金川二矿区充填体可靠度分析与1#矿体回采地压控制优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国三大资源综合利用基地之一的金川镍矿,是国内最大的镍、钴、铂族等有色金属生产基地,由于金川镍矿处于高地应力区,埋藏深,岩体破碎,开采条件极差,所采用的下向进路胶结充填采矿法充填体的稳定性和1#矿体回采地压控制问题一直是金川镍矿开采过程中所面临的难题。
     作者结合金川二矿区工程实际,应用现代可靠度理论和岩石力学理论,将现场监测、工程地质调查、理论分析、数值模拟及相似材料模拟等多种方法有机地结合起来,对二矿区回采最基本单元——单个进路充填体稳定性,以及1#矿体回采的地压控制问题进行了系统研究,主要完成了下述工作:
     首次将可靠度理论应用于下向进路承载层稳定性的研究,建立了下向进路力学模型,分析了其应力分布规律,在深入探索承载层失稳破坏机理的基础上,提出将承载层稳定性可靠度指标作为评价充填体稳定性的新概念,建立了基于可靠度理论的下向进路充填体稳定性评价方法。
     揭示了充填成本与承载层厚度及其强度、进路宽度、承载层稳定性之间的内在联系,提出了基于可靠度理论的下向进路胶结充填技术经济分析方法,建立了金川二矿区充填体稳定性可靠概率在90%条件下充填成本与进路宽度、承载层厚度、充填体强度之间的关系方程,并提出了进一步降低二矿区充填成本的工程技术措施。
     突破了确定下向进路胶结充填采矿法充填体强度的传统模式,在考虑了充填体力学性质、进路宽度、所受载荷、充填工艺等各因素随机性的基础上,提出了基于可靠度理论的充填体强度确定新方法,丰富和完善了充填体强度确定理论。并将该方法应用于金川二矿区废石料胶结充填采矿工艺中。
     根据下向进路承载层失稳主控因素的分析结果,结合现场实际,提出了二矿区盘区内部回采顺序优化的方法,同时采用三维非线性有限差分数值计算(FLAC3D),对上、下分层进路布置方式进行了研究,得出了采用上、下进路交错布置方式更有利于改善充填体中的应力分布、控制充填体及围岩移动的结论。
     采用二维非线性有限差分数值计算(FLAC2D)和大型相似材料模拟实验,对1#矿体六种可行的回采顺序进行了优化研究,结果表明,从1#矿体一端向另一端逐步过度的回采方式为最佳回采顺序。根据数值模拟与相似材料模拟所得结论,对二矿区“十·五”及“十一·五”生产进度规划和今后850m水平开采的回采顺序提出了具体建议。
     采用二维非线性有限差分数值模拟、大型相似材料模拟实验及现场工程地质调查等多种方法,对二矿区水平矿柱开采的稳定性进行了研究,揭示了水平矿柱、充填体及围岩在整个开采过程中的动态地压分布规律,探明了水平矿柱、充填体及围岩在开采过程中的
Jinchuan nickel mine is one of three resources comprehensive utilization bases in China; it is also the largest nickel, cobalt and other non-ferrous metals production base in China. At present, 85% of nickel and 50% of cobalt are produced by Jinchuan nickel mine. Because the mining conditions of Jinchuan ore body are very bad due to the high-stress area, very deep-lying and poor rock mass, the stability of backfill of underhand cut-and-fill drift stoping and the ground control of whole mining area are always the difficult problems faced by Jinchuan nickel mine.Based on the reliability theory and No.2 mine area of Jinchuan nickel mine, in combination with in-situ monitoring, engineering geological investigation, theory analysis, numerical simulations and similar materials simulating tests, the author systemically study the stability of backfill in a single drift mined by underhand cut-and-filling drift stoping, then he firstly studies the mining sequence of a single panel, the drift-layout method between upper slice and lower slice in a panel, and the mining sequence of whole No.1 ore body. Two important problems, i.e. the mining stability of horizontal pillar and the effect of the 16th-line vertical pillar on the ground control of whole mining area in No.2 mine area, are systematically studied.In this paper, the reliability theory is applied for the first time to study the stability of loaded layer of drift, the mechanical model of loaded layer is established, the stress distribution law of loaded layer is analyzed, a new conception is put forward to evaluate the backfill stability by use of the reliability index of stability of loaded layer based on the deep study on the failure mechanism of loaded layer. Based on the reliability theory, an evaluation method of the stability of backfill of underhand drift is established. The intrinsic relation among the thickness and strength of loaded layer, the applied load on loaded layer and the width of drift is revealed. The specific engineering measures are presented to improve the stability of backfill.The mutual relation among the thickness and strength of loaded layer, the width of drift, the stability of loaded layer and the cost of backfill is researched. Based on the reliability theory, the backfill techno-economic analysis method is provided. Based on the reliability index at 90% of the loaded layer stability, the relation formula among the backfill cost and the width of the drift, the thickness and strength of loaded layer is established.The traditional method for determining the strength of the backfill in underhand drift cut-and-fill stoping is broken through, and a new method of determining the strength of backfill, based on the reliability theory, is put forward. The backfill strength determining method is perfected. The method is used for the rock-cemented fill mining technology in Jinchuan No.2 mine area.According to the results from analyzing the main control factors of loaded layer unstability of underhand drifts, in combination with the in-situ situation of mechanized mining panel at Jinchuan No.2 mine area, an optimal mining sequence of a panel is put forward. The FLAC3D numerical simulation analysis is used to study the layout pattern between the upper and
