钛合金高速铣削加工机理及铣削参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金在航空航天领域有着广泛的应用,被誉为是一种使人类走向太空时代的战略性金属材料。然而,由于具有导热性系数低、高温化学活性高和弹性模量小特点,钛合金又是一种典型的难加工材料。在切削过程中,容易产生较高的切削温度,使刀具磨损加快,表面质量难以控制,实际切削速度难以提高。同时,由于航空钛合金零部件的结构设计特点,大量的材料需要从整块坯料中去除,使得切削成本较高。因此,低效的加工能力和加工质量与不断增长的加工需求已构成矛盾,成为制约航空航天制造业发展的瓶颈之一。针对航空钛合金Ti6Al4V的铣削加工,本课题从铣削力、铣削温度、表面完整性以及刀具寿命方面对高速铣削机理进行了系统研究,为建立钛合金高效加工工艺规范提供理论依据。以此为基础,以加工效率最大和刀具消耗最小为优化目标,对铣削参数进行优化,为实际加工提供工艺支持。
     切削力是研究切削过程的重要物理量之一,其大小和变化对工件表面完整性、刀具磨损和寿命等具有影响。准确地预测切削力对于优选切削用量、刀具结构参数以及提高加工精度具有积极的指导意义。针对圆柱螺旋铣刀,将切削刃沿轴向切削深度离散为一系列微元,而微元铣削力大小可表示为剪切力和犁耕力的和,然后将微元沿刀具轴向切削深度进行积分,从而建立了考虑刃口犁耕效应的三维铣削力学模型。与以往求解铣削力系数方法不同,本课题提出了应用瞬时铣削力识别铣削力系数的方法,具有更快速、更经济特点。考虑铣削力系数随被加工材料力学性能变化特点,通过试验和回归分析方法,建立了适合高速铣削范围的铣削力系数经验预测模型。经验证,所建立的铣削力学模型具有很高的预测精度。从控制铣削力角度,铣削参数应选择适中的铣削速度、较大的铣削径向深度、较小的进给速度和轴向铣削深度。
     对切削热控制的好坏一定程度上决定了钛合金零部件的生产效率。因此,有必要研究切削过程中热量的产生和传递的规律,了解刀具和工件中温度的分布状态,从而优化工艺措施,提高刀具寿命,进一步提高加工效率和加工质量。利用红外辐射测温方法,研究了铣削参数对铣削温度的影响。通过试验发现,随着铣削速度和每齿进给量增加,铣削温度呈增加趋势。以温度测量试验为参照,利用有限元方法,建立三维铣削仿真模型,对工件变形区和刀具的温度场进行了分析。工件上最高温度始终产生在切屑与切削刃接触的根部区域,该区域具有高温、大应变和高应变率特点。刀具的最高温度产生于前刀面主切削刃附近,由于具有良好的导热性,最高温度低于切屑的最高温度。当铣削速度增大,刀刃与切屑根部接触区域温度上升,并且高温热源区域沿轴向铣削深度扩大,同时静水压力也增大。
     航空钛合金零部件因其特殊的工作环境,可靠性要求较高,相应地对表面完整性也有严格的要求。深入研究铣削加工对钛合金表面完整性的影响,实现表面质量预报和控制,可为钛合金零部件设计以及加工工艺选择提供参考依据。根据铣削试验发现,使用涂层刀片和MQL能够获得较好的表面粗糙度。在采用较高速度铣削钛合金时,配合低进给、较低的轴向铣削深度以及适中的径向铣削深度,可以获得较好的表面粗糙度。综合工件与刀具相对运动的几何特征和工件材料弹塑性变形特点,建立了钛合金铣削加工表面粗糙度的理论模型,揭示了表面粗糙度的形成机理。通过对已加工表层微观组织进行SEM观察,发现低速和小进给情况下表层晶粒扭曲变形的程度和深度比较显著,而高速铣削减轻了表层晶粒扭曲的程度,并且减小了变质层的厚度,有利于提高零件表面完整性。通过显微硬度测量,研究了铣削速度和每齿进给对加工硬化的影响。加工硬化程度随铣削速度增加而降低,然而当铣削速度超过一定界限,加工硬化程度将会增加。随着每齿进给增加,加工硬化程度降低。无论高速铣削与低速铣削,硬度沿距离表面深度变化的趋势基本一致,都经历了表面强化-热软化-再度强化-趋于稳定的过程。高速铣削条件下软化层具有较低的硬度值,软化层深度略小于低速情况。根据位错理论,建立了加工硬化动力学模型,揭示了加工硬化与微观组织、流动应力的联系。利用铣削试验和X射线衍射应力测量方法,研究了铣削参数对已加工表面残余应力的影响。每齿进给对残余应力大小影响最为显著,而径向铣削深度影响最小。通过铣削力和铣削温度分析,认为残余应力与机械应力、热应力产生的塑性变形有关。切削力使工件表面层产生不均匀塑性变形,具体来自于两个方面,一方面是刀具接触点前方区域的“塑性凸出”效应,另一方面是刀具后刀面对工件表面的“挤光效应”。前者使已加工表面产生残余拉应力,后者则产生残余压应力。切削热使工件表层材料产生塑性凸出,从而产生残余拉应力。从X射线应力测量结果看,已加工表面残余应力表现为压应力性质。由于钛合金弹性模量小,已加工表面容易出现较大回弹,从而与刀刃后刀面产生强烈的挤光作用。因而可以认为,挤光作用是表面压应力的形成原因。
     钛合金切削加工容易引起刀具过早磨损,严重影响着加工效率和成本。通过磨损试验、SEM观察和能谱分析手段,对钛合金铣削加工刀具的磨损形式和磨损机理进行了分析。钛合金铣削加工刀具磨损和失效是在多种机制下共同作用的结果,主要表现为粘结磨损、氧化磨损、磨粒磨损、扩散磨损以及裂纹等形式。在高温高压下,钛合金工件表面材料和刀具后刀面容易产生粘结,当粘结层厚度达到一定程度,粘结层出现开裂和脱落现象,从而磨损产生。通过能谱分析,在干切削条件下,刀具材料以及粘结的钛合金材料均发生了氧化,而氧化产物的硬度较高,为磨粒磨损提供硬质点,并可能会使刀具发生塑性变形。在很高的切削温度下,接触表面发生大的塑性变形,不断产生的新生表面,促进了刀具材料与被加工材料之间的固体溶解,从而导致扩散磨损。根据磨损试验结果,建立了刀具寿命经验预报模型,发现铣削速度、每齿进给以及轴向铣削深度对刀具寿命具有显著性影响,而径向铣削深度影响较弱。
     针对钛合金铣削加工存在的高成本、低效率问题,建立了以最大生产效率和最小刀具寿命消耗为目标的铣削参数优化模型。对于多目标优化问题,由于目标的冲突性,在改善其中一个目标的同时,往往会削弱其他目标。因此,多目标优化问题要找的并不是所有子目标的最优解,而是Pareto解。经典的多目标问题求解方法一般是通过归一化处理将多目标问题转化为单目标问题。经典方法的不足主要表现为两个方面,一是很难建立合适的归一化准则,再就是每次只能得到一个Pareto解。进化算法具有很强的并行搜索能力,可以一次得到多个Pareo解,为决策者提供多样化的选择。本课题在NSGA-Ⅱ算法的基础上进行改进,将非支配概念拓展到约束空间,使得多目标多约束问题的处理更具有鲁棒性和有效性。根据钛合金铣削试验获得的数据,建立铣削力、粗糙度以及刀具寿命经验模型,代入铣削参数优化模型,对铣削参数进行优化,得到了Pareto前沿。工艺人员可根据优化目标的侧重灵活选择相应的铣削参数,比用传统方法优化钛合金切削参数更经济和方便。将该优化方法程序化,嵌入到工艺数据库,可为实际加工提供有利支持。
