料导报,2010,23(12):116-20.
    [31]Nims L F J. Preparative techniques based on the dissociation constants of phosphoric acid [J]. Amer Chem Soc,1934,56:1110-5.
    [32]Korber F, Tromel G Z. The formation of HAP through a solid state reaction between tri and tetra-calcium phosphates [J]. Electro chem,1932,38:578-80.
    [33]Tromel G Z. The optimum conditions for the formation of HAP [J]. Physic Chem,1932, 158(A):422-5.
    [34]Iwasaki H. Fibrous Hydroxyapatite [J],Ceram. Jpn.,1989,24(40):295-9.
    [35]Yoshiota,Iwashita,Kasuga. Novel preparation method of hydroxyapatite fibers [J]. J. Am. Ceram.Soc,1998,81:1665-8.
    [36]伍源,周玉新.用水热法合成羟基磷灰石[J].无机盐工业,1991,1:58-60
    [37]Lim GK, Wang J. Processing of hydroxyapatite via micro emulsion and emulsion routes[J], Biomaterials,1997,18(21):1433-9.
    [38]冯杰,曹洁明,邓少高.纳米结构羟基磷灰石的微波固相合成新方法[J].无机化学学报,2005,21(6):801-5.
    [39]郭效军,严虎东,王爱平,张力.室温固相法制备羟基磷灰石粉体[J].硅酸盐通报,2012,31(6):1453-6.
    [40]Ota Y, Iwashita T, Kasuga T, Abe Y. Novel Preparation Method of Hydroxyapatite Fibers [J]. Journal of the American Ceramic Society,81:1665-1668.
    [41]A. Afshar, M. Ghorbani, N. Ehsani, et al. Some important factors in the wet precipitation process of hydroxyapatite, Mater Design,2003,24:197-202
    [42]L.B. Kong, J. Ma, F. Boey. Nanosized hydroxyapatite powders derived from coprecipitation process, J Mater Sci,2002,37:1131-4.
    [43]C. Durucan, P.W. Brown. a-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature, J Mater Sci:Mater in Med,2000,11:365-71
    [44]M. T Fulmer, P. W Brown. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite. J Mater Sci:Mater in Med,1998,9:197-202.
    [45]Z W Yang, Y S Jiang, Y J Wang, et al. Preparation and thermal stability analysis of hydroxyapatite derived from the precipitation process and microwave irradiation method, Materials Letters,2004,58:3586-3590.
    [46]]H Q Zhang, Y F Wang, Y H Yan, S P Li. Precipitation of biocompatible hydroxyapatite whiskers from moderately acid solution,Ceramics International,2003,29:413-8
    [47]Guodong Zhang, Jingdi Chen, Shen Yang, Qifeng Yu, Zhili Wang, Qiqing Zhang. Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method[J]. Materials Letters, 2011,65 (3):572-574.
    [48]K. Ozekia, H. Aokib, T. Masuzawa. Influence of the hydrothermal temperature and pH on the crystallinity of a sputtered hydroxyapatite film [J]. Applied surface Science,2010,256 (3):7027-31.
    [49]韩纪梅,李玉宝,梁新杰.纳米羟基磷灰石与牙无机质的比较研究[J].功能材料,2005,36(7):1069-71
    [50]Hattori T, Lwadate, Y. Hydrothermal Preparation of Calcium Hydroxyapatite Powders [J]. Journal of the American Ceramic Society,1990,73:1803-1805.
    [51]Fujishiro. Y, Yabuki. H, Kawamura. K, Sato. T, Okuwaki. A. Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions [J].Journal of Chemical Technology and Biotechnology.1993,57:349-353.
    [52]Kim S, Kumta PN. Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder [J]. Materials Science and Engineering B,2004,111(2-3):232-236.
    [53]Wang F, Li MS, Lu YP, Qi YX. A simple sol-gel technique for preparing hydroxyapatite nanopowders [J]. Materials Letters,2005,59(8-9):916-919.
    [54]Bigi A, Boanini E, Rubini K. Hydroxyapatite gels and nanocrystals prepared through a sol-gel process [J]. Journal of Solid State Chemistry,2004,177(9):3092-3098.