    lower drifts. It is concluded that intersecting the drifts between the upper slice and the lower slice is more beneficial to stress distribution in the backfill, and controlling the movement of backfill and the surrounding rock.The FLAC2D numerical simulation analysis and the large-scale similar material simulating test are used to research the six kinds of feasible mining sequence of 1# ore body in No.2 mine area. The results shown that the optimal mining sequence of l# ore body in No.2 mine area is from its one end gradually to the other. Based on the conclusions drawn from the numerical simulation analysis and the similar material simulating test, some specific recommendations on adjusting 10th and 11th five-year production scheduling plan, and the mining sequence of Level 850m ore body in the future are made.Combined with the numerical simulation and the large-scale similar material simulating test as well as the in-situ geological engineering survey, the stability of horizontal pillar in the thick ore body mined by multiple levels in Jinchuan No.2 mine area is researched. The dynamic ground stress distribution law of the horizontal pillar, the backfill and the surrounding rock during the whole mining process is discovered. The conclusions show that the horizontal pillar will not instabilize suddenly during the mining process. According to the ground stress characteristics of the horizontal pillar, the specific engineering measures are provided for mining the horizontal pillar in the future.Combined with the analyses method of catastrophe theory and the mechanics model of the horizontal pillar, a CUSP catastrophe model of horizontal pillar is established, the instabilizing criteria of sufficient and necessary mechanical condition of horizontal pillar are derived, and the balance state of pillar is discussed. The research method of the CUSP catastrophe model of horizontal pillar instability based on reliability theory is put forward, and a new idea on the application research of the catastrophe theory is presented.The FLAC2D numerical simulation, the in-situ monitoring and the mechanics analyses are used to evaluate the ground stress control effect of vertical pillar at the 16th line. It is concluded that retaining the vertical pillar at the 16th line plays a important role in the stability of backfill in whole mining area. Also, it is beneficial to the protection of main underground constructions, especially to the west main shaft.Through the study of this paper, backfill mechanics theory is enhanced, and the theory related to underhand cut-and-fill drift stoping method is enriched. The results of this paper provide scientific direction for the dynamic ground stress control of Jinchuan No.2 mine area and similar mines, it is of theoretical significance and engineering application values to the safe, economical, and reasonable mining of the underground mineral resources.
引文
[1] 刘同有等.充填采矿技术与应用.北京:冶金工业出版社,2001
    [2] 刘同有等.中国镍钴矿山现代化开采技术.北京:冶金工业出版社,1995
    [3] 刘可任.充填理论基础.北京:冶金工业出版社,1982
    [4] 孙恒虎,刘文永,黄玉诚等.高水固结充填采矿.北京:机械工业出版社,1998
    [5] 谢和平,刘夕才,王金安.关于21世纪岩石力学发展战略的思考.岩土工程学报.1996,18(4):98~102
    [6] 吴爱祥,孙业志,刘湘平.散体动力学理论及其应用.北京:冶金工业出版社,2002
    [7] 刘同有.中国有色矿山充填技术的现状及发展.中国矿业.2002,11(1):28~34
    [8] 蔡嗣经.矿山充填力学基础.北京:冶金工业出版社,1994
    [9] 蔡美峰.金属矿山采矿设计优化与地压控制——理论与实践.北京:科学技术出版,2001
