软煤层大采高综采围岩控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,大采高综采主要是在硬煤层、顶板条件好的条件下进行,其围岩控制的理论和技术还不足以有效指导困难条件下的大采高安全高效开采,特别是象晋煤集团赵庄矿复杂地质条件下软煤层的大采高综采。由于该煤层节理裂隙发育、断层、褶曲等地质构造多,导致工作面推进较慢(最慢时达到18.5m/月),顶板下沉量大;由于煤质较软承载能力较低,煤壁片帮严重;回采巷道变形量较大,主要表现为底臌严重(实测回采巷道最大底臌量达到1.6m),影响了正常的材料运输和人员通行。
     论文针对赵庄3#煤层赋存状况、围岩地质力学条件,运用理论分析、数值模拟和井下实测相结合的手段,系统研究了软煤层大采高工作面覆岩结构及运动规律、回采巷道底臌控制及工作面煤壁片帮防治技术。研究结果进行了实践应用,实现了赵庄3#煤层的安全开采,并取得了以下研究成果:
     (1)进一步揭示了大采高采场的覆岩结构及运动规律。与一般大采高综采工作面相比,软煤层大采高工作面上覆岩层运动规律有其特殊性。主要表现为:在大采高条件下,由于采出空间的增大,回采后顶板的变形位移增大,上覆岩层的平衡结构将出现在更高的层位;
     (2)软煤层工作面煤壁片帮与开采高度、煤体节理裂隙发育情况、顶板垮落特征等因素有关。通过提高液压支架初撑力和加快推进度等手段可对片帮有效地加以控制。
     (3)分析了大采高回采巷道底臌机理及其影响因素,提出了复杂条件下大采高综采工作面回采巷道底臌控制技术方案;
     (4)通过理论分析、数值模拟和井下实测揭示了赵庄煤矿软煤层大采高开采矿压显现规律。
     论文研究成果不仅指导了赵庄矿3305工作面的生产,也为拓展大采高综采适用范围做了有益的探索,具有重要的工程实际意义。
Currently, the fully mechanized coal greater mining primarily in hardware, roof under good conditions. The surrounding rock control theory and technology is not enough to guide effectively the difficult conditions of high security and exploitation of greater mining. In particular, under complicated geological conditions Zhaozhuang soft coal mining a greater high-mechanized mining,Jincheng Coal Mine. As the coal seam faults, fissures, joints, folds and other tectonic development, resulting in a slower advance of working face (the most slowly reached 18.5m / month),a greater quantity of roof subsidence; due to a lower carrying capacity of soft coal,coal wall Tablets to help serious; roadway deformation was greatly manifested at the end of heave severe (measured at the end of the dark roadway maximum reached 1.6m), affecting the normal movement of material and personnel transport.
     Occurrence for Zhaozhuang 3# coal seam conditions, rock geomechanical conditions, the use of theoretical analysis, numerical simulation and measured a combination of down hole tools, systematic study of soft-coal mining face greater mining height cover rock structure and motion law, mining tunnel floor heave control technology and the coal-face wall piece to help control and so on. Practical application of research results have been achieved zhaozhuang 3 # coal seam of the safety of mining, and made the following findings:
     (1) Further revealed the structure and motion law of overlying strata with greater mining height. And compared to the general fully-mechanized mining face, the soft coal greater mining high face overlying rock law of motion has its particularity. Mainly as follows: under the Greater mining height, due to filling of space required for mined-out area increases, the recovery after the roof of the deformation increases, the balance of the overlying rock structure will appear in the higher horizon;
     (2) The ribs fall of the face coal wall has a relationship with the mining height, coal joints fractured situation, the falling roof characteristics and other factors. By increasing the resistance of hydraulic support and improving the mining process to control the ribs fall of coal wall effectively.
     (3) Analysis the mechanism of the greater mining height roadway floor heaves, determine the impact factors, and determine the control technology programs of greater mining height roadway floor heave under complex conditions.
     (4) Through theoretical analysis, numerical simulation and down-hole measurement reveals the mine pressure behavior of soft coal with greater mining height.
     The research results not only guided the production of 3305 face of Zhaozhuang mine, but also for the development of fully mechanized mining exploration application of a useful, important works in practice.
引文
[1]王剑光.采煤法现状及发展趋势[J].煤矿安全,2004,35(6):28-30.
    [2]钱鸣高,何富连,缪协兴.采场围岩控制的回顾与发展[J].煤炭科学技术,1996,1:1-3.
    [3]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994.
    [4]弓培林.大采高采场围岩控制理论及应用研究[D].太原:太原理工大学,1998.
    [5] Qian M G, He F L, M iao X X. The system of strata control around longwall face in China[J].In: Guo Yuguang, Tad S Golosinski, eds. Minging Science and Technology Rotterdam: A A Balkem a, 1996. 15-18.