With the reputation of space age metal, Titanium alloys have been used extensively in aerospace industry. However, it is difficult to machine due to their poor thermal conductivity, low elastic modulus and high chemical activation. During machining of Titanium alloys, rapid tool wear and deterioration of surface integrity make the cutting speed very low. Simultaneously, due to the characteristics of component design, a great deal of stock has to be removed from primary forms, resulting in a larger machining cost. Therefore, the contradiction between increasing machining demand and poor machining performance has been one of the bottlenecks blocking the development of aerospace industry. In this study, the high speed milling mechanism of Titanium alloys Ti6A14V was systematically researched from the sides of milling force, milling temperature, surface integrity and tool wear and life, in order to provide theoretical support for the built-up of Titanium alloys' high performance machining technique. According to the understanding of machining mechanism, the milling parameters are optimized under the objectives of both maximized production efficiency and minimized exhaustion of tool life.
     Cutting force is one of the important physical variables in cutting process, which shows strong influence on workpiece's surface integrity and tool wear. Therefore, it is encouraging to accurately predict cutting force in order to optimize cutting parameters and tool design. For end milling cutters, a three dimensional milling force model was proposed, in which the plough effect of tool edge's radius was incorporated. The cutting edge was discretized into a series of small elements. The cutting forces of each small element includes shear force and plough force. Through integrating the cutting forces of small elements along axial depth of cut, the cutting forces of tool can be obtained. Unlike many traditional methods about identifying milling force coefficients, a more rapid and economical method was advised, which uses the instantaneous milling forces to identify milling force coefficients. Because milling force coefficients are influenced by workpiece's material mechanical properties, an empirical model was built up with experiments and regress method, which is tenable under high speed condition. From the view of controlling of milling forces, medium milling speed, large radial depth of cut, small feed and axial depth of cut are preferred.
     The machining efficiency of Titanium alloys depends on the effect of heat control. Through studying the generation of heat and the distribution of temperature in workpiece and tool, the cutting process and tool life can be improved, further more, the machining efficiency and quality may be enhanced. The influences of milling parameters on milling temperature were investigated through infra-radiation measurement method. It was found that, the milling temperature increases with milling speed and feed per tooth. A three dimensional finite element model of milling was modeled to analyze the temperature distributions in workpiece's deform zones and tool. The highest temperature in workpiece locates near the root zone of the chip, where high strain rate and large strain also occur. The highest temperature in the tool is near the primary cutting edge in the rake face, which is lower relative to that in workpiece due to good thermal conductivity. When milling speed increases, the temperature in the contact zone between the chip and the tool rises up simultaneously, the heat source is expanded along the axial depth of cut, and pressure also increases.