    [55]Liu DM, Yang QZ, Troczynski T, Tseng WJ. Structural evolution of sol-gel-derived Hydroxyapatite [J]. Biomaterials,2002,23(7):1679-1687.
    [56]信运昌.医用镁合金在生理环境中降解机理及其表面改性研究[D].北京:清华大学,2009:1.
    [57]Yousefpour M, Afshar A, Chen J, Zhang X. Electrophoretic deposition of porous hydroxyapatite coatings using polytetrafluoroethylene particles as templates[J]. Materials Science and Engineering C,2007,27 (5),1482-1486.
    [58]Lin DY, Wang XX. Preparation of hydroxyapatite coating on smooth implant surface by electrodeposition [J], Ceramics International,2011,37(1):403-406.
    [59]Wang HX, Guan SK, Wang X, Ren CX, Wang L. In vitro degradationand mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process [J]. Acta Biomaterialia,2010,6 (5):1743-1748.
    [60]肖秀峰,刘蓉芳,郑炀曾,左友松,许道璇.水热电沉积法制备羟基磷灰石/氧化钛复合涂层的研究[J].硅酸盐学报,2004,32(6):728-733.
    [61]王英波,鲁雄,李丹,冯波,屈树新,翁杰.脉冲电化学沉积法制备羟基磷灰石/壳聚糖复合涂层的研究[J].高分子学报,2011,11:1244-1252.
    [62]江源胜,林东洋,王小祥.电化学沉积法制备和表征锌掺杂羟基磷灰石涂层[J].2011,29(5):720-724,728.
    [63]张国光,吴宗南,李琴,刘长虹,刘婷.电泳沉积法制备羟基磷灰石涂层[J].2008,37(6):6 1-62,93.
    [64]吕宇鹏,陈艳梅,朱瑞富,李木森,雷廷权.等离子喷涂羟基磷灰石涂层的相组成及其结构[J].材料科学与工艺,2007,15(4):492-495,499.
    [65]常程康,朱然怡,毛大立,吴建生,丁传贤.等离子喷涂羟基磷灰石涂层的材料学特征[J].无机材料学报,2000,1 5(5):952-956.
    [66]丁传贤,薛卫昌,刘宣勇,等.等离子喷涂人工骨涂层材料[J].中国有色金属学报,2004,14(S1):306-309
    [67]Wang BC, Chang E, Lee TM, et al. Changes in phases and crystallinity of plasma-sprayed hydroxyapatite coatings under heat treatment:a quantitative study [J]. J Biomed Mater Res,1995, 29(12):1483-1492.
    [68]Cao Y, Lin Q, Tang M, et al. The effect of cell behavior on plasma sprayed HA coatings with different post treatment [J]. Key Eng Mater,2006,309-311:705-708
    [69]贺定勇,孙旭峰,栗卓新,蒋建敏,王智慧.等离子喷涂羟基磷灰石涂层结晶度的分析[J].北京工业大学学报,2006,32(12):1130-1133.
    [70]高亚丽,熊党生.医用镁合金等离子喷涂羟基磷灰石涂层研究[J].材料热处理学报,2011,32(1):109-113.
    [71]高亚丽,熊党生,王存山,潘学学民.医用镁合金激光熔敷羟基磷灰石涂层初探[J].特种铸造及有色合金,2009,29(4):305-307.
    [72]李宝娥,罗宏杰.溶胶凝胶法制备钛基体羟基磷灰石涂层[J].材料导报,2004,18(3):243-246.
    [73]张健泓,陈优生.溶胶-凝胶法的应用研究[J].广东化工,2008,35(3):47-49.
    [74]E Tkalcec, M Sauer, R Nonninger, et al. Sol-gel-derived hydroxyapatite powdersand coatings [J] Journal of Materials Science,2001,36(21):5253-5263.
    [75]M Shirkhanzadeh. Bioactive Calcium Phosphate Coatings Prepared by Electrodeposition [J] Journal of Materials Science Letter,1991 (10):141-147.
    [76]付涛.仿生法沉积羟基磷灰石涂层的研究进展[J].生物医学工程学杂志2001,18(1):116-118.
    [77]林岚云.仿生法制备钛合金/羟基磷灰石复合涂层的研究[J].佛山陶瓷,2005,15(2):4-7.
    [78]郭洁.通过仿生法在医用镁合金表面制备羟基磷灰石涂层的研究[D].武汉理工大学,2009.
