微小齿轮装配关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,工业与民用领域中的设备装置随着结构和功能发展的需要,一些装置从尺寸上要求越来越小,结构上要求越来越复杂。在加工方法不断出新的今天,微小型零件的装配技术,在各个方面都对微装配系统提出了更高的要求。无返回力矩钟表机构在引信中有着广泛的应用,因此,以无返回力矩钟表机构装配为例对微装配关键技术的研究具有重要的意义。
     无返回力矩钟表机构由4个构件组成,具有2级齿轮传动。结构复杂而且尺寸微小。针对机构进行装配任务分析,确定了机构各构件的装配顺序。根据各构件的不同装配过程,选择了过渡轮做为研究微小齿轮装配关键技术的研究对象。由于过渡轮尺寸小、结构复杂,因此,利用其装配过程的力信息对其位姿调整极为重要。本课题中采用六维微力/力矩传感器,通过对其精确标定,实现了力信息的采集。分析了齿轮装配过程的受力,根据力反馈信息,利用PID控制的方法实现了操作手的柔顺控制,建立了微装配机器人的力觉系统。从而能够及时的根据力信息判断其位置信息并做出调整,避免了装配过程中卡阻的产生。采用视觉和力觉相结合的装配策略,对齿轮进行装配,提高装配的准确率和速度。通过实验研究,实现了齿轮的装配,验证了力控制算法以及装配策略的有效性。
     本文的研究工作为一些复杂的微小齿轮装配提供了部分可以借鉴的理论和实践经验,有助于微装配技术的发展和应用。
In recent years, as the requirement of the structure and function development of the equipments which belong to the industrial and civilian fields. These special devices increasingly demands on the smaller and smaller size, and on the more and more complex structure. With processing methods innovation, micro-parts assembly technology, in need of higher demand in all aspects of the micro-assembly system. So, the research on key technologies of the micro assembly is very important. Based on the analysis of the Micro-assembly technology, force sensor, force control, selecting the assembly of body clocks with no back torque, we study the key technology of the micro gear assembly. There are a large number of applications in the industrial and civilian fields.
     The body clocks with no back torque is made up of four components, and two gear transmission. Their configuration is complex and size is subminiature.At the level of institutions assembly mission analysis to determine the component agencies of the assembly sequence. According to the different components of the assembly process, select a transitional gear as the micro gear assembly key technology research. Due to the small size of the transition gear and complex structures, it is necessary to detect the assembly force in the process of micro assembly. In this system, an accurately calibrated micro-force sensor with six dimensions is used for detecting of force. Based on the analysis of the assembly, the system has realized the PID control of the gripper. So, the system can get the gear’s position and regulate it in good time according force information, avoiding the blocking of gears in assembling. The method fusing vision and force sensor was adopted to assembly the gears, which improves the velocity and the possibility of success. The assembly experiment was made, through which the gears was assembled correctly. That validated controlling algorithm and assembling methods.
     This research maybe provides some useful theories and experiences to the research of complicated micro gear assembly, is help to development and application of technology in micro assemble.
引文
1 Arianna Menciassi, Anna Eisinberg, Inano Izzo, Paolo Dario. From“Macro”to“Micro”Manipulation: Models and Experiments. IEEE/ASME Transactions on Mechatronics. 2004, 9(2):311-320
    2 N. Dechev, W. L. Cleghorn, J. K. Mills. Microassembly of 3-D Microstructures Using a Compliant, Passive Microgripper. Jounal of microelectromechnica Systems. 2004, 13(2):176-189
    3王守杰,宗光华.微操作机器人与宏微观.自然辩证法研究. 1998,14(9):30-35
    4罗翔,沈洁,颜景平.微装配的若干关键技术.电子机械工程.2002,18(1): 55-60
    5李庆祥,李玉和.微装配与微操作技术.清华大学出版社, 2004:4-5
    6陈佳品,李振波,唐晓宁.毫米级全方位移动机器人及其微装配系统研究.中国机械工程第. 2005,16(14):1223-1225
    7郑巍,徐毓娴,李庆祥.用于微器件装配的微操作系统.机器人. 1999,21(1):12-15
    8 Y. Hatamura, H. Morishita. Direct coupling system between nanometer world and human world. IEEE transactions Micro Electro Mechanical Systems. 1990:203-208
    9 K. B. Yesin, B. J. Nelson. Robust CAD model based visual tracking for 3-D microassembly using image space potential. Proceedings of the IEEE International Conference on Robotics & Automation. New Orleans, LA. 2004:1868-1873
