钢管混凝土局部受压时的工作机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合理地对钢管混凝土局压受力进行设计是目前有关工程界关心的热点问题之一,在以往设计规程中尚未得到很好的解决,有关研究,尤其是理论研究工作还不够深入。关于方钢管混凝土局压方面的研究工作则尚未见报道。本文从理论和实验两方面较深入地研究了钢管混凝土局部受压时的力学性能和工作机理,并在系统参数分析结果的基础上提供了钢管混凝土局压承载力实用计算方法。本文具体进行了以下几个方面的工作:
    (1)以局压面积比、截面含钢率和端板刚度为主要参数,进行了26个圆形和56个方形试件局部受压时的力学性能实验研究,较为系统地考察了局压面积、钢管约束、截面形状、端板及尺寸的影响规律,对比了钢管混凝土和素混凝土、钢管混凝土带端板与否等的力学性能差异。本文还通过钢管混凝土的推出实验,考察了钢管和混凝土界面粘结力的变化规律。
    (2)在大量算例分析的基础上,本文提出钢管混凝土的核心混凝土本构关系模型,并成功地利用通用有限元分析软件ABAQUS对钢管混凝土局部受压时的荷载-变形全过程进行了计算。计算结果表明,与以往研究者进行的同类工作相比,本文提供的核心混凝土本构关系模型具有力学概念明确、通用性强的特点。通过对收集到的529个钢管混凝土和126个钢管约束混凝土全截面受压实验结果,以及本文和其他研究者进行的97个钢管混凝土局压实验结果的验算,充分说明本文采用的理论计算方法是可靠的。
    (3)采用本文给出的理论计算方法,对钢管混凝土局部受压情况下的荷载-变形全过程关系曲线进行了分析。考察了局压面积比、截面含钢率和端板刚度等因素的影响规律,首次从理论方面较深入地揭示了钢管混凝土受局压时的工作机理。
    (4)系统分析和考察了局压面积比、截面含钢率、钢材和混凝土强度以及端板相对刚度半径等参数对钢管混凝土局压承载力的影响规律,在此基础上提出了局压承载力计算方法,分析结果表明,该方法概念清晰,符合实用原则,可为有关工程实践和规程制订提供参考。
How to reasonably design concrete-filled steel tubes(CFST) under local compression is one of the hot topics in the relevant engineering field now. It was not solved in the past design code yet. The related research needs to do further, especially theory research. The research on CFST with square section under local compression is not reported to date.
     Behaviours and mechanism of CFST under local compression were investigated in this paper, including theoretical and experimental studies. Based on the systemic analysis of parameters, practical computational methods for local compression bearing capacity of CFST were given.
    In this paper, the main achievements were summarized in detail as follows:
    (1) The local compression area ratio, steel ratio and rigidity of end plates were chosen the main parameters. Experimental studies on the behaviours of CFST under local compression were carried out, including 26 circular CFST specimens and 56 square CFST specimens. Influence of local compression area, steel confinement, section shape, end plate and its size were studied. The differences between CFST and plain concrete, and between CFST with and without end plate were compared. Furthermore, push-out tests were conducted to investigate the bond stress in the interface between concrete and steel tube.
    (2) Based on a large amount of computational examples, the constitutive model of core concrete of CFST was suggested. Load-deformation curve of CFST under local compression was obtained by ABAQUS, which is a common analysis software by finite element method(FEM). From the results, it can be seen that the constitutive model of core concrete in this paper has the advantages of clear mechanics concept and easy using. By verifying lots of test results using the computational method in this paper, such as axially loaded 529 CFST members and 126 steel tube confined concrete members selected from other researchers, and 97 CFST members under local compression in this paper and from other researchers, it can be proved that this method is reliable.
    (3) Load-deformation curves of CFST under local compression were analysized through the computational method given by this paper. The influence of local compression area ratio, steel ratio and rigidity of end plates was investigated. It is the original work that the local compression mechanism of CFST was discovered deeply .
    (4) Influences of local compression area ratio, steel ratio, strength of steel and concrete, and relative rigidity radius of end plates on local compression bearing-capacity of CFST were
    investigated systemically. On this basis, the method to calculate the local compression bearing capacity was suggested. The results indicate that the method has clear mechanics concept, and easy using, which can supply practical engineering and specifications with reliable references.
引文
1 钟善桐. 高层钢管混凝土结构. 哈尔滨:黑龙江科学技术出版社,1999.
    2 钟善桐. 钢管混凝土结构.哈尔滨:黑龙江科学出版社,1994.
    3 蔡绍怀. 现代钢管混凝土结构. 北京:人民交通出版社,2003.
    4 韩林海. 钢管混凝土结构——理论与实践.北京:科学出版社,2004.
    5 韩林海,钟善桐.钢管混凝土力学.大连:大连理工大学出版社,1996.