    [79]Deisinger U, Stenzel F, Ziegler G. Hydroxyapatite ceramics with tailored pore structure [J]. Key Engineering Materials,2004,264-268:2047-2050.
    [80]Fleisch H, Russell R G, Francis M D. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo [J]. Science, 1969,165:1262-1264.
    [81]Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties [J]. Biomaterials,2003,24(13):2161-2175.
    [82]Mao X, Wu P, Tang S. Cytocompatibility of Highly Dispersed Nano Hydroxyapatite Sol [J]. Chinese Journal of Biomedical Engineering (English Edit ion),2004,13(1):1-5.
    [83]Hideo Aoki. An in Vivo Study on the Reaction of Hydroxyapatite-sol Injected into Blood [J]. Journal of Materials Science:Material in Medicine,2000,11:67-72.
    [84]曹献英,齐志涛,贺建华,等.羟基磷灰石纳米粒子的体外致突变作用研究[J]. 中国公共卫生,2003,19(6):704.
    [85]Cao X, Qi Z, Dai H, et al. Cytotoxinic mechanism of hydroxyapatite nanoparticles on human hepatoma cell lines [J]. J Wuhan University of Technology-Mater Sci Ed,2003,18(3):66-68.
    [86]Liu Z, Tang S, Ai Z. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells [J]. World J Gastroenterol,2003, 9(9):1968-1971.
    [87]Zhu S H, Huang B Y, Zhou K C. Hydroxyapatite nanoparticles as a novel gene carrier [J]. J Nanoparticle Res,2004,6(2):307-311.
    [88]Savita B, Gajadhar B, Susmita M, et al. PharmaceuticalNanotechnology pDNA loaded calcium phosphate nanoparticles:highly efficient non-viral vector for gene delivery [J]. Int J Pharma,2005,288:157-168.
    [89]Aoki H. Science and Medical Applications of Hydroxyapitite. Tokyo:Takayama Press System Center Co,1991,165-177.
    [90]Zhu S H, Huang B Y, Zhou K. Hydroxyapatite Nanoparticle As a Novel Gene Carrier [J]. Journal of Nanoparticle Research,2004,6:307-311.
    [91]李世普.生物医用材料导论[M].武汉工业大学出版社,2000:116-118.
    [92]张园,袁媛,刘昌胜.纳米羟基磷灰石悬浮液稳定性能的研究[J].中国生物,医学工程学报,2008,27(1):108-116.
    [93]Li Y, Yan R. A study on composite of hydroxyapatite and polyamide [A]. The Fourth Asian Symposium on Biomedical Materials [C]. Singapore: Kobunshi Kankokai,1999,1283-1290.
    [94]郭大勇,储成林,林萍华,等.柠檬酸对溶胶-凝胶法制备羟基磷灰石粉体的影响[J].东南大学学报(自然科学版),2002,32(3):402-404.
    [95]Bimal P S, Jayadev J Laxmidhar B. Dispersion of nano-silicon carbide (SiC) powder in aqueous suspensions [J]. J Nanoparticle Pes,2007,9:797-806.
    [96]Jouliana M, Daniela C, Charles J C. Poly(allylamine)stabilized iron oxide magnetic nanoparticles [J]. J Nanoparticle Res,2007,9:959-964.
    [97]Zhao W, Lee T M H, Leung S S Y. Tunable stabilization of gold nanoparticles in aqueous solutions by monucleotides [J]. Langmuir,2007,23(13):7143-7147.
    [98]CesaranoIIIJ, Akasy I A, Bleier A. Stability of Aqueous α-A12O3 suspension with Poly (methacrylic acid) Polyelectroiytes [J]. J American Ceramic Society,1998,71(4):250-255.
    [99]李国栋.高效分散剂对高性能陶瓷成型适用性研究[J]. 中国陶瓷,2003,39(2):18-21.
    [100]Satoshi Hayakawa, Akiyoshi Osaka. Biomimetic deposition of calcium phosphates on oxides soaked in a simulated body fluid[J].J Non-Cryst Solids,2000,263-264:409 415.
    [101]A.cOSTANTINI, et al. Hydroxyapatite coating of titanium by biomimetic method[J]. J Mater Sci:Mater Med,2002,13:891-894.
