基于细观破损机理的胶结结构性土本构模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然土体多具有一定的结构性,其力学特性与室内重塑土相比较为复杂。对结构性土应力变形特性的研究为目前岩土力学研究的一个热门课题。“21世纪土力学的核心问题是土体结构性的数学模型”。本文对胶结结构性土进行了系统的室内试验和细观胶结破损机理的分析研究工作。本文取得的主要新成果有:
     (1)采用人工制备的具有不同孔隙比和颗粒胶结强度的人工结构性土试样和相应的重塑土试样,进行了多种应力路径的常规三轴和真三轴试验。通过对比分析人工胶结结构性土和重塑土的试验成果,系统地分析和总结了人工胶结结构性土的应力和变形特性,分析了胶结强度和初始孔隙比对人工胶结结构性土应力变形特性的影响。
     (2)基于对胶结结构性土细观结构的观察和抽象,提出了以颗粒接触胶结特性区分胶结结构性土胶结元和摩擦元材料相的新方法,定义了可反映结构性土颗粒细观接触特性变化的破损变量。以离散介质力学宏细观积分方程为基础,推导了适用于胶结结构性土二元介质模型的基本方程。基于宏细观能量方程,利用能量平衡原理推导了破损变量的演化规律。
     (3)从胶结结构性土细观颗粒接触力的平衡方程出发,讨论了颗粒胶结接触发生破损的条件。通过分析颗粒接触力的构成和颗粒胶结的细观破损条件,建立了胶结元的破损准则。给出了等向压缩和三轴剪切条件下胶结元破损准则的具体表达式。推导了胶结元和胶结结构性土的强度包线。
     (4)应用上述有关胶结结构性土破损变量及其演化规律和胶结元破损准则的研究成果,基于岩土破损力学的理论框架,建立了一个胶结结构性土的二元介质本构模型。该模型认为,胶结结构性土的胶结元为弹脆性材料;摩擦元的本构方程满足修正剑桥弹塑性模型。该模型引入的结构性模型参数数量少,均具有明确的物理意义,且可以通过简单应力路径的室内常规三轴试验确定。通过与人工胶结结构性土试验结果的对比,表明该模型可以较好地反映胶结结构性土不同应力路径上的主要应力变形特性。
The natural soil has many complex mechanical properties that are different from those of the remolded soil made in laboratory and the relevant study is a hot topic in geo-mechanics. It is said that“The establishment of mathematical model of natural soil is the key issue of geo-mechanics in the 21-th century.”In this thesis, a series of experiments of artificial bonded soil in lab have been carried out and the study on the micro-mechanism of particle bonding-breakage has been performed. The main achievements in this thesis can be summarized as following.
     The experiments on artificially bonded soil and remolded soil with different void ratio and bonding strength have been conducted in various stress paths on triaxial and truly triaxial conditions. On the basis of the comparison between experimental results of artificially bonded soil and remolded soil, the mechanical properties of artificially bonded soil have been comprehensively analyzed and summarized. The effects of bonding and initial void ratio on the mechanical property of artificially bonded soil have been studied.
     Based on the micro observation with SEM and some assumption, a new method to partition the bonding element and frictional element in artificially bonded soil has been proposed according to the contact property between particles. A new breakage parameter has been defined clearly with bonding element volume in micro level. The basic equation of the breakage mechanics have been deduced by the basic integrating equation of discrete medium mechanics from micro to macro level. The breakage-developing rule has been deduced based on the law of balance of energy principle in macro-micro level.
     Based on the equilibrium equation of contact force between particles in micro level, the breakage condition of bonding has been discussed. With the analysis of the composition of the bonded contact force, the criteria of bonding breakage have been established. The detailed equations of this criteria in isotropic loading and triaxial loading have been proposed. Based on this study, the strength envelop of bonding element and artificially bonded soil have been deduced.