    6 陈宝春. 钢管混凝土拱桥设计与施工. 北京:人民交通出版社,1999.
    7 Johnson R P. Some research on composite structures in the U. K. 1960-1985. Proc. of an Engineering Foundation Confer. on Steel-Concrete Composite Structures, ASCE. Irsee, 1996. 15-25.
    8 Roik E H K. Review of the development of composite structures in Germany. Proc. of an Engineering Foundation Confer. on Steel-Concrete Composite Structures, ASCE. Irsee, 1996. 55-74.
    9 Shams M, Saadeghvaziri M A. State of the art of concrete-filled steel tubular columns. ACI Structural Journal, 1997, 94(5): 558-571.
    10 Shanmugam N E, Lakshmi B. State of the art report on steel-concrete composite columns. Journal of Constructional Steel Research, 2001, 57: 1041-1080.
    11 Wakabayashi M. Recent development and research in composite and mixed building structures in Japan. Proc. of the 4th ASCCS Inter. Confer.. Kosice, Slovakia, 1994. 237-242.
    12 Bridge R Q. High strength materials in composite construction. Confer. Report of Inter. Confer. on Composite Construction-Conventional and Innovative. Innsbruck, Austria, 1997. 29-40.
    13 陈肇元,朱金铨,吴佩刚. 高强混凝土及其应用. 北京:清华大学出版社,1996.
    14 Wittmann F H, Schwesinger P. 高性能混凝土材料特性与设计. (冯乃谦等译)北京:中国铁道出版社,1998.
    15 吴中威,廉慧珍. 高性能混凝土. 北京:中国铁道出版社,1999.
    16 黄兆龙. 高性能混凝土设计与应用. 台北:台湾科技图书股份有限公司,2000.
    17 ASCCS Seminar Report. Concrete filled steel tubes-a comparison of international codes and practices. Innsbruck, Austria, 1997.
    18 DIN 18806. Verbundkonstruktionen, Verbundstützen, NABau im Din, Beuth Verlag Gmbh, Berlin 30. 1997.
    19 ACI Committee 318. Building code requirements for reinforced concrete and commentary (ACI 318R-95). American Concrete Institute. Detroit, 1995.
    20 AISC. Load and resistance factor design specification for structural steel buildings. American Institute of Steel Construction, Inc. Chicago, Sep., 1994.
    21 Furlong R W. Design of steel-encased concrete beam-columns. Journal of Structural Division, ASCE, 1968, 94(ST1):267-281.
    22 Furlong R W. Columns rules of ACI, SSLC, and LRFD compared. Journal of Structural Division, ASCE, 1983, 109(10):2375-2386.
    23 Architectural Institute of Japan (AIJ). Recommendations for design and construction of concrete filled steel tubular structures. Oct., 1997. (in Japanese)
    24 Eurocode 4. Design of steel and concrete structures, Part1.1, General rules and rules doe building. DD ENV 1994-1-1. British Standards Institution, London W1A2BS, 1996.
    25 JCJ01-89. 钢管混凝土结构设计与施工规程. 上海:同济大学出版社,1989.
    26 中国工程建设标准化协会标准. CECS28:90. 钢管混凝土结构设计与施工规程. 北京: 中国计划出版社,1992.
    27 中华人民共和国经济贸易委员会. DL/T5085–1999. 钢-混凝土组合结构设计规程. 北京:中国电力出版社,1999.
    28 国家军用标准. GJB 4142-2000. 战时军港抢修早强型组合结构技术规程. 解放军总后勤部,2000.
    29 中国工程建设标准化协会标准. CECS159:2004. 矩形钢管混凝土结构技术规程.北京:中国计划出版社,2004.
    30 福建省工程建设地方标准. DBJ13-51-2003. 钢管混凝土结构技术规程. 福建省建设厅,2003.
    31 Bradford M A. Design strength of slender concrete filled rectangular steel tubes. ACI Structural Journal, 1996, 93 (2): 229-235.
    32 Bradford M A, Loh H Y, Uy B. Slenderness limits for filled circular steel tubes. Journal of Constructional Steel Research, 2002, 58 (2): 243-252.
    33 Bridge R Q, Patrick M, Webb J. High strength materials in composite construction. Conference Report of International Conference on Composite Construction-Conventional and Innovative, Innsbruck, Austria, 1997. 29-40.
    34 O’Shea M D, Bridge R Q. Local buckling of thin-walled circular steel sections with or without internal restraint. Journal of Constructional Steel Research, 1997, 41(2/3): 137-157.
    35 Bridge R Q, O’Shea M D. Behaviour of thin-walled steel box sections with of without internal restraint. Journal of Constructional Steel Research, 1998, 47(1-2): 73-91.
    36 蔡绍怀,焦占拴. 钢管混凝土短柱的基本性能和强度计算. 建筑结构学报,1984,5(6):13-29.