    [10] E. De Souza, D. Degagne, J.F. Archibald, Minefill applications, practices and trends in Canadian mines. Minefill 2001, Proceedings of the 7th international symposium on mining with backfill
    [11]卢平.制约胶结充填采矿法发展的若干充填体力学问题.黄金.1994,15(7):18—21
    [12] 刘同有.岩体蠕变大变形有限元分析及其在金川矿的应用.矿冶工程.1999,19(3):22~24
    [13] 刘同有.金川岩石力学与工程地质的研究.岩石力学与工程学报.1996,6(2):97~101
    [14] 于学馥.现代工程岩石力学基础.北京:科学出版社.1995
    [15] 北京科技大学,金川镍钻研究设计院,金川公司二矿区.二矿区采场围岩与充填体变形监测与预测研究报告.2001
    [16] 孔广亚.岩体智能模型的研究及三维有限元计算的工程应用.北京科技大学博士学位论文.1997
    [17] 江荣伏,包四根,刘同有.采矿动态环境中工程稳定的实践与探索.中国矿业.2000,9(5):52~55
    [18] 张玉祥,包四根.复杂地质体中地下硐室的施工优化与稳定性评价.岩石力学与工程学.2000,19(6):722~725
    [19] 刘同有.金川岩石力学与工程地质的研究.岩石力学与工程学报.1996,6(2):97~101
    [20] 吴爱祥,韩斌,刘同有等.金川镍矿不良岩层巷道变形与支护研究.岩石力学与工程学报.2003,22(增2):2595~2560
    [21] 刘同有,宋国仁.应用岩石力学技术加快金川铜镍矿床的建设速度.中国矿业.1997,12(6):39~46
    [22] 韩斌,吴爱祥,刘同有等.高应力环境下深部巷道布置位置的优化研究.矿业研究与开发.2004,106(2):15-18
    [23] 蔡美峰,孔广亚.金川二矿区深部开采稳定性分析和采矿设计优化研究.中国矿业.1998,7(5)33~35
    [24] 杨新安,黄宏伟,刘保卫.金川高应力碎裂岩体巷道变形与支护技术研究.湘潭矿业学院学报.2000,15(3):12~15
    [25] 曹文贵,方祖烈,刘同有.金川岩石力学研究方法的探讨.中国矿业.1997,32(4):42~46
    [26] 韩斌,吴爱祥,刘同有等.金川二矿区多中段机械化盘区回采顺序的数值模拟优化研究.矿冶工程.2004,24(2):4~7
    [27] 孔广亚.岩体智能模型的研究及三维有限元计算的工程应用.北京科技大学博士学位论文.1997
    [28] 陈清作.地下矿山岩体工程系统分析与应用研究.北京科技大学博士学位论文.2000
    [29] 李宏业.金川二矿区深部巷道支护机理研究以及围岩稳定性的数值模拟.中南大学硕士学位论文,2003
    [30] 肖卫国.深井充填中若干问题的研究.中南大学硕士学位论文,2003
    [31] 刘同有,韩斌,王小卫.镍闪速炉水淬渣胶结充填配合比优化选择与分析.中国矿业.2000,9(6):19~22
    [32] 孙钧.岩石力学的若干进展.面向21世纪的岩石力学与工程,中国岩石力学与工程学会第四次学术大会论文集,北京:中国科学技术出版社,1996
    [33] 梅剑云,忖冰骏等.中国岩石力学的发展与现状.岩石力学与工程学报.1983,2(1) 22~31
    [34] Brown.E.T,Brady.B.H.G,冯树仁,余诗刚等译.地下采矿岩石力学.北京:煤炭工业出版社,1986
    [35] 周先明.金川二矿区1#矿体大面积充填体——岩体稳定性有限元分析岩石力学与工程学报,1993,12(2):95~98
    [36] The Jinchuan Mine Project. Sino-Swedish technical cooperation for No. 2 Mine Area rock mechanics report 86-3-final report. Dec, 1986
    [37] H.A.D.Kirsten,T.R.Stacey.充填在低下沉量采场中的支护机理.国外金属矿山充填采矿技术的研究与应用.中国矿业协会采矿专业委员会等,1997
    [38] U.Yamaguchi, J.Yamatomi. A consideration on the effect of backfill for the ground stability. Proc. of the Internat. Symp. on Mining with Backfill. Lulea.7-9 June, 1984
    [39] U.Yamaguchi, J.Yamatomi. An experiment study to investigate the effect of backfill for the ground stability. Innovation in mining backfill technology, Hassani et al,1989 Balkema, Rotterdam, ISBN 90 6191 9851
    [40] Moreno, O. et al, The support capabilities of rock fill experimental study. Application of rock mechanics to cut-and-fill mining. Inst. Min. Met, Longdon, 1981
    [41] Blight, G.E, Clarke, I.E, Design and properties of stiff fill for lateral support, Proceedings 4th Internation Symposium on Minimg with Backfill (Montreal). Hassani, F.P., Scoble, M.J., and Yu T.R.(eds). Rotterdam, Balkema, 1989.
    [42] G.Swan, M.Board, Fill-induced post-peak pillar stability. Innovation in mining backfill technology, Hassani et al,1989 Balkema, Rotterdam, ISBN 90 6191 9851
    [43] 于学馥.岩石记忆与开挖理论.北京:冶金工业出版社,1993
    [44] B.B.米哈伊洛夫.分层充填采矿法.国外金属矿山.1998,(5):36~41
    [45] Askew, J E, McCarthy, P L and Fitzgerald, D J. Backfill research for pillar extraction at ZC/NBHC. 1978. Mining with Backfill, 12th Canadian Rock Mechanics Symposium, Sudbury, Ontario, May, CIM Special Volume
    [46] Grice, A G, Wilwain, A and Urquhart, K. Backfilling operations at Mount Isa Mines 1989-1992, Minefill 93. The South African Institute of Mining and Metalurgy, Johannesburg, 1993.
    [47] Bourke, P and Wright, J. The evolution of cut and fill mining at Isa Mine. Underground Operators Conference, Mount Isa, AUSIMM, 1988.
    [48] Cowling. R C, et al 1991. Simulation of filling of open slopes with cemented rockfill. 2nd Australian Conference on Computer Applications in the Mineral Industry. Wollongong.
    [49] Grice. A. G. Fill Research at Mount Isa Mines Limited. Proceedings of the 4th International Symposium on Mining with Backfill, Montreal, Canada. 1989.
    [50] Grice T, Recent Minefill Developments in Australia Proceedings of the 7th international symposium on mining with backfill, Seattle, Washington, 2001.