     In the frame of the breakage mechanism, the new binary media model has been established with the breakage developing rule and breakage criteria. This model considers the bonding element as elasto-brittle material and the frictional element as elasto-plastic material which can be described by the modified Cam-clay model. The number of parameters in this model is moderate and all of them have the defining mechanical meanings. The value of these parameters can be calibrated by the conventional triaxial test with simple stress path in laboratory. The comparison between the results of calculation with this model and the experiments in this thesis show that this model can simulate the main mechanical properties of artificial bonded soil in various stress paths.
引文
[1]沈珠江.土体结构性的数学模型-21世纪土力学的核心问题.岩土工程学报, 1996. 18(1): p. 95-97.
    [2] Mitchell J K. Foundamentals of Soil Behavior, ed. 2. 1992, California: University of California, Berkeley.
    [3]魏汝龙.软粘土取土技术及其改进.岩土工程学报, 1986. 8(6): p. 113-125.
    [4] Leroueil S,Vaughan P R. The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 1990. 40(3): p. 467-488.
    [5] Terzaghi K. Principles of soil mechanics. 1925: Eng.Naws Record.
    [6] Casagrande A, ed. The structure of clay and its importance in foundation engineering Contributions to Soil Mechanics. 1932, Boston Society of Civil Engineers: Boston. 72-112.
    [7] Lambe T W. The structure of inorganic soil A.S.C.E., 1953. 79(315): p. 1-49.
    [8] Seed H B,Chan C K. Structure and strength characteristics of compacted clays. Journal of the Soil Mechanics and Foundations 1959. 85(SM 5): p. 87-128.
    [9] Mitchell J K. The fabric of natural clays and its relation to engineering properties. Proceedings of the Highway Research Board. Vol. 35. 1956. 693-713.
    [10] Lambe T W , Martin R T. Composition and engineering properties of soils. in 2-Proceedings of the Highway Research Board. 1954. Washington, D.C.
    [11] Lambe T W , Martin R T. Composition and engineering properties of soil. in 3-Proceedings of the Highway Research Board. 1955. Washington, D.C.
    [12] Leonards G A,Altschaeffl A G. Compressibility of clay. Journal of the Soil Mechanics and Foundations, 1964. 90(SM 5): p. 133-155.
    [13] Schmertmann J H. The mechanical aging of soils. journal of Geotechnical Engineering, 1991. 117(9): p. 1288-1330.
    [14] Bjerrum L. Geotechnical properties of Norwegian marine clays. Geotechnique, 1954. 4: p. 49-69.
    [15] Bjerrum L. Problems of soil mechanics and construction on soft clays and structurally unstable soils, in Proceedings of the Eighth International Conference on Soil Mechanics and Foundation Engineering. 1973: Moscow.
    [16] Mesri G,Choi Y K. Settlement analysis of embankments on soft clay. journal of Geotechnical Engineering, 1985. 111(GT 4): p. 441-464.
    [17] Vaughan P R,Maccarini M,Mokhtar S M. Indexing the engineering properties of residual soil. Quarterly Journal of Engineering Geology, 1988. 21: p. 69-84.
    [18]张诚厚,袁文明,戴济群.软粘土的结构性及其对路基沉降的影响.岩土工程学报, 1995. 17(5): p. 25-32.
    [19]孙红,赵锡宏.结构性软土的损伤及其对地基沉降的影响.岩土力学, 1999. 20(1): p. 19-22.
    [20]吕海波,汪稔,孔令伟,单华刚.结构性对琼州海峡软土压缩特性的影响.岩土力学, 2001. 22(4): p. 467-470.
    [21]曹继东,陈正汉,王权民.厦门软粘土的振陷特性研究.岩土力学, 2004. 25(1): p. 160-164.
    [22]何开胜,沈珠江.天然沉积粘土的结构性调查.东南大学学报(自然科学版), 2002. 32(5): p. 818-822.
    [23]龚晓南,熊传祥,项可祥,候永峰.粘土结构性对其力学性质的影响及形成原因分析.水利学报, 2000(10): p. 43-47.
    [24] Brewer R. Fabric and Mineral Analysis of Soils. 1964, New York: Wiley.