    37 蔡绍怀,顾万黎. 钢管混凝土长柱的性能和强度计算. 建筑结构学报,1985,6(1): 32-40.
    38 Fam A, Qie F S, Rizkalla S. Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads. Journal of Structural Engineering, 2004, 130(4): 631-640.
    39 Furlong R W. Strength of steel-encased concrete beam-columns. Journal of Structural Division, ASCE, 1967, 93 (ST5): 113-124.
    40 Gardner J, Jacobson E R. Structural behaviour of concrete filled steel tubes. ACI Structural Journal, 1967, 64 (7): 404-413.
    41 Ge H B, Usami T. Strength of concrete-filled thin-walled steel box columns: experiment. Journal of Structural Engineering, 1992, 118(11): 3006-3054.
    42 Ge H B, Usami T. Strength analysis of concrete-filled thin-walled steel box columns. Journal of Constructional Steel Research, 1994, 30: 607-612.
    43 顾维平,蔡绍怀,冯文林. 钢管高强混凝土长柱性能和承载能力的研究. 建筑科学, 1991, 3: 3-8.
    44 Georgios G, Dennis L. Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 2004, 60(7): 1049-1068.
    45 Gupta L M, Parlewar P M. An investigation of concrete-filled steel box columns. Journal of Structural Engineering, 2001, 28 (1): 33-38.
    46 冯九斌. 钢管高强混凝土轴压性能及强度承载力研究:[硕士学位论文]. 哈尔滨: 哈尔滨工业大学,1995.
    47 Han L H, Zhao X L, Tao Z. Tests and mechanics model of concrete-filled shs stub columns, columns and beam-columns. Steel & Composite Structures, 2001, 1(1): 51-74.
    48 陶忠. 方形截面钢管混凝土力学性能及承载力的理论分析与试验研究:[硕士学位论文]. 哈尔滨:哈尔滨工业大学,1998.
    49 韩林海,杨有福. 矩形钢管混凝土轴心受压构件强度承载力的试验研究. 土木工程学报, 2001,34(4): 22-31.
    50 Han L H. Tests on stub columns of concrete-filled RHS sections. Journal of Constructional Steel Research, 2002,58(3): 353-372.
    51 Johansson M. Structural behaviour of circular steel-concrete composite columns: Non-linear finite element analyses and experiments. Licentiate thesis, Chalmers University of Technology, Div of Concrete Struct., Goteborg, Sweden, 2000.
    52 Johansson M, Gylltoft K. Structural behavior of slender circular steel-concrete composite columns under various means of load application. Steel and Composite Structures, 2001, 1(4): 393-410.
    53 Johansson M, Gylltoft K. Mechanical behavior of circular steel–concrete composite. Journal of Structural Engineering, 2002, 128 (8): 1073-1081.
    54 Kato B. Column curves of steel-concrete composite members. Journal of Constructional Steel Research, 1996, 39 (2): 121-135.
    55 Kloppel V K, Goder W. An investigation of the load carrying capacity of concrete-filled steel tubes and development of design formula. Der Stahlbau, 1957a, 26 (1): 1-10.
    56 Kloppel V K, Goder W. An Investigation of the load carrying capacity of concrete-filled steel tubes and development of design formula. Der Stahlbau, 1957b, 26 (2): 44-50.
    57 Knowles R B, Park R. Strength of concrete filled steel tubular columns. Journal of Structural Division, ASCE, 1969, 95(ST12): 2565-2587.
    58 Knowles R B, Park R. Axial load design for concrete filled steel tubes. Journal of Structural Division, ASCE, 1970, 96 (ST10): 2125-2153.
    59 Knowles P R. Composite steel and concrete construction. John Wiley and Sons Inc., New York, U. S. A. , 1973.
    60 Konno K, Sato Y, Kakuta Y, Ohira M. The property of recycled concrete column encased by steel tube subjected to axial compression. Transactions of the Japan Concrete Institute, 1997, 19: 351-358.
    61 李继读. 钢管混凝土轴压承载力的研究. 工业建筑,1985,(2):25-31.
    62 Liang Q Q, Uy B. Theoretical study on the post-local buckling of steel plates in concrete-filled box columns. Computers and Structures, 2000, 75: 479-490.
    63 吕西林,余勇,陈以一,Tanak K,Sasaki S. 轴心受压方钢管混凝土短柱的性能研究: I 试验. 建筑结构, 1999, 10: 41-43.
    64 Luksha L K, Nesterovich A P. Strength testing of larger-diameter concrete filled steel tubular members. Proceedings of the Third International Conference on Steel-Concrete Composite Structures, ASCCS, Fukuoka, Japan, 1991. 67-70.
    65 Masuo K, Adachi M, Kawabata K, Kobayashi M, Konishi M. Buckling behavior of concrete filled circular steel tubular columns using light-weight concrete. Proceedings of the Third International Conference on Steel-Concrete Composite Structures, ASCCS. Fukuoka, Japan, 1991. 95-100.
