Nb+Ti-IF钢薄板冷轧工艺及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IF钢作为第三代冲压用钢有着广阔的应用前景。本文采用一次冷轧制度和增加了中间退火工艺的二次冷轧制度进行了Nb+Ti-IF钢冷轧工艺试验,完成了酸洗、一次冷轧、中间退火、精整、二次冷轧、再结晶退火等工序,制备出尺寸规格为200×1000×(0.325~2.16)mm的IF钢板带。通过单向拉伸实验对板料的基本深冲力学性能进行了测试和计算,结果表明,二次冷轧工艺能获得相对一次冷轧工艺更优的力学性能,在同等变形程度下,二次冷轧退火后获得的塑性应变比值最高达到3.08,比一次冷轧提高了18%,在此基础上综合基本深冲力学性能参数对模拟深冲力学性能之一的极限拉伸系数进行了预测。非线性参数拟合了三种硬化曲线数学模型,经判定得出了描述本试验用Nb+Ti-IF钢最优的加工硬化模型为:σ=Bε~(N/(1+C_1ε+C_2ε~2))用该模型揭示了不同冷轧工艺下板材的硬化能力:本试验中硬化能力相对较好的是首次冷轧60%,二次冷轧30%工艺对应的板料。通过金相和透射电子显微镜对IF钢的冷变形和退火组织进行了观察,随变形量的增加,变形愈趋均匀,再结晶后晶粒愈来愈细,二次冷轧工艺对应的退火组织总体更加均匀。在变形量大而且层错能较高的IF钢冷变形组织中,以刃位错为主的混合位错呈曲线分布在滑移带周围,并由于局域剪应力的存在,形成大量的排列很密的长条状的“剪切带”。
     通过X-射线衍射方法,测定了不同轧制工艺下板材主要织构分布。二次冷轧的形变织构的显著特征是<111>//ND织构相对中间退火得到了明显增强,增长最多的是{111} < 110>组分;α({110}//RD)织构和γ({111}//ND)织构的演变与第二次冷轧压下率之间没有简单的线性关系,但{001}织构几乎随着二次压下率的增加而增加。与一次冷轧后退火织构相比,二次冷轧退火织构有强度相对较低的{001}织构和较高的<111>//ND织构;在退火状态下,首次冷轧70%、二次冷轧20%的工艺对应的{111}与{001}面织构含量的比值最高,说明该工艺下退火态薄板测得的最高r值是准确的。
As the third generation steel for stamping, the IF steel has the broad application prospect. In this paper, Nb+Ti-IF steel double cold rolling was carried on after intermediate annealing, which was after the single cold rolling, the procedure as acid pickling, cold rolling, intermediate annealing, the finishing, double cold rolling, the recrystallization annealing has been completed. Sheet size as 200mm (T)×1000mm (L)×(0.325 ~ 2.16 mm) was attained.
     The basic mechanical properties of stamping have been obtained by tensile test and computation, which result indicated that double cold rolling obtained superior mechanics performance than the single cold rolling technics under the same reduction, the plastic strain ratio after annealing obtained by double cold rolling technics reaches as high as 3.08, enhanced 18% compared to single cold rolling. Limit stretch coefficient as a stimulant mechanical property of stamping has been predicted by the data of the basic mechanical properties. Three kinds of hardened curves have fitted by the non-linear parameter fitting method, in which the optimum work hardening model describing the Nb+Ti-IF steel using in this experiment is:σ=Bε~(N/(1+C_1ε+C_2ε~2))The work hardening properties of sheets under different cold rolling technics have been studied by this model, the result indicated that the sheet under the cold reduction of 60% in first time and 30% in second time can obtain the best work hardening property. The cold rolling and annealing microstructures were observed by the transmission electron microscope and the metallographic microscope. Along with the cold reduction increase, the deformed microstructures turn uniform; grains after recrystallization turn symmetrical, even under the double cold rolling technics. In the IF steel microstructure of high degree cold deformed, the mix dislocation which primarily belong to edge-dislocation distribute around the slip-bands. As a result of the existence of shearing stress concentrated in some narrow region, massive and very dense“shear bands”as shapes of parallel sliver have form.
     The texture distributions under different cold rolling technics were measured by using XRD. The deformation textures under double cold rolling are remarkable character with the <111> //ND texture even the {111} < 110> component obtained obvious enhancement after intermediate annealing. The evolution ofα({110} //RD) andγ({111} //ND) textures is not being the simple linear relationships with the second cold reduction, along the increase of which the {001} texture grows. After double cold rolling and annealing, the recrystallization textures have lower intensity {001} texture the higher {111} //ND texture compared to single cold rolling; The recrystallization texture content ratio of {111} and {001} is highest after double cold rolling which reduction assignment is cold rolling 70% in first time and 20% in second time, the result indicated the highest r value of the sheet after this cold rolling condition is accurate.