    [25] Burland J B,FEng. On the compressibility and shear strength of natural clays. Geotechnique, 1990. 40(3): p. 329-378.
    [26]胡瑞林.粘性土微结构定量模型及其工程地质特征研究. 1995,北京:地质出版社. 3-13.
    [27]施斌.粘性土微观结构研究回顾与展望.工程地质学报, 1996. 4(1): p. 39-44.
    [28] Subhash G,Nemat-Nasser S,Mehrabadi M M,et al. Experimental investigation of fabric-stress relations in granular materials. Mechanics of Materials, 1991. 11: p. 87-106.
    [29] Oda M,Kazama H. Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique, 1998. 48(5): p. 465-481.
    [30] Chang C S, Matsuchima T,Lee X. Heterogeneous Strain and Bonded Granular Structure Change in Triaxial Specimen Studied by Computer Tomography. Journal of Engineering Mechanics, 2003. 129(11): p. 1295-1307.
    [31] Cetin H. Soil-particle and pore orientations during consolidation of cohesive soils. Engineering Geology, 2004. 73: p. 1-11.
    [32] Vaughan P R , Kwan C W. Weathering structure in-situ stress in residual soil. Geotechnique, 1984. 34: p. 43-49.
    [33] Vaughan P R,Maccarini M,Mokhtar S M. Indexing the engineering properties of residual soil. Quarterly Journal of Engineering Geology, 1988. 21: p. 69-84.
    [34]齐吉琳,谢定义.孔隙分布曲线及其在土的结构性分析中的应用.西安公路交通大学学报, 2000. 20(2): p. 6-9.
    [35] Frost J D,Jang D J. Evolution of Sand Microstructure during Shear. Journal of geotechnical and geoenvironmental engineering, 2000. 126(2): p. 116-130.
    [36] Jiang M J,Shen Z J. Microscopic analysis of shear band in structured clay. Chinese Journal of Geotechnical Engineering, 1998. 20(2): p. 102-108.
    [37]李作勤.有胶结强度的欠压密土的力学特性.岩土工程学报, 1982. 4(1): p. 34-45.
    [38]沈珠江.结构性粘土的堆砌体模型.岩土力学, 2000. 21(1): p. 1-4.
    [39] Anandarajah A,Chen J. Van Der Waals attractive force between clay particles in water and contaminants. Soil and Foundations, 1997. 37(2): p. 27-37.
    [40]蒋明镜,沈珠江等.结构性粘土研究综述.水利水电科技进展, 1999(2): p. 26-30.
    [41]沈珠江.软土工程特性和软土地基设计.岩土工程学报, 1998. 20(1): p. 100-111.
    [42]熊传祥,龚晓南,项可祥,候永峰.粘土结构性对其力学性质的影响及形成原因分析.水利学报, 2000(10): p. 43-47.
    [43]王国欣,肖树芳,黄宏伟.杭州海积软土应力–应变特征与结构强度损伤规律研究.岩石力学与工程学报, 2005. 24(9): p. 1556-1561.
    [44]陈铁林.结构性粘土本构模型和参数测定研究, in土工研究所. 2001,南京水利科学研究院:南京.
    [45] Saxena S K,Lastrico M. Static properties of lightly cemented sand. Journal of Geotechnical Engineering, 1978. 104(GT12): p. 1449-1464.
    [46] Clough G W,Sitar N,Bnchus R C,et al. Cemented sands under static loading. journal of Geotechnical Engineering, 1981. 107(GT6): p. 799-817.
    [47] Maccarini M. Laboratory studies of weakly bounded artificial soil. 1987, University of London: London.
    [48]蒋明镜,沈珠江.结构性粘土试样人工制备方法研究.水利学报, 1997(1): p. 56-61.
    [49]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形-强度的关系.水利学报, 1999. 1999(10): p. 1-6.
    [50]刘恩龙,岩土结构块破损机理与二元介质模型研究, in水利水电工程系. 2005,清华大学:北京.