    [51] Baldwin. G, Grice. A. G. Engineering the New Olympic Dam Backfill System. Proceedings Massmin 2000: 705~711
    [52] H.W.Glen(ed), MINEFILL 93, Johannesburg, South Africa, 1993,
    [53] Martyn, Bloss(ed). Sixth international symposium on mining with backfill. Brisbane, Queensland,Austratia, 1998
    [54] David Stone, P. E. (ed) Minefill 2001, Proceedings of the 7th international symposium on mining with backfill. Published by Society for Mining, Metallurgy and Exploration, Inc, 2001.
    [55] S.G.Panholm(ed). Proceedings of the international symposium on mining with backfill. LULEA University of Technology. LULEA. Sweden. 7-9 June 1983
    [56] B.O'Heam, G.Swan. The use of models in sill mat design at Falconbridge, Innovation in Mining Backfill Technology, Hassani et al, 1989, Balkema, Rotterdam. ISBN 90 6191 9851
    [57] Grice. A, Underground mining with backfill. The 2nd Annual Summit-Mine Tailings Disposal Systems, Brisbane 1998
    [58] Terzaghi, K and Peck, R. B, Soil mechanics in engineering practice. John Wiley and Sons, Inc, 1967
    [59] Terzaghi, K V Theoretical soil mechanics, John Wiley and Sons, Inc, New York, 1943
    [60] Baldwin. G, Grice. A. G. Engineering the New Olympic Dam backfill system. Proceedings Massmin 2000: 705~711
    [61] Karuland, N., Stille, H. Rock-mechanics investigations of undercut-and-fill mining at the Garpenberg Mine. MINEFILL 93. Glen, H. W(ed). Johannesburg, SAIMM, 1993
    [62] Yamatomi, J. Mogi, G. Yamaguchi et al. A finite-element study of the support characteristics of backfill. MINEFILL. 93. Johannesburg. SAIMM
    [63] 肖国清 灵山5号脉下向进路胶结充填采矿法研究 长沙矿山研究院季刊1992(增):55~58
    [64] 黄玉诚,孙恒虎,刘文永.下向进路充填采矿力学模型的探讨.有色金属 1999,51(4):1~3
    [65] 赵伏军,李夕兵,赵国彦.进路法回采人工假项的稳定性分析.金属矿山.2002,310(4):27~29
    [66] 周建华,李朝晖.薄板理论在采场假顶稳定性分析中的应用研究.江西有色金属.2001,15(1):1~4
    [67] 华心祝,孙恒虎.下向进路高水固结尾砂充填主要参数的研究.中国矿业大学学报.2001,30(1):99~101
    [68] 郭金喜.下向进路胶结充填采矿法充填参数选择及工艺实施的新技术.新疆有色金属.1998(4):12~14
    [69] 许新启.分段充填采矿法充填体稳定性分析及控制.有色金属.2000,52(4):18~22.
    [70] 张正民.下向进路全尾砂高水固化充填体假顶参数及强度的计算.有色金属.1992,6~9
    [71] 罗绍文,李庶林.混凝土假顶的破坏形式及布筋方法.矿业研究与开发.1996,16(2):20~21
    [72] 刘强,许新启,桑守勤.下向胶结充填法充填程度与采场稳定性数值模拟.有色金属.2000,52(1):17~21
    [73] 陈何.巷道式充填法回采进路充填体沉积特征及强度分布规律研究.矿冶.1997,6(2):6~10
    [74] 徐日斌.富家矿下向高分层机械化胶结充填采矿研究.有色矿山.2002,31(6)9~11
    [75] 丰裕军.下向分层胶结充填采矿法在我国岩金地下矿山的应用与发展.黄金,2000, 21(8):19~22
    [76] 杨宝贵,孙恒虎,庄百宏.高水固结充填体的自立有色金属.2000,52(2):7~10
    [77] 卢平.胶结充填矿柱强度的设计.江西有色金属.1990,(2):48~52
    [78] 卢平.确定胶结充填体强度的理论与实践.黄金.1992,(3):14~19
    [79] Turner M J. Stiffness and deflection analysis of complex structures Journal of Aeronautical Science. 23: 805~824. 1956
    [80] Zienkiewicz O C, Cheung Y K Finite elements in the solution of field problems Engineering. 220
    [81] FLAC(3.3) User's Manual. Itasca Consulting Group. Inc. Minnesota UST. 1998
    [82] Cundall P A, A Computer model for simulating progressive large scale movements in blocky rock system. Proc Int Symp Rock Fracture, Nancy, Paper 2~8