引文
[1] 哈宽幅.金属力学性质的微观理论.北京:科学出版社,1983
    [2] 马鸣图.我国汽车钢板研究与应用进展[J].钢铁,2001,36 (8):64~69
    [3] 康永林.现代汽车板的质量控制与成形性.北京:冶金工业出版社,1999
    [4] 秋末治.深冲用冷轧钢板的开发与展望[J].日本金属学会报,1994,33(1):55~59
    [5] 丘利,胡玉和. X 射线衍射技术及设备.北京:冶金工业出版社,1998
    [6] 吕庆功,陈光南,周家琮.深冲钢板的主要织构对塑性应变比的影响[J].钢铁研究,2000,116(5):55
    [7] H. Saitoh,K. Ushtoda,T. Senuma,et al. Structural and textural evolution during subsequent annealing of steel sheet hot-rolling in α Phase [J].The Iron and Steel Institute of Japan,1988, 628.
    [8] 韩梅.薄板材料与冲压成形[J].汽车工艺与材料,1999 (8):20~21
    [9] 姜圭华主编.冲压工艺与模具设计[M].北京:机械工业出版社,1995
    [10] 王先进,姚键等编译.薄板成形性能.北京:北京科技大学出版社,1987
    [11] 田浩彬,康达昌.板料n值测量方法的研究[J].塑性工程学报,2003,10(1):36~39
    [12] 李硕本,金淼,彭加耕.关于板材加工硬化性能评定方法的探讨[J].塑性工程报,2001,8(2):66~69
    [13] 鹿岛康弘.铁素体区轧制时的润滑条件对超低碳钢加 Ti 冷轧钢板 r 值及织构的影响[J].武钢技术,1992,11(8):59~66.
    [14] 蔡艳霞.冷轧 IF 钢板织构、微观组织及其相互关系的研究.东北大学硕士论文,2005:58
    [15] 王先进,茹铮,马衍伟.我国汽车用钢板的现状和研究进展[J].钢铁,1998,33(10):68~72
    [16] 沈 凯,B.J.Duggan.冷轧体心立方 IF 钢中剪切带的形成[J]. 南京航空航天大学学报,2005(37)5:573~575
    [17] R K Ray,J J Jonas and R K Hook.Cold rolling and annealing textures in low carbon and extra low carbon steels [J]. Int. Mater. Rev.,1994,39 (4) :129~172
    [18] Rudolf Kern, Hsiao Ping Lee, Hans-Joachim Bunge. The rolling texture of iron of diferent purities [J]. Steel research,1986,57(11):563~571
    [19] 石京,王先进,陈家光.IF 钢罩式退火过程中织构变化的研究[J].钢铁,1999,34(11):44~47
    [20] 崔德理,康永林,金山同.IF 钢织构控制[J].北京科技大学学报,1993,15(增):24~29
    [21] Huh MY,Ahn JP,ParkYB.Development of microstructure and texture in cross rolled andrecryctallized low carbon steel. Proceedings of ICOTOM-11(Vol.1),China:International Academic Publishers,1996,9:461
    [22] Hutchinson B,Artymowicz D. Mechanisms and modeling of microstructure texture evolution in interstitial-free steel sheets [J]. ISIJ inter.,2001,41(6):533~541
    [23] 王刚,孙建伦,王福.IF 钢退火过程中织构变化的模拟研究[J].东北大学学报(自然科学板) .1998,19(4):381~383
    [24] Orlans-JolietB,BackoixB,MontheilletF,etal.Yield surfaces on B.C.C.crystalls for slip on the {110}〈111〉and{112}〈111〉systems[J]. ActaMetal,1988,36:1365~1380
    [25] Emren F,Von Schlippenbach U,LUCKE K.Investigation of the development of the recrystallization textures in deep drawing steels by ODF analysis [J]. ActaMetall.,1986, 34:2105~2117
    [26] 毛卫民,张新明.晶体材料织构定量分析[M].北京:冶金工业出版社,1993
    [27] 张信钰.金属和合金的织构[M].北京:科学出版社,1976
    [28] Bunge HJ. Darstellung allgemeiner texture.Mwtallkunde.1965,56(3):872~881
    [29] Roe R J.Description of crystallite orientation in polycrystalline materials. Journal of Applied Physics.1965,36(6):2024~2031
    [30] 梁志德等.织构材料的三维取向技术[M].沈阳:东北工学院出版社,1986
    [31] Bunge,H.J.Texture Anlysis in Materials Science[M].London:Butterwarth,1965
    [32] Wolfgang Lehnert,吴忠(译).多步冷轧带钢中的不均匀变形和组织形成[J]. 现代冶金.2005,4:59
    [33] Asbeck H O , Mecking H.Influence of Friction and Geometry of Deformation on Tecture.Met.Sci.Eng,1978,34:111~119
    [34] 西村惠次.冲压成形性极好的超高 r 值冷轧钢板.钢铁译文集.2000 年,1:58
    [35] 国家标准局.GB/T228-2002 金属材料室温拉伸试验方法.北京,2002
    [36] 国家标准局.GB 5027-99,金属薄板塑性应变比(r 值)试验方法.北京,1999
    [37] 国家标准局.GB 5028-99,金属薄板拉伸应变硬化指数(n 值)试验方法.北京,1999
    [38] 马碌,关小军等.IF 板与 08Al 板的成形性能研究[J].山东冶金.2003,25(6):50
    [39] 贾连成,张家义等.关于综合成形指标 F 值的评价[J].金属成形工艺,1993,(11)1:11
    [40] 胡四光,陈鹤峥编著.板料冷压成形的工程解析[M].北京:北京航空航天大学出版社,2004
    [41] 《板金冲压工艺手册》编委会.板金冲压工艺手册[M].北京:国防工业出版社,2003
    [42] 汪凌云,刘静安.计算金属成形力学及应用[M].重庆:重庆大学出版社,1991
    [43] 余宗森,田中卓.金属物理[M].北京:冶金工业出版社,1982.