    [51]张诚厚.两种结构性粘土的土工特性.水利水运科学研究, 1983(4): p. 66-71.
    [52]洪振舜,刘松玉,于小军.关于结构土屈服破坏的探讨.岩土力学, 2004. 25(5): p. 684-687.
    [53] Liu M D,Carter J P. Virgin compression of structured soils. Geotechnique, 1999. 49(1): p. 43-57.
    [54]李涛,钱寿易.土样扰动影响的评价极其先期固结压力的确定.岩土工程学报, 1987. 9(5): p. 21-29.
    [55]李彦兴,邵生俊,周飞飞.湿陷性黄土结构损伤演化特性.岩石力学与工程学报, 2004.23(24): p. 4161-4165.
    [56] Cuccovillo T,Coop M R. Yielding and pre-failure deformation of structured sands. Geotechnique, 1997. 47(3): p. 491-508.
    [57] Callisto L,Calabresi G. Mechanical behavior of a natural soft clay. Geotechnique, 1998. 48(4): p. 495-513.
    [58] Santagata M,Germaine J T,et al. Factors Affecting the Initial Stiffness of Cohesive Soils. Journal of geotechnical and geoenvironmental engineering, 2005. 131(4): p. 430-441.
    [59]董邑宁,徐日庆,龚晓南.萧山粘土的结构性对渗透性质影响的试验研究.大坝观测与土工测试, 2000. 24(6): p. 44-46.
    [60]谭罗荣.粘性土微结构定向性的X射线衍射研究.科学通报, 1981. 4(2): p. 236-239.
    [61]施斌.粘性土的微观结构分析技术研究.岩石力学与工程学报, 2001. 20(6): p. 864-870.
    [62]谭罗荣.土的微观结构研究概况和发展.岩土力学, 1983. 4(1): p. 73-85.
    [63]肖树芳等.泥化夹层的组构及强度蠕变特性. 1991,长春:吉林科学技术出版社.
    [64]刘松玉,方磊.试论粘性土粒度分布的分形结构.工程勘察, 1992(2): p. 1-4.
    [65]吴义祥,张宗祜,凌泽民.土体微观结构的研究现状评述.地质论评, 1992. 38(3): p. 250-259.
    [66] Moore C A,Donaldson C F. Qualifying soil microstructure using fractal. Geotechnique, 1995. 45(1): p. 159-163.
    [67]肖树芳雷华阳.天津海积软土微观结构与工程性质初探.地质与勘探, 2002. 38(6): p. 81-85.
    [68]施斌.粘性土微观结构定向性的定量研究.地质学报, 1997. 71(1): p. 36-44.
    [69] Al-Mukhtar M,Belanteur N,Tessier D,et al. The fabric of a clay soil under controlled mechanical and hydraulic stress states. Applied Clay Science, 1996. 11: p. 99-115.
    [70] Jiang M J,Shen Z J. Microscopic analysis of shear band in structured clay. Chinese Journal of Geotechnical Engineering, 1998. 20(2): p. 102-108.
    [71] Oda M,Konishi J,Nemat-Nasser S. Experimental micromechanical evaluation of granular materials: effects of partical rolling. Mechanics of Materials, 1982. 1(1): p. 269-283.
    [72]张连卫,各向异性粒状材料破坏规律与强度准则及应用, in水利水电工程系. 2008,清华大学:北京.
    [73] Oda M,Konishi J,Nemat-Nasser S. Some experimentally based fundamental results on the mechnical behavior of granular materials. Geotechnique, 1980. 30(4): p. 479-495.
    [74] Oda M,Nemat-Nasser S,Mehrabadi M M. A statistical study of fabric in a random assembly of spherical granules. International Journal for Numerical and Analytical Methods in Geomechanics, 1982. 6: p. 77-94.
    [75] Cuccovillo T,Coop M R. The influence of bond strength on the mechanics of carbonate soft rocks. Geotechnical Engineering of Hard Soils-Soft Rocks, ed. Anagnostopoulous et al. 1993, Balkema, Rotterdam.