    66 Matsui C. Local buckling of concrete filled steel square tubular columns. In: Symposium papers. International Association for Bridge and Structural Engineering Conference. Luxembourg, 1993. 269-276.
    67 McAteer P, Bonacci J F, Lachemi M. Composite response of high-strength concrete confined by circular steel tube. ACI Structural Journal, 2004, 101(4):466-474.
    68 Mursi M, Uy B. Strength of concrete filled steel box columns incorporating interaction buckling. Journal of Structural Engineering, 2003, 129(5): 626–639.
    69 Nakamura T. Experimental study on compression strength of concrete-filled square tubular steel columns. Journal of Structural Engineering, 1994, 40B: 411-417.
    70 Orito Y, Sato Y, Tanaka N, Watanabe Y. Study on the Unbonded Steel Tube Concrete Structure Engineering Foundation Conference on Composite Constructions, Henniker, New Hampshire ,USA,1987: 786-804.
    71 O’Shea M D, Bridge R Q. Tests on circular thin-walled steel tubes filled with medium and high strength concrete. Department of Civil Engineering Research Report No. R755. The University of Sydney, Sydney, Australia, 1997a.
    72 O’Shea M D, Bridge R Q. Tests on circular thin-walled steel tubes filled with very high strength concrete. Department of Civil Engineering Research Report No. R754. The University of Sydney, Sydney, Australia, 1997b.
    73 O’Shea M D, Bridge R Q. Local Buckling of thin-walled circular steel sections with or without internal restraint[R]. Department of Civil Engineering Research Report No. R740. The University of Sydney, Sydney, Australia, 1997c.
    74 O’Shea M D, Bridge R Q. Behaviour of thin-walled box sections with lateral restraint. Department of Civil Engineering Research Report No. R739. The University of Sydney, Sydney, Australia, 1997d.
    75 Prion H G L, Boehme J. Beam-column behaviour of steel tubes filled with high strength concrete. Canadian Journal of Civil Engineering, 1994, 21: 207-218.
    76 Sakino K, Tomii M, Watanabe K. Sustaining load capacity of plain concrete stub columns confined by circular steel tubes. Proceedings of the International Specialty Conference on Concrete-Filled Steel Tubular Structures, ASCCS. Harbin, China, 1985. 112-118.
    77 Shakir Khalil H, Zeghiche J. Experimental behaviour of concrete filled rolled rectangular hollow-section columns. Structural Engineer, 1989, 67 (19): 346-353.
    78 Shakir Khalil H, Mouli M. Further tests on concrete-filled rectangular hollow-section columns. Structural Engineer, 1990, 68 (20): 405-413.
    79 Shanmugam N E, Lakshmi B, Uy B. An analytical model for thin-walled steel box columns with concrete in-fill. Engineering Structures, 2002, 24: 825-838.
    80 Song J Y, Kwon Y B. Structural behavior of concrete-filled steel box sections. International Conference Report on Composite Construction-Conventional and Innovative. Innsbruck, Austria, 1997. 795-800.
    81 Task Group 20, SSRC. A specification for the design of steel-concrete composite columns. Engineering Journal, AISC, 1979, 16 (4): 101-145.
    82 汤关祚,招炳泉,竺惠仙,沈希明. 钢管混凝土基本力学性能的研究. 建筑结构学报, 1982, 1: 13-31.
    83 谭克锋,蒲心诚,蔡绍怀. 钢管超高强混凝土的性能与极限承载能力的研究. 建筑结构学报, 1999, 20 (1): 10-15.
    84 谭克锋,蒲心诚. 钢管超高强混凝土长柱及偏压柱的性能与极限承载能力的研究. 建筑结构学报, 2000, 21 (2): 12-19.
    85 Tomii M, Yoshimaro K, Morishita Y. Experimental studies on concrete filled steel tubular stub column under concentric loading. Proceedings of the International Colloquium on Stability of Structures under Static and Dynamic Loads, SSRC/ASCE. Washington, USA, 1977.718-741.
    86 Tsuda K, Matsui C. Limitation on width (diameter)-thickness ratio of steel tubes of composite tube and concrete columns with encased type section. Proceedings of the Fifth Pacific Structural Steel Conference. Seoul, Korea, 1998. 865-870.
    87 Uy B. Local and post-local buckling of concrete-filled steel welded box columns. Journal of Constructional Steel Research, 1998, 47:47-72.
    88 Uy B. Strength of concrete filled steel box columns incorporating local buckling. Journal of Structural Engineering, 2000, 126(3): 341-352.
    89 Uy B. Strength of short concrete filled high strength steel box columns. Journal of Constructional Steel Research, 2001, 57: 113-134.
    90 Uy B, Das S. Wet concrete loading of thin-walled steel box columns during the construction of a tall building. Journal of Construction Steel Research, 1997, 42 (2): 95-119.