    [83] 刁心宏,冯夏庭,杨成祥.岩石工程中数值模拟的关键问题及其发展.金属矿山.1999(6):5~8
    [84] 刘红元,唐春安,芮勇勤.多煤层开采时岩层垮落过程的数值模拟.岩石力学与工程学报.2001,20(2):190~196
    [85] 朱建明,徐秉业,朱峰,任天贵.FLAC有限差分程序及其在矿山工程中的应用.中国矿业.2000,9(4):78~82
    [86] 李鸿昌.矿山压力的相似模拟试验.中国矿业大学出版社.徐州:1989
    [87] 徐挺.相似理论与模型试验.中国农业机械出版社.北京:1982
    [88] 任志宇,刘新河,郭淑媛.相似材料平面应变矿压模拟装置.河北建筑科技学院.煤矿设计.1997(10):23~25
    [89] 黎良杰,钱鸣高,殷有泉.采场底板突水相似材料模拟研究.煤田地质与勘探.1996,25(1)33~36
    [90] 潘一山,章梦涛,王来贵,李国臻.地下硐室岩爆的相似材料模拟试验研究岩.岩土工程学报.1997,19(4):49~56
    [91] 邓喀中,周鸣,谭志祥等.采动岩体破裂规律的试验研究.中国矿业大学学报.1998,27(3):261~264
    [92] 张俊英.多煤层条带开采模拟理论研究.煤炭学报.2000,25(增):67~70
    [93] 谭志祥,郭广礼,周鸣.放顶煤开采地表及基岩面移动规律模拟研究.辽宁工程技术大学学报(自然科学版).2000,19(1):12~16
    [94] 于广明.地层沉陷中的突变现象及其研究进展.辽宁工程技术大学学报(自然科学版).2001,20(1):1~5
    [95] 胡耀青,赵阳升,杨栋.带压开采顶板破坏规律的三维相似模拟研究.岩石力学与工程学报.2003.22(8):1239~1243
    [96] 戴阳华,翟厥成,胡友健.山区地表移动的相似模拟实验研究.岩石力学与工程学报.2000,19(4):502~504
    [97] 张倬元,刘汉超.地下采掘环境效应的一个特殊实例——韩城电厂地基隆起机制及其控制措施.地学前缘.2001,8(1):285~295
    [98] 许家林,钱鸣高,马文顶.岩层移动模拟研究中加载问题的探讨.中国矿业大学学报.2001,30(3):252~255
    [99] 白义如,白世伟,靳钟铭.特厚煤层分层放顶煤相似材料模拟试验研究.岩石力学与工程学报.2001,20(3):365~369
    [100] 张晓春,杨挺青.冲击矿压模拟试验研究.岩土工程学报.1999,21(1):67~72
    [101] V. I. Smimov, N. S. Khachaturyan, E. M. Shafarenko, Mathematical and physical modelling of underground storage stability. International Journal of Rock Mechanics and Mining Sciences. 35(1998): 566~568
    [102] M. E. Duncan Fama, R. Trueman, M. S. Craig. Two-and Three-dimensional elasto-plastic asalysis for coal pillar design and its application to highwall mining. International Journal of Rock Mechanics & Mining Sciences. 32 (1995) 215~225
    [103] 桑博德.突变理论入门.凌复华译.上海:上海科学技术出版社,1989
    [104] Cubitt Shaw B. The geological implication of steady state mechanisms in catastrophe theory. Math Geology. 1976, 8: 657~661.
    [105] Henley S. Catastrophe theory models in geology. Math Geology, 1979, 8: 6~11
    [106] Potier-Ferry M. Towards a catastrophe theory for the mechanics of plasticity and fracture. Int J Enging Sci, 1985, 23(8): 821~837
    [107] Alberto Cstpinyri.A catastrophe theory mapproach to fracture mechanics. Int. J. Frac. 1990, 44: 57~69
    [108] 康仲远.岩体准静态运动失稳的CUSP型突变模型.地震学报,1984,6(3):352~361
    [109] 殷有泉,郑顾团.断层地震的尖角型突变模型.地球物理学报,1988,31(6):657~663
    [110] 唐春安,徐小荷.岩石破碎过程失稳的尖点突变模型.岩石力学与工程学报,1990,0(2):100~107
    [111] 唐春安.岩石破裂过程的灾变.北京:煤炭工业出版社,1993
    [112] 尹光志,李贺,鲜学福.煤岩体失稳的突变理论模型.重庆大学学报,1994,17(1):22~28
    [113] 秦四清,何怀峰狭窄煤柱冲击地压失稳的突变理论分析水文地质工程地质,1995,(5):17~21
    [114] 白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型.煤炭学报,1997,22(2):149~153;
    [115] 邵爱军,彭建萍,刘唐生.矿坑底板突水的突变模型研究.岩土工程学报,2001,23(1):38~42:
    [116] 刘保县,鲜学福,姜德义.煤与瓦斯延期突出机理及其预测预报的研究岩石力学与工程学报,2002,21(5):647~650;
    [117] 刘军,谢晔,张倬元等.突变理论在安全埋高研究中的应用.岩石力学与工程学报,2002,21(6):879~886;
    [118] 冯夏庭 智能岩石力学导论.北京:科学出版社,2000
    [119] 蔡美峰,孔广亚,贾立宏.岩体工程系统失稳的能量突变判断准则及其应用.北京科技大学学报.1997,19(4):326~329
    [120] 来兴平.基于非线性动力学采空区稳定性集成监测分析与预报系统研究及应用.北京科技大学博士学位论文.2002
    [121] 李英龙.采矿工业系统综合建模方法研究.昆明:云南大学出版社,2001
    [122] 桑国光,张圣坤.结构可靠性原理及其应用.上海:上海交通大学出版社.