    [76] Oda M. Micro-fabric and couple stress in shear band of granular materials. Powders & Grains. 1993: Balkema, Rotterdam.
    [77] Kuhn M R. Structured deformation in granular materials. Mechanics of Materials, 1999. 31: p. 407-429.
    [78] Mlrghasemi A A,Rothenburg L,Matyas E L. Influence of particle shape on engineering properties of assemblies of two-dimensional polygon-shaped particles. Geotechnique, 2002. 52(3): p. 209–217.
    [79] Nouguier-Lehonn C,Cambou B,Vincens E. Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. International journal for numerical and analytical methods in geomechanics, 2003. 27: p. 1207–1226.
    [80]沈珠江.岩土破损力学与双重介质模型.水利水运工程学报, 2002(4): p. 1-6.
    [81]沈珠江.关于破坏准则和屈服函数的总结.岩土工程学报, 1995. 17(1): p. 1-8.
    [82]濮家骝,李广信.土的本构关系及其验证与应用.岩土工程学报, 1986. 8(1): p. 47-82.
    [83]李全明.高土石坝水力劈裂发生的物理机制研究及数值仿真, in水利水电工程系. 2006,清华大学:北京.
    [84]沈珠江,陈铁林.岩土破损力学:基本概念,目标和任务. in中国岩石力学与工程学会第七届学术大会论文集. 2002.北京:中国科学技术出版社.
    [85]沈珠江.结构性粘土的弹塑性损伤模型.岩土工程学报, 1993. 15(3): p. 21-28.
    [86]熊传祥,龚晓南.一种改进的软土结构性弹塑性损伤模型.岩土力学, 2006. 27(3): p. 395-398.
    [87]王国欣,肖树芳等.基于扰动状态概念的结构性粘土本构模型研究.固体力学学报, 2004. 25(2): p. 191-197.
    [88]陈铁林,李国英,沈珠江.结构性粘土的流变模型.水利水运工程学报, 2003. 2003(2): p. 7-11.
    [89]何开胜,沈珠江.结构性粘土的弹粘塑损伤模型.水利水运工程学报, 2002. 1(4): p. 7-13.
    [90] Liu M D ,Carter J P. A structured Cam Clay model. canadian geotechnical journal, 2002. 39: p. 1313–1332.
    [91]余寿文,冯西桥.损伤力学. 1997:清华大学出版社. 79-79.
    [92]沈珠江,章为民.损伤力学在土力学中的应用, in第三届全国岩土力学数值分析及解析方法讨论论文集. 1988:中国,珠海.
    [93]刘祖德,王士恩.结构性土体破损的力学描述.土工基础, 1996. 10(3): p. 1-7.
    [94] Desai C S. Mechanics of materials and interfaces : the disturbed state concept. 2001, Boca Raton: CRC Press.
    [95]孙红,赵锡宏.软土的弹塑性各向异性损伤分析.岩土力学, 1999. 20(3): p. 7-12.
    [96] Schmertmann J H,Osterberg O. An experimental study of the development of cohesion and friction with axial strain in saturated cohesive soil, in Research conference on shear strength of cohesive soils. 1960: University of Colorado, Boulder, Colorado.
    [97] Kavvadas M,Amorosi A. A constitutive model for structured soil. Geotechnique, 2000. 50(3): p. 263-273.
    [98] Rouainia M,Wood D M. A kinematic hardening constitutive model for natural clays with loss of structure. Geotechnique, 2000. 50(2): p. 153-164.
    [99] Callisto L,Gajo A,Wood D M. Simulation of triaxial and true triaxial tests on natural and reconstituted Pisa clay. Geotechnique, 2002. 52(9): p. 649-666.
    [100]黄茂松,钟辉虹,李永盛.天然状态结构性软黏土的边界面弹塑性模型.水利学报, 2003. 2003(12): p. 47-52.