    91 Bradford M A, Uy B. Buckling of plates with different end conditions using the finite strip method. Computers and Structures, 1995, 56(1): 75-83.
    92 Uy B, Bradford M A. Local buckling of concrete-filled high strength steel box columns for tall buildings: behaviour and design. The Structural Design of Tall Buildings, 1994, (3): 75-93.
    93 Uy B, Bradford M A. Inelastic local buckling behaviour of thin steel plates in profiled composite beams. The Structural Engineer, 1995, 72(16): 259-267.
    94 Uy B, Bradford M A. Elastic local buckling of steel plates in composite steel-concrete members. Engineering Structures, 1996, 18(3): 193-200.
    95 Liang Q Q, Uy B. Theoretical study on the post-local buckling of steel plates in concrete-filled box columns. Computers and Structures, 2000, 75: 479-490.
    96 Uy B. Local and postlocal buckling of fabricated steel and composite cross sections. Journal of Structural Engineering, 2001, 127(6): 666-677.
    97 Bradford M A, Loh H Y, Uy B. Slenderness limits for filled circular steel tubes. Journal of Constructional Steel Research, 2002, 58: 243-252.
    98 Cheung Y K. Finite strip method in structural analysis. Oxford: Pergamon Press, 1976.
    99 Cheung Y K, Tham L G. Finite strip method. Boca Raton FL: CRC Press, 1997: 392.
    100 Cheung Y K, Tham L G. A review of the finite strip method. Prog. Struct. Engng Mater, 2000, (2): 369-375.
    101 Bryan G H. On the stability of a plane plate under thrusts in its own plane with applications on the buckling of the dies of a ship. Proc. London Mathematical Soc., London, 1891. 22-54.
    102 Vrcelj Z, Uy B. Strength of slender concrete-filled steel box columns incorporating local buckling. Journal of Constructional Steel Research, 2002, 58: 275-300.
    103 王力尚,钱稼茹. 钢管高强混凝土柱轴心受压承载力试验. 高强与高性能混凝土及其应用第四届学术讨论会论文集, 长沙,2001. 455-459.
    104 王力尚,钱稼茹. 钢管高强混凝土柱轴心受压承载力试验研究. 建筑结构, 2003, 37(7): 46-49.
    105 Wright H D. Buckling of plates in contact with a rigid medium. The Structural Engineer. 1993, , 71(12): 209-215.
    106 Wright H D. Local stability of filled and encased steel sections. Journal of Structural Engineering, 1995, 121(10): 1382-1388.
    107 肖岩. 套管钢筋混凝土柱结构的发展和展望. 土木工程学报,2004,37(4):8-12.
    108 Yoshihiro Orito, Takanori Sato, Nobuyuki Tanaka, Yasushi Watanabe. Study on the unbonded steel tube concrete structure. Composite Construction, 1987: 786-804.
    109 余勇,吕西林,Tanaka K,Sasaki S. 轴心受压方钢管混凝土短柱的性能研究: II 分析. 建筑结构,2000, 30 (2): 43-46.
    110 余志武,丁发兴,林松. 钢管高性能混凝土短柱受力性能研究. 建筑结构学报, 2002, 23(2): 41-47.
    111 张素梅,周明. 方钢管约束下混凝土的抗压强度. 哈尔滨建筑大学学报增刊(中国钢协钢-混凝土组合结构协会第七次年会论文集)1999, (3): 14-18.
    112 Schilling C G. Buckling strength of circular tubes. J Struct Div-ASCE, 1965, 91(ST5): 325-348.
    113 Zhang W, Shahrooz B M. Analytical and experimental studies into behavior of concrete-filled tubular columns. Report No.UC-CII97/01. Cincinnati(OH): University of Cincinnati, College of Engineering, Cincinnati Infrastructure Institute, 1997.
    114 Meyerhof G G. The bearing capacity of concrete and rock. Magazine of Concrete Research, 1953, 4(12): 107-116.
    115 Shelson W. Bearing capacity of concrete. ACI, 1957, 29(5): 405-414.
    116 An T, Baird D L. Bearing capacity of concrete blocks. ACI, 1960, 31(9): 869-879.
    117 蔡绍怀. 混凝土及配筋混凝土的局部承压强度. 土木工程学报,1963,9(6):1-10.
    118 Hawkins N M. The bearing strength of concrete loaded through rigid plates. Magazine of Concrete Research, 1968a, 20(62): 31-40.
    119 Hawkins N M. The bearing strength of concrete loaded through flexible plates. Magazine of Concrete Research, 1968b, 20(63): 95-102.
    120 Hawkins N M. The bearing strength of concrete for strip loading. Magazine Of Concrete Research, 1970, 22(71): 87-98.
    121 Chen W F et. Bearing capacity of concrete blocks or rocks. Journal of the Engineering Mechanics Division. Proceedings of the American Society of Civil Engineers. EM6, December 1973.1314-1321.