    [102]E. Pecheva, et al. Study of the calcium phosphate layer grown on AISI 316 stainless steel from simulated body fluid[J]. J Mater Sci:Mater Med,2003,14:775-776.
    [103]A Cuneyt Tas. Synthesis of biomimetic Ca-hydroxyapatite powders at 37℃ in synthetic body fluids[J]. Biomaterials,2000,21:1429-1438
    [104]刘敬肖,等模拟体液中仿生羟基磷灰石超细粉的制备及表征[J].硅酸盐学报,2006,34(3):334-339.
    [105]Komatsu H, et al. Fluorine uptake into human enamel around fluoride-containing dental materials during cariogenic pH cycling[J]. Nuclear Instrument and Methods in Physits Research Section B:Beam Interactions with Materials and Atoms,2009,267:2136-2139
    [106]Rodriguez-Lorenzo LM, et al. Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite[J]. Biomaterials2003,24:3777-3785.
    [107]Zhu YN, et al. A comparative study on the dissolution and solubility of hydroxyapatite and fluorapatite at 25℃ and 45℃[J]. Chemical Geology,2009,268:89-96.
    [100]R. Bilyalov, et al. Crystalline silicon thin films with porous Si backside reflector. Solar Energy Materials and Solar Cells,2002,72(1-4):221.
    [101]V.l Levchenko,et al. Heteroepitaxy of PbS on porous silicon. Thin solid Films.1999, 348(1-2):141-144.
    [102]D,G. Baik, et al. Application of sol-gel derived films for ZnO/n-Si junction solar cells. Thin Solid Films.1999,354(1-2)227-231.
    [103]C.C Chang, C.H. Lee. Characterization and fabrication of ZnSe epilayer on porous silicon substrate. Thin Solid Films.2000,379(1-2):287-291.
    [104]T.Boufadena, et al. GaN growth on porous silicon by MOVPE. Microelectronics Jomal.2003, 34(9):843-848.
    [105]HuiXin Xiu et al. MnSb/porous silicon hybrid structure Prepared by Physical vapor deposition. Journal of Crystal Growth.2003,259(1-2):110-114.
    [105]S. Ghosh, et al. Structural and physical properties of thin copper films deposited on porous silicon. Materials Science and Engineering:B.2002,96(1):53-59.
    [106]Vitor Barnauaskas, et al. Structure and properties of diamond films deposited on porous silicon.1999,355-356:233-238.
    [107]Yuwei Fan, et al. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization. Biomaterials,2005,26:1623-1632.
    [108]王庆亮.羟基磷灰石仿生陶瓷及其生物学摩擦学研究[M].中国矿业大学出版社,2010.
    [109]刘爱红,李爱民,孙康宁.多孔Hap-(β-Ca3(PO4)2)-Si3N4生物复合材料的力学性能与微观结构[J].生物工程,2007,10:14-17.
    [110]Wojciech Suchanek, Masahiro Yoshimura. Processing and Properties of Hydroxyapatite-based Biomaterials for Use as Hard Tissue Rep lacement Implants [J]. J Mater Res,1998,13(1):94-117.
    [111]王竹菊.HAP/ZrO2纳米复相生物陶瓷的制备[J].稀有金属材料工程,2007,36(2):27-30.
    [112]武丽华,陈福.Zr02陶瓷结构及增韧机理研究[J].山东陶瓷,2008,31(6):3436.
    [113]李爱民,董维芳,孙康宁,等.TiAl金属间化合物/羟基磷灰石生物复合材料的制备及性能表征[J].人工晶体学报,2007,36(4)770-775
    [114]李凡,吴炳尧。机械合金化-新型的固态合金化方法[J].机械工程材料,1999,23(4):22-25.
    [115]王军民,王夏冰.球磨过程中粉末的行为变化[J].甘肃工业大学学报,1999,25(1):26-30
    [116]Chernov A A. Modern Crystallography Ⅲ:Crystal Growth. Berlin:Springer,1984.
    [117]Chernov A A. Formation of crystals in solution. Contemp Phys,1989,30:251-276.
    [118]Barabasi A-L, Stanley E H. Fractal Concepts in Surface Growth. Cambridge:Cambridge University Press,1995.