    [123] 赵国藩,曹居易,张宽权.工程结构可靠度北京:水利电力出版杜 1984
    [124] 赵国藩,金伟良,汞金鑫.结构可靠度理论.中国建筑工业出版社,2000
    [125] Cornell C. A. Structural safety specification based on second-moment reliability. Symposium on concepts of safety and methods of design. International Association of Bridge and Structure Engineering. London。1969: 235~245
    [126] 吴世伟.结构可靠度分析.北京:人民交通出版社,1990
    [127] 黄兴隶.工程结构可靠性设计.北京:人民交通出版社,1992
    [128] Lind N. C. Consistent partial safety factors. Journal of The Structural Engineering Division, ASCE. 1971. VOl 97(6): 1651~1670
    [129] Ang A. H-S, Wilson H. Tang, Probability concepts in engineering planning and design (Vol Ⅱ), Decision, risk and reliability. John Wiley and Sons, Inc., New York, 1984
    [130] Rackwitz R, Fiessler. B. Structural reliability under combined random load sequences. Computers and Structures, 1978, Vol. 9: 489~494
    [131] Ellingwood B et al. Development of a rrobability based load criterion for American National Standard A58. Building Code Requirements for Minimum Design Loads in Building s and Other Structures, BNS SP-577. 1980
    [132] Whittlestone A P, Johnson J D, Rogers M E et al, Probabilistic risk analysis of slope stability [J]. Trans Instn Min Metall (Sect A: Min industry), 1995, 104: A19~24
    [133] Pinc R J. Risk analysis design applications in mining geomechanics. Trans Instn Min Metall. (Sect A: Min. industry), 1992, 101: A149~158
    [134] 建筑结构安全性研究组.建筑结构安全性理论的发展与应用.建筑结构学报.1980(1)
    [135] 中国建筑科学研究院.以概率论为基础的极限状态设计方法——我国《建筑结构设计统一标准》(初稿中若干概念问题).建筑结构学报1980(4)。
    [136] 包承纲,高大钊,张庆华等.地基工程可靠度分析方法研究.武汉:武汉测绘科技大学出版社,1997
    [137] 高大钊.岩土工程可靠性分析.岩土工程学报.1983(4),1984(1)
    [138] 高大钊.土力学可靠性原理.北京:中国建筑工业出版社,1989
    [139] 祝玉学.边坡可靠性分析.北京:冶金工业出版社,1993
    [140] 包承纲.吴天行.地基非均匀沉降的可靠度分析.岩土工程学报.1992,14(增)
    [141] 陈晓平,俞季民.地基非均匀沉降的可靠度分析.岩土工程学报.1994,16(2):80~87
    [142] 刘同有,马念杰,高谦.地下巷道工程可靠度分析.徐州:中国矿业大学出版社,1998
    [143] 严春风,刘东燕,张建辉等.岩土工程可靠度关于强度参数分布函数概型的敏感度分析.岩石力学与工程学报,1999,18(1):36~39
    [144] 苏永华,方祖烈,高谦.用响应面方法分析特殊地下岩体空间的可靠性.岩石力学与工程学报.2000,19(1):55~58
    [145] 徐军,雷用,郑颖人.岩土参数概率分布推断的模糊BAYES方法探讨.岩土力学.2000,21(4):394~400
    [146] 何满潮,苏永华.地下软岩工程可靠度研究.岩土工程学报.2003,25(1):55~57
    [147] 何满潮,苏永华.块状岩体的稳定可靠性分析模型及其应用.岩石力学与工程学报,2002,21(3):343~348
    [148] John, T. Chritian, Charles C. Ladd, Gregory, B. Baecher, 1994. Reliability applied to slope stability analysis. Journal of Geotechnical Engineering. 120, 2180~2207
    [149] 高谦,杨志强,杨志法地下大跨度采场围岩突变失稳风险预测.岩土工程学报.2000,22(5):523~527
    [150] 古德生,邓建,李夕兵.地下金属矿山无间柱连续采矿可靠性分析与设计.中国工程科学.2001,3(1):51~57
    [151] 谭容.岩土工程中安全系数的可靠性分析.湖北地矿.2003,17(1):53~56
    [152] 邓建.地下岩体工程可靠性分析理论与应用研究.中南大学博士论文.1999
    [153] 苏永华,方祖烈,高谦.大型地下采空区稳定性可靠性分析建模方法探讨.中国矿业.19998,7(4):69~73
    [154] 何满潮,苏永华.地下软岩工程可靠度研究.岩土工程学报.2003,25(1):55~57
    [155] 徐军,雷用.地下隧洞稳定的可靠性分析.地下空间.2000,20(2):100~104
    [156] 懂聪,刘西拉.非线性结构系统可靠性理论及其模拟算法.1998,31(1):31~43
    [157] 颜立新,康红普,高谦.基于响应面函数的可靠度分析及其应用.岩土工程学报.2001,22(3):327~333
    [158] Hasofer A. M, Lind N. C. Exact and invariant second-moment code format. Journal of the Engineering Mechanics Division, ASCE. 1974, Vol. 100(1): 111~121
    [159] 潭晓惠.岩质边坡稳定的可靠性分析.岩石力学与工程学报,2001,20(增1):1043~1045
    [160] 徐军,雷用,郑颖人.岩上参数概率分布推断的模糊BAYES方法探讨.岩土力学.2000,21(4):394~396
    [161] 苏永华,方祖烈,高谦.用响应面方法分析特殊地下岩体空间的可靠性.岩石力学与工程学报,2000,19(1):55~58
    [162] 傅旭东,赵善锐.用蒙特卡洛(Monte—Carlo)方法计算岩土工程的可靠度指标.西南交通大学学报.1996,31(2):164~168
    [163] 徐军,刘东升,郑颖人.用改进的JC方法分析三维Hoek-Brown准则的可靠度.岩土力学学报.1999,20(1)1:44~52
    [164] 徐军,雷用,郑颖人.沿途参数概率分布推断的模糊BAYES方法探讨.岩土力学.2000,21(4):394~400
    [165] 徐军,刘东升,郑颖人.基于概率屈服准则的弹塑性随机有限元分析.岩土工程学报,2002,24(2):225~228
    [166] 何满潮,苏永华.块状岩体的稳定可靠性分析模型及其应用.岩石力学与工程学报,2002,21(3):343~348
    [167] 周维恒.岩体力学数值计算方法的现状与展望.岩石力学与工程学报.1993,12(1):84~88
    [168] 谢文兵.数值模拟在工程实践中的应用分析.矿山压力与顶板管理.2001,(1):83~85
    [169] A. fredriksson, N. Krauland, H. Stille, S. Stromberg. Improved undercut-and-fill mining at the Garpenberg Mine, Minefill 93. Johannesburg. SAIMM, 1993