    122 Niyogi S K. Bearing strength of concrete-geometric variations. ASCE, 1973, 99(ST7): 1471-1490.
    123 Niyogi S K. Concrete bearing strength support, mix, size effect. ASCE, 1974, 100(ST8): 1685-1702.
    124 Niyogi S K. Bearing strength of reinforced concrete blocks. Journal of the Structural Divison, 1975, 5: 1125-1137.
    125 过镇海. 钢筋混凝土原理. 北京:清华大学出版社,1999.
    126 曹声远,杨熙坤,钮长仁. 混凝土轴心局部承压破坏及强度的试验研究. 哈尔滨建筑工程学院学报,1980, 1.
    127 曹声远,杨熙坤. 混凝土局部承压的工作机理及强度理论. 哈尔滨建筑工程学院, 1982, 3.
    128 曹声远,杨熙坤. 混凝土偏心局部承压强度试验研究及计算方法的建议. 哈尔滨建筑工程学院学报, 1982, 4: 1-11.
    129 曹声远,杨熙坤,徐凯怡. 钢筋混凝土局部承压的试验研究. 哈尔滨建筑工程学院学报, 1983, 2.
    130 杨熙坤,杨冰,刘丽娜. 混凝土及钢筋混凝土局部承压楔劈理论(上). 低温建筑技术, 1999, 78(4):10-12.
    131 杨熙坤,杨冰,董亮. 混凝土及钢筋混凝土局部承压楔劈理论(下). 低温建筑技术, 2000, 79(1):18-19.
    132 局部承压专题研究组. 混凝土及钢筋混凝土的局部承压问题. 建筑结构, 1982, (4).
    133 焦占拴,蔡绍怀. 方格网套箍混凝土的强度和变形. 土木工程学报, 1985, 18(1): 29-35.
    134 蔡绍怀,尉尚民,焦占拴. 方格网套箍混凝土的局部承压强度计算. 土木工程学报, 1986, (4).
    135 蔡绍怀, 尉尚民. 混凝土局部承压强度理论的台锥-套箍模型. 约束混凝土与普通混凝土强度理论及应用学术讨论会论文集. 烟台,1987 年 10 月 26-30 日.
    136 蔡绍怀,焦占拴,尉尚民,何琼. 钢管混凝土局部承压性能和强度计算的研究. 建筑科学,1989,(2): 18-23.
    137 薛立红, 蔡绍怀. 方格网套箍高强混凝土的局部承压强度. 混凝土结构基本理论及应用第二届学术讨论会论文集,北京,清华大学,1990 年 10 月 26-29 日. 163-170.
    138 蔡绍怀、顾维平. 混凝土标号对局部承压强度提高系数的影响. 混凝土结构基本理论及应用第二届学术讨论会论文集,北京,清华大学,1990 年 10 月 26-29 日. 171-177.
    139 蔡绍怀,薛立红. 高强度混凝土的局部承压强度. 土木工程学报,1994, 27 (5).
    140 薛立红, 蔡绍怀. 钢管混凝土界面附近的局部承压实验研究. 建筑科学,1998, 14 (4):9-13.
    141 刘永颐, 关建光, 王传志. 混凝土局部承压强度及破坏机理. 土木工程学报, 1985, 18(2).
    142 尉尚民. 对“混凝土局部承压强度及破坏机理”的讨论. 土木工程学报, 1985, 18(3):82-87.
    143 李宏,刘西拉. 混凝土局部承压强度的计算. 混凝土结构基本理论及工程应用第三界学术讨论会论文集. 长沙,1993.
    144 唐岱新,罗维前,孟宪君. 砖砌体局部受压强度试验与实用计算方法. 建筑结构学报,1980, (4): 55-64.
    145 杨卫忠. 砌体局部均匀受压强度计算. 郑州工业大学学报. 1998,19 (1):64-69.
    146 徐金声, 薛立红. 无粘结预应力混凝土端部构造及局部承压强度的计算. 建筑结构,1997, (12): 3-6.
    147 杨波,赵景海,樊承谋. 钢纤维混凝土局部承压的试验研究. 哈尔滨建筑工程学院学报,1994, 27 (2):84-89.
    148 中华人民共和国建设部,国家质量监督检验检疫总局. GB50010-2002. 中华人民共和国国家标准—混凝土结构设计规范. 2002.
    149 ACI 318-99. Building code requirements for structural concrete and commentary. Farmington Hills (MI), American Concrete Institute, Detroit, U.S.A., 1999.
    150 CEB-FIP model code 1990. C.E.B. Bullentin d’Information N.203 (final draft). Comité Euro-International du Béton, Lausanne, Switzerland, 1991.
    151 Baltay P, Gjelsvik A. Coefficient of friction for steel on concrete at high normal stress. Journal of Materials in Civil Engineering, 1990, 2(1): 46-49.