    [119]Burton W K, Cabrera N, Frank F C. The growth of crystals and the equilibrium structure of their surfaces. Royal Soc London Philos Trans,1951, A243:299-358.
    [120]崔福斋.生物矿化[M].北京:清华大学出版社,2007.
    [121]Williams E D, Bartelt N C. Thermodynamics of surface morphology. Science,1991, 251:393-400.
    [122]Tang R, Jiang C, Tai Z. Oriented crystallization of CuSO4·5H2O under monolayer of a novel amphiphilic ligand of 8-hexadecylkoxy quinardic acid. J Chem Soc, Faraday Trans, 1997,93:3371-3374.
    [123]Tang R, Jiang C, Tai Z. Effect of different amphiphile and its monolayer on the crystallization of CuSO4·5H2O. J Chem Soc, Dalton Trans,1997:4037-4041.
    [124]杭州大学化学系分析化学教研室.分析化学手册-第二分册[M].北京:化学工业出版社,1982.
    [125]Liu J B, Li K W, Wang H, et al. Self-assembly of hydroxyapatite nanostructures by microwave irradiation [J]. Nanotechnology,2005,16(1):82-87.
    [126]Pribil R. Analytical application of EDTA and related compounds[M]. Pergamon Press Oxford,1972.
    [127]R.蒲西比.EDTA及同类化合物的分析应用[M].北京:地质出版社,1982.
    [128]Pecsok R L. The Versene complexes [J]. Journal of Chemical Education, 1952,29(12):597-599.
    [129]Simpson D R. Substitutions in apatite:Ⅰ. Potassium-bearing apatite[J]. The American Mineralogist,1968,53:432-444.
    [130]Simpson D R. Substitutions in apatite:Ⅱ. Low temperature fluoride-hydroxyl apatite [J]. The American Mineralogist,1968,53:1953-1964.
    [131]Simpson D R. Partition of fluoride between solution and apatite[J]. The American Mineralogist,1969,54:1711-1719.
    [132]Kandori K, Horiganmi N, Yasukawa A, et al. Texture and formation mechanism of fibrous calcium hydroxyapatite particles prepared by decomposition of calcium-EDTA chelates [J]. Journal of the American Ceramic Society,1997,80(5):1157-1164.
    [133]Toriyama M, Kawamoto Y, Suzuki T. et al. Synthesis of hydroxyapatite by an oxidative decomposition method of calcium chelate [J]. Journal of the ceramic Society of Japan, 1992,100(1163):950-954.
    [134]Fujishiro Y, Fujimoto A, Sato T, et al. Coating of hydroxyapatite on titanium plates using thermal dissociation of calcium-EDTA chelate complex in phosphate solutions under hydrothermal conditions [J]. Journal of Colloid and Interface Science,1995,173(1):119-127.
    [135]Fujishiro Y, Sate T, Okuwaki A, Coating of hydroxyapatite on metal plates using thermal-dissociation of calcium-edta chelate in phosphate solution under hydrothermal conditions [J]. Journal of Materials Science-Materilas in Medcine,1995,6(3):172-176.
    [136]Fujishiro Y, Nishino M, Sugimori A, et al. Coating of hydroxyapatite on various substrates via hydrothermal reactions of Ca(edta)(2-) and phosphate [J].Journal of Materials Science-Materilas in Medcine,2001,12(4):333-337.
    [137]Colfen H, Mann S. Higher-order organization by mesoscale self-assembly and transformation of hydrid nanostructures [J]. Angewandte Chemie-International Edition,2003, 42(21):2350-2365.
    [138]Colfen H, Antonietti M. Mesocrystals:Inorganic superstructures made by highly paralled crystallization and controlled alignment [J]. Angewandte Chemie-International Edition, 2005,44(35):5576-5591.
    [139]许建霞,王春仁,奚廷斐.生物材料血液相容性体外评价的研究进展[J].生物医学工程学杂志,2004,21(5):861-863.
    [140]张志愿.口腔科学:第6版.北京:人民卫生出版社,2004.
    [141]岳松龄.现代龋病学:第6版.北京:北京医科大学中国协和医科大学联合出版社,1993.
    [142]章非敏,徐丽娜,孙卫斌,等.纳米增韧牙科复合树脂纤维结构的研究[J].南京医科大学学报,2005,25(3):154-156.