    [101] Stallebrass S E,Taylor R N. The development and evaluation of a constitutive model for the prediction of ground movements in overconsolidated clay. Geotechnique, 1997. 47(2): p. 235-253.
    [102] Baudet B,Stallebrass S E. A constitutive model for structured clays. Geotechnique, 2004. 54(4): p. 269-278.
    [103]谢定义,齐吉琳,张振中.考虑土结构性的本构关系.土木工程学报, 2000. 33(4): p. 35-41.
    [104]骆亚生,谢定义等.复杂应力状态下的土结构性参数.岩石力学与工程学报, 2004. 23(24): p. 4248-4251.
    [105]饶为国,赵成刚等.一个可考虑结构性影响的土体本构模型.固体力学学报, 2002. 23(1): p. 34-39.
    [106]王常明,肖树芳,夏玉斌.海积软土固结变形的结构性模型研究.长春科技大学学报, 2001. 31(4): p. 363-368.
    [107]雷华阳.结构性海积软土的弹塑性研究.岩土力学, 2002. 23(6): p. 721-724.
    [108]王立忠,赵志远,李玲玲.考虑土体结构性的修正邓肯-张模型.水利学报, 2004. 2004(1): p. 83-89.
    [109]沈珠江.广义吸力和非饱和土的统一变形理论.岩土工程学报, 1996. 18(2): p. 1-10.
    [110]沈珠江.应变软化材料的广义孔隙压力模型.岩土工程学报, 1997. 19(3): p. 14-21.
    [111]陈铁林沈珠江.岩土破损力学——结构类型与荷载分担.岩石力学与工程学报, 2004. 23(13): p. 2137-2142.
    [112] Hill R. Elastic propertyof reinforced solids: some theoretical principles. Journal of theMechanics and Physics of Solids, 1963(11): p. 357-372.
    [113]胡更开,郑泉水.复合材料有效弹性性质分析方法.力学进展, 2001. 31(3): p. 361-393.
    [114]陈铁林,沈珠江.岩土破损力学:结构类型和荷载分担.岩石力学与工程学报, 2004. 23(13): p. 2137-2142.
    [115]沈珠江,李建红.椭球形结构块破损过程的数学描述.岩土工程学报, 2006. 28(4): p. 470-474.
    [116]沈珠江.岩土破损力学:理想脆弹塑性模型.岩土工程学报, 2003(3): p. 253– 257.
    [117]沈珠江,邓刚.超固结粘土的二元介质模型.岩土力学, 2003. 24(4): p. 495-499.
    [118]沈珠江,胡再强.黄土的二元介质模型.水利学报, 2003(7): p. 1-6.
    [119]沈珠江,刘恩龙,陈铁林.岩土二元介质模型的一般应力应变关系.岩土工程学报, 2005. 27(5): p. 489-494.
    [120] Nadeau J C,Ferrari M. Microstructural optimization of a functionally graded transversely isotropic layer. Mechanics of Materials, 1999. 31: p. 637-651.
    [121]陈铁林,沈珠江.岩样变形和破坏过程的二元介质模拟.水利水运工程学报, 2004(1): p. 1-5.
    [122]沈珠江.二元介质模型在黄土增湿变形分析中的应用.水利学报, 2004(12): p. 1-6.
    [123]邓刚.超固结粘土边坡变形机制的系统研究, in水利水电工程系. 2005,清华大学:北京. p. 125-138.
    [124] Matsuoka H. Stress-strain relationship of sands based on the mobilized plane. Soil and Foundations, 1974. 14(2): p. 45-61.
    [125] Aubry D,Hujeux J C. A double memory model with multiple mechanisms for cyclic soil behavior, in International Symposium on Numerical Models in Geomechanics. 1982: Zurich.
    [126] Kabilamany K,Ishihara K. Cyclic behavior of sand by the multiple shear mechanism model. Soil Dynamics and Earthquake Engineering, 1991. 10(2): p. 24-83.
    [127] Iai S,Matsunaga Y,Kameoka T. Strain space plasticity model for cyclic mobility. Soil and Foundations, 1992. 32(2): p. 1-15.