    [170] The South African Institute of Mining and Metallurgy. Backfill in South African Mines
    [171] 采矿设计手册(矿床开采卷).北京:中国建筑工业出版社,1989
    [172] 吉兆宁,黄光柱.进路式采矿法在我国的应用现状.矿冶.2000,9(1):5~8
    [173] 姜启源.数学模型.北京:高等教育出版社,1993
    [175] 吴毓熙.应用弹性力学.上海:同济大学出版社,1989
    [176] 徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,1995
    [177] 盛骤,谢式千,潘成毅.概率论与数理统计.北京:高等教育出版社,2001
    [178] 北京大学数学力学系.正交设计法北京:石油化学工业出版社,1975
    [179] 北京科技大学等.金川二矿区二期工程无矿柱大面积连续开采的稳定性及其控制技术的研究(鉴定资料),1997,4
    [180] 金川公司,长沙矿山研究院,北京有色冶金设计研究院.金川二矿区高浓度料浆管道 自流输送工艺工业试验总结,1983
    [181] 梁运陪.岩层移动的组合岩梁理论及其应用研究.岩石力学与工程学报.2002(5):654~657
    [182] 华心祝,孙恒虎.下向进路高水固结尾砂充填试验研究.矿业研究与开发.1996,16(3):7~10
    [183] 丁大钧.现代混凝土结构学.北京:中国建筑工业出版社,2000
    [184] 张小蒂.应用回归分析.杭州:浙江大学出版社,1991
    [185] FLAC3D User's Manual. Itasca Consulting Group. Inc, 1997
    [186] 谢和平,周宏伟,王金安.在煤矿开采沉陷预测中的应用及对比分析.岩石力学与工程学报.1999,18:397~401
    [187] 王金安,谢和平,王广南.建筑物下厚煤层特殊开采的三维数值分析.岩石力学与工程学报.1999,18(1):12~16
    [188] 黄润秋,徐强.显式拉格朗日差分分析在岩石边坡工程中的应用.岩石力学与工程学报.1995,14(4):346~354
    [189] Jun Sun, Sijing Wang. Rock mechanics and rock engineering in China developments and current state-of-the-art. International Journal of Rock Mechanics and Mining Sciences. 37 (2000) 447~465
    [190] D. F. Scott, T. J. Williams, M. J. Friedel, D. K. Denton. Relative stress conditions in an underground pillar, Homestake Mine, Lead, SD. International Journal of Rock Mechanics and Mining Sciences. 3(1997): 278
    [191] F. M. BOLER, S. Billington, R. K. Zipf. Seismological and energy balance constraints on the mechanism of a catastrophic bump in the book cliffs coal mining district, Utah, U. S. A. International Joumal of Rock Mechanics and Mining Sciences. 1997, 34 (1): 27~43
    [192] C. D. Martina, P. K. Kaiserb, R. Christianssonc. Stress instability and design of underground excavations. International Journal of Rock Mechanics & Mining Sciences. 40 (2003): 1027~1047
    [193] Y. H. Hatzora, M. Talesnickb, M. Tsesarskya. Continuous and discontinuous stability analysis of the bell-shaped caverns at Bet Guvrin, Israel. International Journal of Rock Mechanics & Mining Sciences. 39 (2002) 867~886
    [194] A. Serranoa, C. Olalla. Ultimate beating capacity at the tip of a pile in rock -part 1: theory. International Journal of Rock Mechanics & Mining Sciences. 39 (2002) 833~846
    [195] A. Serranoa, C. Olalla. Ultimate beating capacity at the tip of a pile in rock-part 2: application. International Journal of Rock Mechanics & Mining Sciences. 39 (2002) 847~866
    [196] P. K. Kaiser, S. Yazici, S. Maloney Mining-induced stress change and consequences of stress path on excavation stability a case study. International Journal of Rock Mechanics & Mining Sciences 38 (2001) 167~180
    [197] 曹文贵.多步开挖工程蠕变损伤大变形有限元模拟及工程应用.北京科技大学博士学位论文,1998
    [198] L. Jinga, J. A. Hudson. Numerical methods in rock mechanics. International Journal of Rock Mechanics & Mining Sciences 39 (2002) 409~427
    [199] L. Jing. A review of techniques advances and outstanding issues in numerical moelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences. 40(2003): 283~253
    [200] G. Murali Mohan, P. R. Sheorey, A. Kushwaha. Numerical estimation of pillar strength in coal mines. International Journal of Rock Mechanics & Mining Sciences 38(2001) 1185~1192
    [201] A. B. Foure, R. G. Gurtunca, G. De Swart, E. Wendland. An evaluation of four constitutive models for simulation of backfill behaviour, MINEFILL 93, Johannesburg, South Africa, 1993,
    [202] Wu Aixiang, Han Bin, Liu Tongyou, Wang Xiaowei. Study on the deformation and support of tunnel in weak rock mass in Jinchuan nickel mine. NARMS-TAC 2002-the 5th North American Rock Mechanics Symposium (NARMS) and 17th tunneling Association of Canada (TAC) Conference. Canada.