    [143]Sallsten G, Thoren J, Barregard L, et al. Long-term use of nicotine chewing gum and mereury exposure from dental amalgam fillings[J]. J Dent Res,1996,75:594-598.
    [144]张健,陈萍,刘杰忠,等:自酸蚀粘结系统对牙釉质和牙本质的剪切粘结强度[J].第四军医人学学报,2001,22(19):1790.
    [145]李潇,施长溪,朱光第.医用复合树脂的新进展[J].国外医学生物学工程分册,2004,27(5):3 1 8-321.
    [146]李振春,马红梅.不同因素对光敏复合树脂固化后硬度的影响[J].中国医科大学学报,2003,32(5):426-427.
    [147]陈治清.口腔材料学[M].北京:人民卫生出版社,2005,176-185.
    [148]张光磊,张久兴,钟涛兴.牙科陶瓷的发展与修复技术的应用[J].北京生物医学工程,2006,25(1):109-112.
    [149]Russel M M, Andersson M M. A New computer assisted method for crowns and fixed partial dentures [J]. Quintes sence Int,1995,26:757-763.
    [150]Busch S. Regeneration of human tooth enamel[J]. Angew. Chem. Int. Ed. 2004,43(11):1428-1431.
    [151]Ingram G S, Edgar W M. Interactions of fluoride and non-fluoride a-Gents with the caries process [J]. ADV Dent Res.1994,8(2):158-165.
    [152]Meng X C, Li X Y, Lu K L. Study of Nano-Hydroxyapatite on the Remineralization of Dismineralized Teeth [J]. Materials Seience Forum,2005,15(1):2423-2426.
    [153]Murphy W L, Messersmith P B. Compartmental control of mineral formation:adaptation of a biomineralization strategy for biomedieal use [J]. Polyhedron,2000,19(3):357-363.
    [154]Yin Y, Yun S, Chen H F, et al. Chemical regeneration of human tooth enamel under near-physiological conditions [J]. Chem Commun.2009:5892-5894
    [155]Yamagishi K, Onmua K, Suzuki T, et al. A synthetic enamel for rapid tooth repair [J]. Nature,2005,433(24):819.
    [156]Onmua K, Yamagishi K, Oyane A. Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions [J]. J. Cryst. Growth,2005,282(l-2):199-207.
    [157]He L Z, Feng Z D. Restoration of Tooth Enamel Caries by Hydrolysis of a-TCP [J]. Mater Lett,2007,61(18):3923-3926.
    [158]Amold S, Plate U, Wiesmann H P, et al. Quantitative analysis of the biomineralization of different hard tissues[J]. Journal of Mieroseopy-Oxford,2001,202:488-494.
    [159]Selvig K A. The crystal structure of hydroxyapatite in dental enamel as seen with the electron microscope [J]. J Ultrastruet Res.1972,41(3):369-375
    [160]沈卫,顾燕芳,刘昌盛,等.羟基磷灰石的表面特性[J].硅酸盐通报,1996,1:45-51.
    [161]Li H, Huang W Y, Zhang Y M, Zhong M. Biomimetic synthesis of enamel-like hydroxyapatite on self-assembled monolayers [J]. Mater Sci Eng C.2007,27:756-761.
    [162]Heneh L L. Bioceramies:From concept to Clinic [J]. J Am Ceram Soc.1991, 74(7):1487-1510.
    [163]Dorozhkin S V, Dorozhkina E 1, Epple M. A Model System to Provide a Good in Vitro Simulation of Biological Mineralization[J]. Crystal Growth & Design,2004,4(2):389-395.
    [164]Chen H, Tong Z, Liu J, Sun K, Chang SR, Peters MC, et al. Acellular Synthesis of a Human Enamel-like Microstructure. Adv Mater 2006; 18(14):1846-51.
    [165]Pan H, Tao J, Yu X, Fu L, Zhang J, Zeng X, et al. Anisotropic Demineralization and Oriented Assembly of Hydroxyapatite Crystals in Enamel:Smart Structures of Biominerals. J Phys Chem B 2008;112(4):7162-5.
    [166]Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials 2009;30(4):478-483.
    [167]Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals:A review study on the analytical methods. J Biomed Mater Res 2002;62(4):600-612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700