     Surface integrity directly determines the performance of components, which is the criterion in production design and selection of technique. According to the observations of experiments, coated inserts and MQL conditions can get lower roughness. When milling under higher speed condition, a combination with smaller feed per tooth, small axial depth of cut and medium radial depth of cut can lead to good roughness. According to the relative movement features between tool and workpiece and the mechanical properties of workpiece, a surface residual height model for horizontal machined surface was proposed. According to the observation of the microstructure in machined surface layer with SEM, the grains show a larger deformation depth and magnitude under low milling speed or small feed per tooth condition. High speed milling may weaken the deformation of grains and reduce the thickness of deformation layer, which is beneficial to component's surface integrity. Through the measurement and analysis of microhardness, the influences of milling speed and feed per tooth were investigated. With the increase of milling speed while keep feed unchanged, the microhardness firstly decreases, then increases due to tool edge's ploughing effect. The microhardness decreases with feed per tooth. A process of hardening-softening-hardening-leveling off occurs under both high speed milling condition and low speed condition. The softening layer has smaller mircohardness and depth under high speed milling condition. According to theory of dislocation, a dynamic model of work hardening was suggested, which discloses the relation between work hardening, microstructure and flow stress. By means of X radiation diffraction method, the influences of milling parameters on residual stress were investigated. The feed per tooth shows a strong effect on residual stress, while the radial depth of cut has a minor effect. Through analysis of milling forces and temperature, it can be concluded that the surface residual stresses are only relevant with the deformation induced by mechanical and thermal stress, and the burnishing effect between machining formation surface and tool's flank surface results in the generation of compressive residual stress.
     During machining of Titanium alloys, rapid tool wear shortens tool's life, which reduces the machining efficiency and increases machining cost. According to experiments, the types and mechanisms of tool wear during milling of Titanium alloys Ti6A14V were investigated, the empirical model tool life was proposed through regress method and the factors influencing tool wear and tool life were concluded. During milling of Titanium alloy Ti6A14V, the wear and failure of tool were a combination of many mechanisms such as adhesion, oxidization, attrition, diffusion-expansion and crack. Milling speed, feed per tooth and axial depth of cut have a strong effect on tool life, while the radial depth of cut has a minor effect.
     With an attempt to relief condition of the high machining cost and low machining efficiency existed in milling of Titanium alloys, a cutting process optimization model was proposed, in which the maximal production rate and minimal exhaustion of tool life were considered. For the multi-objective optimization problems, due to the conflict or lack of comparability between objectives, much encouraging efforts are to find the Pareto-optimal solutions. Classical optimization methods usually scalarize the vector of objectives into one objective by using some knowledge of the problem being solved. The main drawbacks of these algorithms are their sensitivity towards weights or demand levels and single point solution. Evolution algorithms have strong parallel search ability and can find multiple Pareto optimal solutions in a single run. In this study, the NSGA-II was improved with the extension of non-dominance concept from solution space to constraints space. The improvement makes the handling of problems with multiple objectives and multiple constraints more robust and effective. By virtue of milling force, roughness and tool life's empirical models, an optimization process was implemented and the Pareto front was found. The technicians can choose milling parameters flexibly according to the preference to the objectives. It is more economical and convenient when compared with weight methods. It will provide benifical support for milling of Titanium alloys if it is programmed into machining database.
引文
[1]C.Leyens,M.peters.Titanium and Titanium alloys[M].2nd ed.,Wiley-VCH Verlag GmbH&Co.KGaA,weinheim,2003
    [2]张伟.航空发动机[M].航空工业出版社,2008
    [3]Noaker PM.高速铣削加工的发展[J].国外金属加工,1999,(2):23-28
    [4]H.Schulz.高速加工发展概况[J].机械制造与自动化,2002,(1):4-4.
    [5]张伯霖,夏红梅,黄晓明.高速主轴设计制造中若干问题的探讨[J].制造技术与机床,2001(7):12-14.
    [6]周正干,王美清,李和平等.高速加工中心的核心部件及其关键技术[J].机床与液压,2000(6):53-56
    [7]艾兴,刘战强,赵军等.高速切削刀具材料的进展和未来[J].制造技术与机床,2001(8):21-25.
    [8]艾兴等.高速切削加工技术[M].北京:国防工业出版社,2003.
    [9]艾兴.高效加工技术及其应用研究[J].中国工程科学.2000,11(2):40-51.
    [10]刘战强,艾兴,宋世学.高速切削技术的发展与展望[J].制造技术与机床.2001(7):5-7.
    [11]何宁.高速切削技术[J].工具技术,2003,37(11):8-1.
    [12]张伯霖,杨庆东,陈长年等.高速切削技术及应用[M].北京:机械工业出版社.2002.9
    [13]林胜.HSM在航空制造业中的应用[J].航空制造技术,2003(3):25-29.
    [14]宋智勇.高速加工机床在国外航空加工中的应用[J].航空制造技术,2004(6):50-5.
    [15]李沪曾,郭重庆,林建平等.高速铣削加工技术在汽车模具制造中的应用[J].机械与电子,2003(1):26-2
    [16]郭新贵,汪德才等.高速切削技术及其在模具工业中的应用[J].现代制造工程,2002(9):31-3
    [17]L.N.Lopez de lacalle,J.Perez,J.I.Llorente,et al.Advanced cutting conditions for the milling of aeronautical alloys[J].Journal of Materials Processing Technology,2000,100:1-11.
    [18]M.Rahman,Z.G.Wang,Y.S.Wong.A review on high-speed machining of Titanium alloys[J].JSME International Journal,Series C,2006,49(1):11-20.
    [19]E.O.Ezugwu.Key improvements in the machining of difficult-to-cut aerospace superalloys[J].International Journal of Machine Tools & Manufacture,2005,451353-1367.
    [20]罗德福.高速高效切削加工技术的现状及发展趋势[J].世界制造技术与装备市场,2006(3):34:36.