    [128] Nemat-Nasser S. A micromechanically-based constitutive model for frictional deformation of granular materials. Journal of the Mechanics and Physics of Solids, 2000. 48: p. 1541-1563.
    [129]沈珠江.理论土力学. 2000,北京:中国水利水电出版社.
    [130] Hideki Ohta,Toru Shibaya. An Idealized Model of Soil Structure. in Proceedings of the International Symposium on Soil Structure. 1973.
    [131] Yong R N,Sheeran D E. Fabric unit interaction and soil behavior. in Proceedings of theInternational Symposium Soil Structure. 1973.
    [132] Mehrabadi M M,Nemat-Nasser S. Stress,Dilatancy and fabric in granular materials. Mechanics of Materials, 1983. 2(2): p. 155-161.
    [133] Muhunthan B,Chameau J L,Masad E. Fabric effects on the yield behavior of soils. Soils and Foundations, 1996. 36(3): p. 85-97.
    [134] Houlsby G T,Sharma R S. A conceptual model for the yielding and consolidation of clay. Geotechnique, 1999. 49(4): p. 491-501.
    [135]施斌,王宝军,宁文务.各向异性粘性土蠕变的微观力学模型.岩土工程学报, 1997. 19(3): p. 7-13.
    [136]苗天德,刘忠玉,任九生.湿陷性黄土的变形机理与本构关系.岩土工程学报, 1999. 21(4): p. 383-387.
    [137]朱岳明,刘勇军等.随机土体结构模型理论及应用.岩土工程学报, 2001. 23(3): p. 354-357.
    [138] Christoffersen J,Mehrabadi M M,Nemat-Nasser S. A Micromechanical Description of Granular Material Behavior. Journal of Applied Mechanics, 1981. 48: p. 339.
    [139] Mehrabadi M M,Nemat-Nasser S,Oda M. On statistical description of stress and fabric in granular materials. Internation Journal for Numerical and Analytical Methods in Geomechanics, 1982. 6: p. 95-108.
    [140] Bagi K. Stress and strain in granular assemblies. Mechanics of Materials, 1996. 22: p. 165-177.
    [141] Kruyt N P,Rothenburg L. Micromechanical Definition of the Strain tensor for granular materials. Journal of Applied Mechanics, 1996. 118: p. 706-711.
    [142] Liao C L,Chang T P,Young D H,et al. Stress-strain relationship for granular materials based on the hypothesis of best fit. International Journal of Solids and Structures, 1997. 34(31): p. 4087-4100.
    [143] Emeriault F,Chang C S. Interparticle Forces and Displacements in Granular Materials. Computers and Geotechnics, 1997. 20(3/4): p. 223-244.
    [144]钟晓雄,袁建新.散粒体的微观组构与本构关系.岩土工程学报, 1992. 14(增刊): p. 39-48.
    [145] Yimsiri S,Soga K. Micromechanics-based stress-strain behavior of soils at small strain. Geotechnique, 2000. 50(5): p. 559-571.
    [146] Anandarajah A. Numerical simulation of one-dimensional behavior of a kaolinite. Geotechnique, 2000. 50(5): p. 509-519.
    [147] Cheng Y P,Bolton M D,Nakata Y. Crushing and plastic deformation of soils simulated using DEM. Geotechnique, 2004. 54(2): p. 131-141.
    [148]范文.黄土中变形局部化问题研究, in水利水电工程系. 2006,清华大学:北京.
    [149] Leung C F,Wang J G. A simplified homogenization method for composite soils. Computers and Geotechnics, 2002. 29: p. 477-500.
    [150] Nadeau J C,Ferrari M. Microstructural optimization of a functionally graded transversely isotropic layers. Mechanics of Materials, 1999. 31(637-651).
    [151]黄克智,黄永刚.固体本构关系. 1999,北京:清华大学出版社.
    [152]李广信.高等土力学. 2004,北京:清华大学出版社. 69-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700