    [203] Nick Barton. Deformation module and rock mass characterization. Tunnelling and Underground Space Technology 17 (2002) 221~222
    [204] Whyatt J. A. stain-softening model for representing shear fracture in continuous rock masses. In 2nd Int Symp of Rockburstand Seismicity in Mines Minn. MN: 39~49
    [205] 王泳嘉.离散单元法同拉格朗日元法及其在岩土工程中的应用.岩土力学.1995,16(2):1~10
    [206] E. T. Brown. Rock mechanics in Australia. International Journal of Rock Mechanics & Mining Sciences. 39 (2002) 529~538
    [207] 林崇德.层状岩石顶板破坏机理数值模拟过程分析.岩石力学与工程学报.1999,18(4):392~396
    [208] 谢和平,周宏伟,王金安等.FLAC在煤矿开采沉陷预测中的对比分析.岩石力学与工程学报.1999,18(4):397~401
    [209] 尹光志,代高飞,万玲等.南桐煤矿开采岩移规律的数值模拟.重庆大学学报(自然科学版).2001,24(5):62~66
    [210] 杨新安,黄宏伟,丁全录.FLAC程序及其在隧道工程中的应用.上海铁道大学学报(自然科学版.1996,17(4):40~44
    [211] U. K. Singh, P. N. Jain, M. Prasad. Post-pillar behavior at deep levels in copper mine[J]. International Journal of Rock Mechanics and Mining Sciences. 32(1995): 585~593
    [212] 梅松华,李文秀,盛谦.FLAC在岩土工程参数反演中的应用.矿冶工程.2000,20(4):23~26
    [213] 何满潮,薛廷河,彭延飞.工程岩体力学参数确定方法的研究.岩石力学与工程学报.20(2):225~229,2001
    [214] 乔春生,张清,黄修云岩体力学参数预测的新方法北方交通大学学报23(4):48~52
    [215] L. Jing. A review of techniques advances and outstanding issues in numerical moelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences. 40(2003): 283~353
    [216] Lianyang Zhanga, H. H. EinsteinUsing. RQD to estimate the deformation modulus of rock masses. International Journal of Rock Mechanics & Mining Sciences. 41 (2004) 337~341
    [217] 孙广忠.岩体结构力学.北京:科学出版社,1988
    [218] 周瑞光,成彬芳,李毓瑞等.金川露天矿F1、F2断层泥力学特性的实验研究.工程地址学报.1996,4(1):70~74
    [219] 刘高.高地应力区结构性流变围岩稳定性研究.成都理工学院博士学位论文,2001
    [220] Bieniawski, Z. T., Determination of rock mass deformability: Experience from case histories. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1978, 15, 237~247
    [221] N. Mohammad, D. J. Reddish, L. R. Stace. The relation between in-situ and laboratory rock properties used in numerical modelling. Int. J. Rock Mech. Min. Sci. Vol 34, No. 2, pp. 289~297, 1997
    [222] Serafim, L. J. and Pereira, P. J., Consideration on the geomechanical classification of Bieniawski. In Proceedings of the International Symposium on Engineering Geology and Underground Construction, Lisbon, Portugal, V2, 1983, pp. 33~42
    [223] E. Hoek, E. T. Brown. Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. Vol. 34, No. 8. pp. 1165~1186, 1997
    [224] Nicholoson, G. A. and Bieniawski, Z. T., A nonlinear deformation modulus based on rock mass classification. Int. J. Min. & Geological engineering, 1990, (8), 181~202
    [225] Mitri, H. S., Edrissi, R. and Henning, J., Finite element modelling of cable -bolted stopes in hard rock underground mines. Presented at the SME Annual Meeting, Albuquerque, Neo Mexico, 14~17, February, 1994, Paper Number 94~116
    [226] Trueman, R., An evaluation of strata supports techniques in dual life gateroads. Ph. D. Thesis University of Wales, Cardiff, 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700