    [21]汤立民.飞机结构件的高效数控加工[C].ICHSM'2008,Part Ⅱ,19-36.
    [22]张春江.钛合金切削加工技术[M].西安:西北工业大学出版社,1986.
    [23]H.Schulz,T.Moriwaki.High speed maching[J].Ann.CIRP,1992,41(2):637-643.
    [24]R.Komanduri,R.Brown.On the mechanics of chip segmentation in machining.Journal of Engineering for Industry[J].Trans.ASME,1981,103:33-51
    [25]R.Komanduri,B.F.Von Turkovich.New observations on the mechanism of chip formation when machining titanium alloys[J].Wear,1981,69:179-188.
    [26]C.Zener,J.H.Hollomon.Problems in non-elastic deformation of metals[J].Journal of Applied Physics,1946,17(2):69-82.
    [27]R.Recht.Catastrophic thermoplastic shear[J].Transactions of ASME,Journal of applied Mechanics,1964,186(31).:189-93
    [28]M.C.Shaw,A.Vays.The mechanism of Chip formation with hardened steels[J].Annals of the CIRP,1998,47(1):77-82
    [29]H.Jiang,R.Shivpuri.Prediction of chip morphology and segmentation during the machining of titanium alloys[J].J.of Mater.Proc.Tech.,2004,150:124-133.
    [30]J.Q.Xie,A.E.Bayoumi,H.M.Zbib.Analyical and experimental study of shear localization in chip formation in orthogonal machining[J].Journal of Materials Engineering and Performance,1995,4(1):32-39
    [31]A.E.Bayoumi,J.Q.Xie.Some metallurgical aspects of chip formation in cutting Ti-6wt.%Al-4wt.%V alloy[J].Materials Science and Engineering A,1995,190:173-180.
    [32]A.Molinari,C.Musquar,G.Sutter.Adiabatic shear banding in high speed machining of Ti-6Al4V:experiments and modeling[J].International Journal of Plasticity,2002,18:443-459.
    [33]J.D.Puerta Velasquez,et al.Metallurgical study on chips obtained by high speed machining of a Ti-6 wt.%Al-4 wt.%V alloy[J].Materials Science and Engineering A,2007,452-453:469-474.
    [34]J.Sun,Y.B.Guo.A New Multi-view Approach to Characterize 3D Chip Morphology and Properties in End Milling Titanium Alloy Ti-6Al-4V.Int.J.Machine Tools and Manufacture,2008,48:1486-1494.
    [35]苌浩,何宁,满忠雷.TC4的铣削加工中铣削力和刀具磨损研究[J].机械工程师,2003.39(3):30-33
    [36]秦旭达,赵剑波,张剑刚等.基于回归法的钛合金(Ti-6Al-4V)插铣铣削力建模分析[J].北京工业大学学报,2006,32(8):737-740
    [37]任开强.高强度钛合金的铣削研究[D].南京航空航天大学,2003
    [38]I.Zaghbani,V.Songmene.A force-temperature model including a constitutive law for Dry High Speed Milling of aluminium alloys[J].Journal of Materials Processing Technology,2008,1-13.
    [39]姜峰.钛合金高速铣削动态力建模的新方法[C].全国博士生论坛文集,上海:同济大学出版社,2008.
    [40]H.Z.Li,X.P.Li.Milling force prediction using a dynamic shear length model[J].International Journal of Machine Tools & Manufacture.2002,42:277-286
    [41]Chung-Liang Tsai,Yunn-Shiuan Liao.Prediction of cutting forces in ball-end milling by means of geometric analysis[J].Journal of Materials Processing Technology,2008,205:24-33.
    [42]周泽华.金属切削理论[M].北京:机械工业出版社,1992,165-195.
    [43]W.J.Endres,R.E.Devor,S.G.Kapoor.A dual-mechanism approach to the prediction of machining forces,Part 1:model development[J].Journal of Engineering for Industry,1995,117:526-533
    [44]W.J.Endres,R.E.Devor,S.G.Kapoor.A dual-mechanism approach to the prediction of machining forces,Part 2:calibration and validation[J].Journal of Engineering for Industry,1995,117:534-541.
    [45]G.V.Stabler.The chip flow law and its consequences[J].Advances in Machine Tool Design and Research,1964,243-251.
    [46]E.J.A.Amarego,R.C.Whitefield.Computer based modeling of popular machine operations for for and power predictions[J].Ann.CIRP,1985,34:65-69.
    [47]Y.Altinats.manufacturing automation-metal cutting mechanics,machine tool vibrations, and CNC design[M].Cambridge:Cambridge University Press,2000.
    [48]A.Moufki,A.Devillez,D.Dudzinski,et al.Thermomechanical modelling of oblique cutting and experimental validation[J].International Journal of Machine Tools &Manufacture,2004,44:971-989.
    [49]杨蕾,史耀耀,杨巧凤等.钛合金TC11铣削力分析与建模[J].制造技术与机床,2007(1):35-37.
    [50]J.J.Junz Wang.C.M.Zheng.An analytical force model with shearing and ploughing mechanisms for end milling[J].International Journal of Machine Tools & Manufacture,2002,42 761-771
    [51]冯志勇,张大卫,黄田.一种新的铣削力模型[J].天津大学学报,1998,31(2):314-320.
    [52]李忠群,刘强.R刀切削力系数辨识及动态切削力建模[J].农业机械学报,39(4):207-211.