    [45] 吴建军,周维贤.板料成形性基础[M].西安:西北工业大学出版社,2004
    [47] 周维贤.描述钢板硬化曲线的一个新数模[J].材料科学进展.1989,4(3):326
    [48] 李树堂主编.金属 X 射线衍射与电子显微分析技术[M].北京:冶金工业出版社,1980.
    [49] Van Vlack.L.H.5h ed.Elements of Materials Science and Engineering[M].Addison-Wwsley Publishing Co,1985
    [50] 石德珂主编.材料科学基础.北京:机械工业出版社,2000
    [51] Dillamore I I ,Roberts J G,Bush A C.Occurrence of shear bands in heavily rolled cubic metals[J].Metal Science,1979,4:73~77.
    [52] 坂田敬.通过组织控制改善钢的延展性及加工性.21 世纪的钢铁材料(译文专集).首钢集团公司技术中心:1999
    [53] R.W.卡恩,P.哈森,E.J.克雷默.钢的组织与性能(材料科学与技术丛书第 7 卷).北京:科学出版社,1999 年.
    [54] Mackenize JK.The distribution of rotation axes in arandom aggregate of cubic crystal.Acta Metall., 1964, 12:289~289
    [55] SHEN Kai,B.J.Duggan. Formation of shear band in cold rolled body-centered cubic metal. Journal of Nanjing University of Aeronautics &Astronautics.2005,37(5):573~575
    [56] 宛德福,罗世华.磁性物理[M].北京:电子工业出版社,1987
    [57] Hatherly M,Hutchinson W B.An Introduction to texture in metals [M].London:Chameleon Press, 1979.
    [58] Szpunar J, Ojanen M.The ralationship between texture and mgnetic properities in Fe-Si steel[J].Metall.Trans.1975,6A:561~567
    [59] Dillamore.I.L.,unpublished work cited in Horta,R.M., Wilson,D.V., Roberts,W.T(.1972),J. Iron Steel Inst. London 210,42
    [60] M.R. Barnett, L. Kestens.Formation of {111} <110> and {111} <112> textures in cold-rolled and annealed IF sheet steel [J].ISIJ Int.1999,39:923~929.
    [61] W.B. Hutchinson.Recrystallization textures in iron resulting from nucleation at grain boundaries [J].Acta Metall.1989, 37:1047~1056.
    [62] J.J.Jonas. Effects of shear band formation on texture development in warm-rolled IF steel [J]. Journa of Materials Processing Technology.2001,117:293~299
    [63] M.R. Barnett, M.D,Nave and C.J.,Bettles.Deformation microstructures and textures of some cold rolled Mg alloys [J]. Materials Science and Engineering A, 2004, 38(1-2):205~211
    [64] Y. B. Park, D. N. Lee,G. Gottstein.The evolution of recrystallization textures in body centred cubic metals [J]. Acta Materialia. 1998, 46(10):3371~3379
    [65] P. J. Hurley and F. J. Humphreys.The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy [J].Acta Materialia, 2003, 51(4):1087~1102.
    [66] S. L. Semiatin, M. R. Staker, J. J. Jonas. Plastic instability and flow localization in shear at high rates of deformation [J]. Acta Metallurgica.1984, 32(9):1347~1354
    [67] Abe.M. , Kababu.Y. , Hayashi.S. (1982).Trans.Japan Inst.Met.23, 718
    [68] V.B. Ginzburg. Steel rolling technology [M]. New York :Marcel Dekker, 1989.
    [69] G.M. Patricia, J.J. Jonas. Effect of finishing temperature on hot band textures in an IF steel [J]. ISIJ Int..1996,36:68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700