    10 G. Yang, J. A. Gaines. A Supervisory Wafer-Level 3-D Microassembly System for Hybrid MEMS Fabrication. Journal of Intelligent and Robotic Systems. 2003, 37:43–68
    11 H. Aoyama, F Lwata. Miniature Robots for a desktop Flexible Micro Manufacturing System. IEEE Control System. 1996, 2:6-12
    12 H. Aoyama. Flexible micro-processing by multiple micro robots in SEM. Proceeding of the IEEE International Conference on Robotics & Automation. 2001:3429-3434
    13 S. Fatikow, J. Seyfried. A flexible microrobot-based microassembly station. Proceeding of the IEEE International Conference on Intelligent Robots and systems. 1999:397-406
    14 H. Woern, J. Seyfried, St. Fahlbusch. Flexible microrobots for micro assembly tasks. Proceedings of the International Symposium on Micro Machine and Human Science. 2000:135-143
    15 H. Aoyama, O. Fuchiiwaki. Flexible Micro-Processing by Multiple Micro Robots in SEM. Proceeding of IEEE International Conference on Robotics and Automation, Seoul, South Korea. 2001:3429-3434
    16罗振璧,于学军,刘阶萍.可重构性和可重构设计理论.清华大学学报(自然科学版). 2004,44(5):577-480
    17 J. Schilp, M. Harfensteller, D. Jacob, et al. High-accuracy micro-assembly by intelligent vision systems and smart sensor integration. Proceedings of SPIE Optomechatronic Systems IV. 2003:274-282
    18 S. Koelemeijer Chollet, F. Bourgeois, L. Benmayor, et al. A Flexible Microassembly Cell for Small and Medium Sized Batches. Proceedings of the 33rd International Symposium on Robotics. 2002:7-12
    19 B. Kim, H. Hang, D. H. Kim, et al. Flexible microassembly system based on hybrid manipulation scheme. Proceedings of IEEE International Conference on Intelligent Robots and Systems. 2003:2061-2066
    20柳洪义等.机器人技术基础冶金工业出版社. 2002,11:3-11
    21 Raibert M, Craig J J. Hybrid Position/Force Control of Manipulators. ASME J of DSMC, 1981:126-133
    22殷跃红等.智能机器力觉及力控制研究综述. 1999,20(1):1-7
    23 Niemeyer G, Slotine J J. Performance in Adaptive Manipulator Control. IJRR, 1991,10:49-61
    24 Singh S K. Adaptive Admittance Control of Manipulator Interaction with Environment: Theory and Experiments. ICRA, 1993:1001-1006
    25 Jean J, Fu L. Adaptive Hybrid Control Strategies for Constrained Robots. IEEE Trans on Automatic Control, 1993:598-603
    26 Arimoto Set al. Learning Control for Robot Tasks Under Geometric Endpoint Constraints. ICRA, 1992:1914-1919
    27 Jeon Det al. Learning Hybrid Force and Position Control of RobotManipulators. ICRA, 1992:1455-1460
    28 Gullapali Vet al. Learning Admittance Mappings for Force-Guided Assembly. ICRA, 1994:2633-2638
    29 Katic D, Vukobratovic M. A Neural Network-based Classification of Environment Dynamics Models for Compliant Control of Manipulation Robots. IEEE Trans on SMC - Part B: Cybernetics, 1998,28(1) :58-69
    30王雨时.炮弹引信炮口保险性能指标分析.探测与控制学报. Vol.22,No.3,2000,9:11-19
    31李华,王华,焦国太.引信延期解除保险机构设计与动态仿真研究.华北工学院学报. 2004,25(1):31-34
    32陆文广,芮筱亭,陆毓麒,顾金良.无返回力矩钟表机构动力学研究.兵工学报. 2005,26(3):401-404
    33邓宏彬,刘明杰.无返回力矩钟表机构延时设计的研究.北京理工大学学报. 1999,19(1):51-55
    34尚雅玲,马宝华.销钉式无返回力矩钟表机构振动周期的研究.探测与控制学报. 1999,21(4):40-49
    35夏妍春,殷跃红,霍华,陈兆能.轴孔装配主动柔顺中心设置方法研究.机器人, 1998,20(3):232-240
    36 Yantao Shent, Ning Xi, Wen Jung Li. Contact and Force Control in Microassembly. IEEE International Symposium on Assembly and Task Planing, 2003:60-65
    37王守杰,宗光华,毕树生.微操作机器人显微视觉系统的研究.机器人.1998,3:138-142
    38 Deok-Ho Kim, Kyunghwan Kim. Dexterous Teloperation for Micro Parts Handling Based on Haptic/Visual Interface. 2001 international symposium onmicromechatronics and human science. 2001:211-217
    39 Whitney D E. Historical Perspective and State of the Art in Robot Force Control. The Intern J Robotics Research, 1987,6(1):105-109
    40梅晓榕.自动控制原理.科学出版社. 2002:58-70
    41陈维山,赵杰.机电系统计算机控制.哈尔滨工业大学出版社. 1999:40-57
    42王知行,刘廷荣.机械原理.高等教育出版社. 2000:152-156
    43干方建,刘正士.六维腕力传感器惯性参数的在线识别.机器人, 2001,20(11):8-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700