    [53]杨彬,郑敏利,李振加等.球头铣刀切削力的预报[J].哈尔滨理工大学学报.2001,6(6):20-24.
    [54]张滢,梁万勤,杨者青.球头铣削力模型的建立[J].工具技术.2006,40(8):47-50.
    [55]刘战强,黄传真,万熠等.切削温度测量方法综述[J].2002,36(3):3-6.
    [56]耿国盛,徐九华,傅玉灿.高速铣削近α钛合金的切削温度研究[J].机械科学与技术.2006,25(3):329:332.
    [57]杨勇.钛合金航空整体结构件铣削加工变形的预测理论及方法研究[D].浙江大学,2007.
    [58]Y.M.Quan,J.P.Lin,C.Y.Wang.Cutting temperature measurement in high speed end milling[J].Transactions of Nanjing University of Aeronautics& Astronautic,2005,22(1):47-51.
    [59]刘广军,谭光宇,刘美娟等.波形刃铣刀片铣削温度试验分析[J].工具技术,2003,39(8):22-25.
    [60]史兴宽,杨巧风,张明贤.钛合金TC4高速铣削表面的温度场研究[J].航空制造技术,2002(1):34-37.
    [61]Y.K.Potdar,A.T.Zehnder.Measurements and simulations of temperature and deformation fields in transient metal cutting[J].Journal of Manufacturing Science and Engineering,2003,125:645:655.
    [62]侯镇冰,何绍杰,李恕先.固体热传导[M].上海:上海科学技术出版社,1984.
    [63]R.Komanduri,Z.B.Hou.On thermoplastic shear instability in the machining of a titanium alloy(Ti-6Al-4V)[J].Metallurgial and Materials Tranactions,2002,33A (9):2995-3010.
    [64]Z.B.Hou,R.Komanduri.Modeling of thermomechanical shear instability in machining[J].International Journal of Mechanical Science,1997,39(11):1273-1314.
    [65]Radulescu,S.G.Kapoor.An analytical model for prediction of tool temperature fields during continuous and interreuptedd cutting[J].Journal of Engineering for Industry,1994,116-135.
    [66]郭强,谭光宇,董丽如等.三维槽型铣刀片铣削平均温度数学模型[J].哈尔滨理工大学学报,2000,5(6):33-36.
    [67]Hao Chunshui,Zhang Dong,Shi Gengru,et al.Study on formation mechanism of adhering layer formed on tool face[J].Chinese Journal of Mechanical Engineering,1994,8(1).
    [68]刘飞,康戈文,徐宗俊.带圆弧卷屑槽刀具的直角干切削动态传热模型[J].重庆大学学报,1997,20(3):83-88.
    [69]I.Lazoglu,Y.Altintas.Prediction of tool and chip temperature in continuous and interrupted machining[J].International Journal of Machine Tools & Manufacture,2002,42:1011-1022.
    [70]D.Ulutan,I.Lazoglu,C.Dinc.Three-dimensional temperature predictions in machining processes using finite difference method[J].Journal of Materials Processing Technology,2009,209:1111-1121.
    [71]N.A.Abukhshim,P.T.Mativenga,M.A.Sheikh.Heat generation and temperature prediction in metal cutting:A review and implications for high speed machining[J].International Journal of Machine Tools & Manufacture,2006,46:782-800.
    [72]Y.Dogu,E.Asian,N.Camuscu.A numerical model to determine temperature distribution in orthogonal metal cutting[J].Journal of Materials Processing Technology,2006,171:1-9.
    [73]W.Grzesik.Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique[J].International Journal of Machine Tools & Manufacture,2006,46:651-658.
    [74]W.Grzesik,M.Bartoszuk,P.Nieslony.Finite element modelling of temperature distribution in the cutting zone in turning processes with differently coated tools[J].Journal of Materials Processing Technology,2005,164-165:1204-1211.
    [75]L.Filice,D.Umbreilo,S.Beccari,et al.On the FE codes capability for tool temperature calculation in machining processes[J].Journal of Materials Processing Technology,2006,(174):286-292.
    [76]陈明,袁人炜,凡孝勇等.三维有限元分析在高速铣削温度研究中的应用[J].机械工程学报,2002,38(7):76-79.
    [77]T.D.Marusich,M.Ortiz.Modelling and simulation of high-speed machining[J].International Journal of Numerical Mathematical Engineering,1995,38:3675-3694.
    [78]M.Vaz Jr.on the numerical simulation of machining processes[J].Journal of Brazilian Society of Mechanical Science,2000,22(2):179-188.
    [79]Jianling Chen,Jianfeng Li,Jie Sun.The influence of material constitutive constants on numerical simulation of orthogonal cutting of Titanium alloy Ti6Al4V[J].Key Engineering Materials,2008,375-376:182-186.
    [80]M.Calamaz,D.Coupard,F.Girot.A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V[J].International Journal of Machine Tools & Manufacture,2008,48:275-288.
    [81]D.Umbrello.Finite element simulation of conventional and high speed machining of Ti6Al4V alloy[J].Journal of Materials Processing Technology,2007,199(1-3):79-87.
    [82]J.Sun,Y.B.Guo.Dynamic Mechanical Behavior of Titanium Ti-6Al-4V at Transient Large Deformation Manufacturing Processes.Proc.of ASME Int.Conference on Manufacturing Science & Engineering,Atlanta,GA,2007.
    [83]D.R.J.Owen,Jr.Vaz.Computational techniques applied to high-speed machining under adiabatic strain localization conditions[J].Comp.Meth.Appl.Mech.Engng.,1999,171:445-461.