    152 Boverket’s handbok for betongkonstruktioner BBK 94, Band 1, Konstruktion (Boverket’s Handbook for Concrete Structures, BBK 94, Vol. 1, Design. In Swedish). Boverket, Byggavdelningen, Karlskrona, Sweden, 1994. 185.
    153 Olofsson U, Holmgren M. Anvandning av en servo-hydraulisk drag-vridningsmaskin for friktionsmatning mellan stal och betong vid laga glidhastigheter. (Using a Servo Hydraulic Tension-Torsion Machine for Measurement of Friction at Low Sliding Speed. In Swedish). Swedish National Testing and Research Institute, Boras, Sweden, 1992. 13.
    154 Virdi K S, Dowling P J. Bond strength in concrete filled steel tubes. IABSE Proceedings P-33/80, 1980: 125-139.
    155 Morishita Y, Tomii M, Yoshimura K. Experimental studies on bond strength in concrete filled circular steel tubular columns subjected to axial loads. Transactions of Japan Concrete Institute, 1979a: 351-358.
    156 Morishita Y, Tomii M, Yoshimura K. Experimental studies on bond strength in concrete filled square and octagonal steel tubular columns subjected to axial loads. Transactions of Japan Concrete Institute, 1979b: 359-336.
    157 Morishita Y, Tomii M. Experimental studies on bond strength between square steel tube and encased concrete core under cyclic shearing force and constant axial force. Transactions of Japan Concrete Institute, 1982, (4): 363-370.
    158 Tomii M, Morishita Y, Yoshimura K. A method of improving bond strength between steel tube and concrete core cast in circular steel tubular columns. Transactions of Japan Concrete Institute, 1980a, (2): 319-326.
    159 Tomii M, Morishita Y, Yoshimura K. A method of improving bond strength between steel tube and concrete core cast in square and octagonal steel tubular columns. Transactions of Japan Concrete Institute, 1980b, (2): 327-334.
    160 Shakir Khalil H. Pushout strength of concrete-filled steel hollow sections. The Structural Engineer, 1993a, 71(13): 230-233.
    161 Shakir Khalil H. Resistance of concrete-filled steel hollow tubes to pushout forces. The Structural Engineer, 1993b, 71(13): 234-243.
    162 Roeder C W, Cameron B, Brown C B. Composite action in concrete filled tubes. Journal of Structural Engineering, 1999, 125(5): 477-484.
    163 薛立红, 蔡绍怀. 钢管混凝土柱组合界面的粘结强度(上). 建筑科学, 1996a, (3):22-28.
    164 薛立红, 蔡绍怀. 钢管混凝土柱组合界面的粘结强度(下). 建筑科学, 1996b, (4):19-23.
    165 薛立红,蔡绍怀. 荷载偏心率对钢管混凝土柱组合界面粘结强度的影响. 建筑科学,1997, (2):22-25.
    166 Shakir Khalil H and Al Rawadan A. Experimental behavior and numerical modeling of concrete-filled rectangular hollow section tubular columns. Proceedings of the Engineering Foundation Conference 1997, ASCE, New York, NY, USA, 1997.222-235.
    167 Schneider S P. Axially loaded concrete-filled steel tubes. Journal of Structural Engineering, 1998, 124(10): 1125-1138.
    168 Varma A H. Seismic behavior, analysis, and design of high strength square concrete filled steel tube(CFT) columns. Doctoral Dissertation of Lehigh University, 2000.
    169 Susantha K A S, Ge H B, Usami T. Confinement evaluation of concrete-filled box-shaped steel columns. Steel and Composite Structures, 2001,1(3): 313-328.
    170 Hsuan-Teh Hu, Chiung Shiann Huang, Ming Hsien Wu, Yih Min Wu. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. Journal of Structural Engineering, 2003, 129(10): 1322-1329.
    171 Hibbitt, Karlson, Sorenson. ABAQUS Version 6.4: Theory Manual, Users’ Manual, Verification Manual and Example problems Manual. Hibbitt, Karlson and Sorenson Inc., 2003.
    172 Hibbitt, Karlsson, Sorensen, INC. ABAQUS/Standard 有限元软件入门指南(庄茁 等译). 北京:清华大学出版社,1998.
    173 Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 1988, 114(8): 1804-1826.
    174 Cusson D, Paultre P. Stress-strain model for confined high-strength concrete. Journal of Structural Engineering, 1995, 121(3): 468-477.
    175 Attard M M, Setunge S. Stress-strain relationship of confined and unconfined concrete. ACI Materials Journal, 1996, 93(5): 432-442.
    176 杨桂通. 弹塑性力学. 北京:高等教育出版业, 1980.
    177 王仁,熊祝华,黄文彬. 塑性力学基础. 北京:科学出版社, 1998.