    [84]E.Usui,T.Shirakashi,Mechanics of machining from 'Descriptive' to 'Predictive'Theory[C].On the Art of Cutting Metals-75 Years Later-ASME PED.1982,7:13-35.
    [85]T.Obikawa,E.Usui,Computational machining of titanium alloy-finite element method and a few results[J].J.Manuf.Sci.Engng.,Trans.ASME.1996,118:208-215.
    [86] E.Usui, T.Shirakashi. Analytic rediction of tool wear[J]. Wear, 1984, 100(1-3): 129-151.
    [87] K.F. Eldridge, O.W. Dillon, W.Y. Lu. Thermo-viscoplastic finite element modelling of machining under various cutting conditions[J]. Trans. of NAMRI/SME, 1991, Vol. XIX:162-169.
    [88] K.Iwata, K.Osakada, Y.Terasaka. Process modelling of orthogonal cutting by the rigid plastic finite element method[J]. J. Engng. Ind., Trans. ASME, 1984, 106:132-138.
    [89] G.S.Sekhon, J.L.Chenot. Numerical simulation of continuous chip cormation during non-steady crthogonal cutting[J]. Engng. Comp., 1993, 10:31-48.
    [90] Tugrul Ozel. Influence of friction models on finite element simulations of machining[J]. International Journal of Machine Tools & Manufacuture, 2006, 46:518-530.
    [91] J.M.Huang,J.T.Black. An evaluation of chip separation criteria for the FEM simulation of macining[J]. Journal of Manufacturing Science and Engineering. 1996, 118:545-554.
    [92] Liangchi Zhang.On the separation criteria in the simulation of orthogonal metal cutting using the finite element method[J]. Journal of Materials Processing Technology, 1999, 89-90: 273-278.
    [93] D.R.J. Owen, Jr. Vaz. Computational techniques applied to high-speed machining under adiabatic strain localization conditions[J]. Comp. Meth. Appl. Mech. Engng., 1999, 171: 445-461.
    [94]J.Q. Xie, A.E. Bayoumib, H.M. Zbib. FEA modeling and simulation of shear localized chip formation in metal cutting[J]. International Journal of Machine Tools & Manufacture, 1998, 38: 1067-1087.
    [95] M. Baker, J. R(o|¨)sler, C. Siemers. The influence of thermal conductivity on segmented chip formation[J]. Computational Materials Science, 2003, 26: 175-182.
    [96] M. B(?)ker. Finite element investigation of the flow stress dependence of chip formation[J]. Journal of Materials Processing Technology, 2005, 167: 1-13.
    [97] M. Baker, J. R(o|¨)sler, C. Siemers.A finite element model of high speed metal cutting with adiabatic shearing[J]. Computers and Structures, 2002, 80: 495-513.
    [98] Q. Wen, Y.B. Guo, B. A. Todd. An adaptive FEA method to predict surface quality in hard machining[J]. Journal of Materials Processing Technology, 2006, 173: 21-28.
    [99] C.R. Liu, Y.B. Guo. Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer[J].International Journal of Mechanical Sciences,2000,42:1069-1086.
    [100]杨继昌,刘伟成.工件表面层加工硬化深度的数值分析.机械工程学报,1995,31(3):102-106.
    [101]Rui Li,A.J.Shih.Finite element modeling of 3D turning of titanium[J].Int.J.Adv.Manuf.Technol.,2005,29(3):253-261.
    [102]路冬,李剑峰,融亦鸣等.航空铝合金7075-T7451三维铣削过程有限元仿真[J].中国机械工程,2008,19(22):2708-2710.
    [103]Yung-Chang Yen,Anurag Jain,Taylan Altan.A finite element analysis of orthogonal machining using different tool edge geometries[J].Journal of Materials Processing Technology,2004,(146) 72-81.
    [104]C.A.Van luttervelt,T.H.C.Childs,I.S.Jawahir,et al.Present situation and future trends in modeling of machining operations[J].Ann.CIRP,1998,47(2):587-626.
    [105]X.L.Liu,D.H.Wen,Z.J.Li,et al.Experimental study on hard turning hardened GCr15steel with PCBN tool[J].Journal of Materials Processing Technology.2002,129:217-221.
    [106]刘献礼.聚晶立方氮化确刀具切削性能及制造技术的研究[D].哈尔滨工业大学,1999,3:100-124.
    [107]H.Paris,G.Peigne,R.Mayer.Surface shape prediction in high speed milling[J].International Journal of Machine Tools & Manufacture,2004,44:1567-1576.
    [108]龙震海.基于热力耦合效应的表面强化技术及其工艺试验研究[J].航空材料学报,2007,06:48-52.
    [109]文东辉,郑力,刘献礼等.精密硬态切削过程金属软化效应与表面塑性侧流的研究[J].金刚石与磨料磨具工程,2003,136(4):9-12.
    [110]徐进,叶邦彦,郭志敏等.高速切削工件表面微观形貌特征研究[J].五邑大学学报(自然科学版),2005,19(1):55-62.
    [111]王素玉.高速铣削表面质量研究[D].山东大学,2005.
    [112]D.G.Christoperson,P.L.B.Oxley,W.B.Palmer.Orthogonal cutting of a work-hardening material[J].Engineering,1958,186:113-116.
    [113]C.R.Liu,M.M.Barash.The mechanical state of the sublayer of a surface generated by chip removal process,part Ⅰ:cutting with a sharp tool[J].J.Eng.Industry,1976,98(4).
    [114]李德宝.金属切削中工件表层加工硬化模拟[J].工具技术,2004,38(4):14-1.
    [115]陈立国,刘献礼等.PCBN刀具切削淬硬GCr15已加工表面完整性的试验研究[J].哈尔滨理工大学学报,1999,4(4):42-46.
    [116]A.W.Warren,Y.B.Guo,M.L.Weaver.The influence of machining induced residual stress and phase transformation on the measurement of subsurface mechanical behavior using nanoindentation[J].Surface & Coatings Technology,2006,(200):3459-3467.
    [117]范继美.位错理论在金属切削加工中的应用[M].上海:上海交通大学出版社,1991.
    [118]H.Sasahara,T.Obikawa,T.Shirakashi.Prediction model of surface residual stress within a machined surface by combining two orthogonai plane models[J].Inter.J.Mach.Tools.Manuf.,2004,44:815-822.
    [119]N.Fang,Q.Wu.The effects of chamfered and honed tool edge geometry in machining of three aluminum alloys[J].International Journal of Machine Tools & Manufacture,2005,45:1178-1187.
    [120]B.R.Sridhar,G.Devananda,K.Ramachandra.Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834[J].Journal of Materials Processing Technology,2003,139:628-634.
    [121]米古茂[日].残余应力的产生和对策[M].朱荆璞,邵会孟,译.北京:机械工业出版社,1983:181-190.
    [122]胡华南,周泽华,陈澄州.预应力加工表面残余应力的理论分析[J].华南理工大学学报,1994,22(4):1-10.
    [123]王立涛.关于航空框类结构件铣削加工残余应力和变形机理的研究[D].浙江大学,2003.
    [124]王秋成.航空铝合金残余应力消除及评估技术研究[D].杭州:浙江大学,2003.
    [125]C.H.Che-Harona,A.Jawaid.The effect of machining on surface integrity of titanium alloy Ti-6%Al-4%V[J].Journal of Materials Processing Technology,2005,166:188-192.
    [126]A.L.Mantal,D.K.Aspiinwall.Surface integrity of a high speed milled gamma titanium aluminide[J].Journal of Materials Processing Technology,2001,118:143-150.
    [127]史兴宽,陈明,张树全等.钛合金TC4高速铣削表面完整性的研究[J].航空制造技 术,200l(1):30-32.
    [128]杜随更,吕超,任军学.钛合金TC4高速铣削表面形貌及表层组织研究[J].航空学报,2008,29(6):1710-1715.
    [129]J.Sun,Y.B.Guo.A Comprehensive Study on Surface Integrity by End Milling Ti-6Al-4V.J.of Mater.Proc.Tech.(accepted).
    [130]F.W.Taylor.On the art of cutting metals[J].Trans.Am.Soc.Mech.Engrs.1907,28:31-350.
    [131]W.F.Hastings,P.L.B.Oxley.Prediction tool life from fundamental work material properties and cutting conditions[J].Ann.CIRP,1976
    [132]H.Takeyama,R.Murata.Basic investigation of tool wear[J].Trans.ASME,J.Eng.Ind.1963,85:33-38.
    [133]E.Usui,A.Hirota,M.Masuko.Analytical prediction of three dimensional cutting process[J].Part 3.Cutting temperature and crater wear of carbide tool,Trans.ASME,1978,100:222-228.
    [134]M.Nouari,A.Ginting.Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy[J].Surface &Coatings Technology,2006,200:5663-5676.
    [135]R.G.Vargas Perez.Wear mechanisms of WC inserts in face milling of gamma titanium aluminides[J].Wear,2005,259:1160-1167.
    [136]A.Jawaid,S.Sharif,S.Koksal.Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy[J].Journal of Materials Processing Technology,200099:266-274.
    [137]Z.G.Wang,M.Rahman,Y.S.Wong.Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys[J].Wear,2005,258:752-758.
    [138]舒彪,何宁.无污染切削介质下钛合金铣削刀具磨损机理研究[J].机械科学与技术,2005(4):454-457.
    [139]赵微,何宁.李亮等.氮气油雾介质下Ti-6Al-4V钛合金高速铣削试验研究[J].南京航空航天大学学报,2006,38(5):634-638.
    [140]R.Q.Sardinas,M.R.Santana,E.A.Brindis.Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes[J].Engineering Applications of Artificial Intelligence,2006,19:127-133.
    [141]F.P.Tan,R.C.Creese.A generalized multi-pass machining model for machining parameter selection in turning[J].International Journal of Production Research,1995,33(5):1467-1487.
    [142]D.C.Montgomery.Design and analysis of experiment[M].5th ed.,New York:Wiley,2001.
    [143]谢庆生.机械工程中的神经网络方法[M].北京:机械工业出版社,2003.
    [144]韩祯祥,张琦,文福拴.粗糙集理论及其应用综述[J].控制理论与应用,1999,16(2):153-155.
    [145]袁哲俊.金属切削实验技术[M].北京:机械工业出版社,1988.
    [146]范胜波,王太勇,汪文津等.基于Matlab神经网络的切削力预测[J].机床与液压,2006(1):4-5.
    [147]倪其民,林建平,李从心等.基于神经网络和遗传算法的平面铣削加工参数自适应优化[J].组合机床与自动化加工技术,2000(2):5-8.
    [148]蒋亚军,娄臻亮,李明辉.基于粗糙集理论的数据模具切削参数优化[J].上海交通大学学报.2005,39(7):1115-1118.