    178 陈惠发,A.F. 萨里普著,余天庆,王勋文译,刘再华校译. 土木工程材料的本构方程(第一卷 弹性与建模). 武汉:华中科技大学出版社,2001.
    179 陈惠发著,余天庆,王勋文,刘再华译,刘西拉,韩大建校译. 土木工程材料的本构方程(第二卷 塑性与建模). 武汉:华中科技大学出版社,2001.
    180 过镇海. 混凝土的强度和变形-试验基础和本构关系. 北京:清华大学出版社,1997.
    181 董毓利. 混凝土非线性力学基础. 北京:中国建筑工业出版社,1997.
    182 江见鲸. 钢筋混凝土结构非线性有限元分析. 陕西:陕西科学技术出版社,1994.
    183 吕西林,吴晓涵. 钢筋混凝土结构非线性有限元分析. 上海:同济大学出版社,1997.
    184 沈聚敏,王传志,江见鲸. 钢筋混凝土有限元与板壳极限分析. 北京:清华大学出版社,1993.
    185 Lubliner J, Oliver J, Oller S, O?ate E. A plastic-damage model for concrete. International Journal of Solids and Structures, 1989, 25(3): 229-326.
    186 Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
    187 王勖成,邵敏编著. 有限单元法基本原理和数值方法. 北京:清华大学出版社,2001.
    188 朱伯芳. 有限单元法原理与应用. 第二版.北京:中国水利水电出版社,1998.
    189 蔡绍怀,邸小坛. 钢管混凝土偏压柱的性能和强度计算. 建筑结构学报,1985 (4):32-41.
    190 Campione G, Scibilia N. Beam-column behavior of concrete filled steel tubes. Steel and Composite Structures, 2002, 2(4): 259-276.
    191 Giakoumelis G, Lam D. Axial capacity of circular concrete-filled tube columns, Journal of Constructional Steel Research, 2003, 60(7): 1049-1068.
    192 韩林海. 钢管高强混凝土轴压力学性能的理论分析与试验研究. 工业建筑,1999,(11):39-44.
    193 Huang C S, Yeh Y K, Liu G Y, Hu H T, Tsai K C, Weng Y T, Wang S H, Wu M H. Axial load behavior of stiffened concrete-filled steel columns. Journal of Structural Engineering, 2002, 128(9): 1222-1230.
    194 Nishiyama I, Morino S, Sakino K, Nakahara H, Fujimoto T, Mukai A, Inai E, Kai M, Tokinoya H, Fukumoto T, Mori K, Yoshika K, Mori O, Yonezawa K, Mizuaki U, Hayashi Y. Summary of research on concrete-filled structural steel tube column system carried out under the us-japan cooperative research program on composite and hybrid structures. BRI Research Paper No.147, Building Research Institute, Japan, 2002.
    195 Sakino K, Hayashi H. Behavior of concrete filled steel tubular stub columns under concentric loading. Proc. of the Third International Conference on Steel-Concrete Composite Structures, Fukoka, Japan, 1991. 25-30.
    196 Cederwall K, Engstrom B, Grauers M. High-strength concrete used in composite columns. High-Strength concrete, 1997, SP 121-11, 195-210.
    197 Lam D, Christopher A. Williams .Experimental study on concrete filled square hollow sections. Steel and Composite Structures, 2004, 4(2): 95-112.
    198 Matsui C, Tsuda K, Ishibashi Y. Slender concrete filled steel tubular columns under combined compression and bending, Structural Steel, PSSC95, 4th Pacific Structural Steel Conference-Steel-Concrete Composite Structures, Singapore, 1995, 3: 29-36.
    199 Shiiba K, Harada N. An experiment study on concrete –filled square steel tubular columns. Proceedings of the 4th International Conference on Steel-Concrete Composite Structures, Slovakia, 1994. 103-106.
    200 Tomii M, Sakino K. Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns, Trans. of A.I.J. No. 275. Tokyo, Japan, 1979.55-63.
    201 Yamamoto T, Kawaguchi J, Morino S. Size effect on ultimate compressive strength of concrete-filled steel tube short columns, Proceedings of the SEWC2002, Yokohama, Japan, 2002.
    202 Lahlou K, Aitcin P C. Colonnes en beton a hautes performances confine dans des enveloppes mince en acier. Bulletin des Laboratoires des Ponts et Chaussees, May-June 1997, 209: 49-67.(in Frentch)
    203 Lahlou K, Lachemi M, Aitcin P C. Confined high strength concrete under dynamic compressive loading. Journal of Structural Engineering, 1999, 125(10): 1100-1108.
    204 O’Shea M D, Bridge R Q. Design of circular thin walled concrete filled steel tubes. Journal of Structural Engineering, 2000, 136(11): 1295-1301.
    205 Han L H, Yao G H, Chen Z B, Yu Q. Experimental behavior of steel tube confined concrete (STCC) columns. Steel & Composite Structures. (submitted)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700