    [149]I.Mukherjee,P.K.Ray.A review of optimization techniques in metal cutting processes[J].Computers & Industrial Engineering,2006,(50):15-34.
    [150]武美萍,翟建军,廖文和.数控加工切削参数优化研究[J].中国机械工程,2004,15(3):235-237.
    [151]秦建华.改进粒子群算法在数控加工切削参数优化中的应用[J].组合机床与自动化加工技术,2005(5):9-11.
    [152]N.Ahmad,T.Tanaka,Y.Saito.Cutting parameters optimization and constraints investigation for turning process by GA with self-organizing adaptive penalty strategy[J].JSME International Journal,Series C,2006,49(2):293-300.
    [153]潘永智,艾兴,唐志涛等.基于切削力预测模型的刀具几何参数和切削参数优化[J].中国机械工程,2008,19(4):428-431.
    [154]许峰,郑敏利,姜彬等.基于遗传算法的高速铣削参数优化系统[J].哈尔滨理工大学学报,2007,12(5):39-42.
    [155]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2006.
    [156]王遵彤,刘战强.高速切削数据库技术的研究[M].工具技术,2002,36(4):6-9.
    [157]刘战强,黄传真,万熠等.切削数据库的研究现状与发展[J].计算机集成制造系统,2003,9(11):937-943.
    [158]高阳,黄树涛.高速切削数据库系统的研究现状与发展[J].制造技术与机床,2007,5:103-107.
    [159]周平来.切削数据库在航天器制造中的应用[J].航空制造技术,2007(2):44-46.
    [160]张幼桢.金属切削理论[M].北京:航空工业出版社,1988.
    [161]Y.Yamada.Visco-elasticity plasticity[M].Japan:Baifukan,1980.
    [162]Zone-Ching Lin,Yeou-Yin,Lin.Foundamental modeling for oblique cutting by thermo-elastic-plastic FEM[J].Int.J.Mech.Sci.,1999,(41):941-965.
    [163]G.R.Johnson.Strength and fracture characteristics of a titanium alloy(.06Al.04V)Subjected to Various Strains,Strain Rates,Temperatures and Pressures[R].NSWC TR 86-144,Dahlgren,VA,Nov.1985.
    [164]W.S.Lee,C.F.Lin.Plastic deformation and fracture behavior of Ti-6Al-4V alloy loaded with high strain rate under various temperatures[J].Material Science and Engineering,1998,A 241:48-59.
    [165]D.Leuser.Experimental investigation of material models for Ti6Al4V and Aluminum 2024-T3[R]FAA Report DOT/FAA/AR-00/25,2000.
    [166]Songwon Seo,Oakkey Min,Hyunmo Yang.Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J].Int.J.Impact Eng,2005,(31):735-754.
    [167]N.N.Zorev.Interrelationship between shear processes occurring along tool face and on shear plane in metal cutting[J].International Research in Production Engineering,1963:42-49.
    [168]L.Chen,T.L.El-Wardany,W.C.Harris.Modelling the effects of flank wear and chip formation on residual stresses[J].Ann.CIRP,2004,53(1):95-98.
    [169]И.В.克拉盖尔斯基等.摩擦磨损计算原理[M].北京:机械工业出版社,1982.
    [170]杨桂通.弹性力学[M].北京:高等教育出版社,2005.
    [171]杨德庄.位错与金属强化机制.哈尔滨:哈尔滨工业大学出版社,1991.
    [172]张定铨,何家文.材料中残余与应力的x射线衍射分析和应用[M].西安:西安交通 大学出版社,1999:66-120.
    [173]G.Parrish Influence of microstructure on the properties of case-carburised components[J].Heat Treatment Metals,1977,4:107-116.
    [174]方道腴,蔡祖泉.电光源工艺[M].上海:复旦大学出版社,1988.
    [175]张立,陈述,SCHUBERT W D等.纯氧气氛下硬质合金及其原料的热稳定性[J].中南大学学报(自然科学版),2004,6(35):931-934.
    [176]F.Nabhani.Machining of aerospace titanium alloys[J].Robotics and Computer-lntegrated Manufacturing,2001,17(1-2):99-106.
    [177]A.R.Zareena.High-speed machining of titanium alloys[D].Singaore:National Universiy of Singapore,2002,49-79.
    [178]李友生,邓建新,石磊.高速切削加工钛合金的刀具材料[J].制造技术与机床,2007(8):2-27.
    [179]Z.Y.Wang,K.P.Rajurkar.Cryogenic machining of hard-to-cut materials[J].Wear.2000,239:168-175.
    [180]M.J.Donachie.Titanium:AT ethnical Guide[M].ASM International,Materials Park,OH,44073-0002,1988,75-85.
    [181]郑金华.多目标进化算法及其应用[M].北京:科学出版社,2007.
    [182]N.Srinivas,K.Deb.Multiobjective optimization using nondominated sorting in genetic algorithms[J].Evolutionary Computation,1994,2(3):221-248.
    [183]K.Deb,A.Pratap,S.Agrawal,et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ.Evolutionary Computation,2002,6(2):182-197.
    [184]C.A.C.Coello.Constraint-Handling using an evolutionary multiobjective optimization technique[J].Civil Engineering and Environmental Systems,2000,17:319-346.
    [185]Z.Michalewicz.A survey of constraint handling techniquesin evolutionary computation methods.Proceedings of the 4th Annual Conference on Evolutionary Programming,Cambridge,MA,1995,125-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700