    [6][波]M.鲍莱茨基,M.胡戴克著.于振海,刘天泉译.矿山岩体力学[M].北京:煤炭工业出版社,1985.
    [7] B.H.G.布雷斯,E.T.布朗.冯树仁等译.地下采矿岩石力学[M].北京:煤炭工业出版社,1990.
    [8]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003:80.
    [9]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报, 1995,14(2),97-106.
    [10]史红,姜福兴.采场上覆岩层结构理论及其新进展[J].山东科技大学学报(自然科学版),2005,24(1),21-25.
    [11] Qian Minggao. A study of the behaviour of overlying strata in longwall mining and its application to strata control [M].Strata Mechanics, Elsevier Scientific Publishing Company, 1982: 13-17.
    [12] Arutyunyan N, Metlov V V. Some problems in the theory of creep in bodies with variable boundaries[J]. Mechanics of Solids, 1982, 17(5): 92-103.
    [13]宋振骐.采场上覆岩层运动的基本规律[J].山东矿业学院学报,1979,1,22-41.
    [14] Chien(Qian) Minggao. A study of the behavior of overlying strata in longwall mining and its application to strata control, Proceedings of the Symposium on Strata Mechanics, Elsevier Scientific Publishing Company, 1982, 13-17.
    [15]弓培林,靳钟铭.大采高采场覆岩结构特征及运动规律研究[J].煤炭学报,2004.
    [16]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[J].矿山压力与顶板管理,1995,3-4,3-12.
    [17]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,14(2):97-106.
    [18]郝海金,吴健,张勇等.大采高开采上位岩层平衡结构及其对采场矿压显现的影响[J].煤炭学报,2004,29(2):137-141.
    [19]钱鸣高,张顶立,黎良杰,康立勋,许家林.砌体梁的“S-R”稳定及其应用[J].矿山压力与顶板管理,1994,3:6-10.
    [20]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1992.
    [21]贾喜荣.矿山岩层力学[M].北京:煤炭工业出版社,1997.
    [22]姜福兴,宋振骐,宋扬.基本顶的基本结构形式[J].岩石力学与工程学报,1993,3:366-379.
    [23]许家林.岩层移动控制的关键层理论及其应用[D].徐州:中国矿业大学,1999.
    [24]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,1:39-42.
    [25]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,2:135-230.
    [26]翟英达.采场上覆岩层中的面接触块体结构及其稳定性力学机理[M].北京:煤炭工业出版社,2006.
    [27]王学军,钱学森,马立强.厚煤层大采高全厚开采工艺研究与应用[J].采矿与安全工程学报,2009,26 (2),212-216.
    [28]陈昆木.厚煤层大采高回采工艺探讨[J].煤炭技术,2008,27(10):160-161.
    [29]夏均民.大采高综采围岩控制与支架适应性研究[D].泰安:山东科技大学,2004.
    [30]王国法.大采高技术与大采高液压支架的开发研究[J].煤矿开采,2009,14(1): 1-4.
    [31]高玉斌,李永学.寺河矿6.2m大采高综采工作面设备选型研究与实践[J].煤炭工程,2008,5:5-7.
    [32]苏清政.国产首套6.2m大采高综采支架应用实践[J].煤炭工程,2007,5:99-101.
    [33]孙攀,李阳,郭丹丹. 6m以上大采高液压支架稳定性分析与控制措施[J].中州煤炭,2009,10:14-15.
    [34]何富连,钱鸣高,刘长友.高产高效工作面支架—围岩保障系统[M].徐州:中国矿业大学出版社,1997:62-124.
    [35]赵宏珠.大采高支架的使用及参数研究[J].煤炭学报,1991,16(1):32-38.
    [36]缪协兴.采场基本顶初次来压时的稳定性分析[J].中国矿业大学学报,1989,18(3):88-92.
    [37]黄庆享,钱鸣高,石平五.浅埋煤层采场基本顶周期来压的结构分析[J].煤炭学报,1999,24(6):581-585.
    [38]武建国.大采高综采工作面与巷道围岩控制技术研究[D].太原:太原理工大学,2004
    [39][苏]и.Α.多尔恰尼诺夫.赵义译.构造应力与井巷工程稳定性[M].北京:煤炭工业出版社,1984.
    [40]钱鸣高,缪协兴.采场矿山压力理论研究的新进展[J].矿山压力与顶板管理,1996,2:17-20.
    [41]闫少宏,贾光胜,刘贤龙.放顶煤开采上覆岩层结构向高位转移机理分析[J].矿山压力与顶板管理,1996,3:3-5.
    [42]张百胜.极近距离煤层开采围岩控制理论及技术研究[D].太原:太原理工大学,2008.
    [43]冯国瑞.残采区上行开采基础理论及应用研究[D].太原:太原理工大学,2009.
    [44]朱德仁.长壁工作面基本顶的断裂规律及应用[D].徐州:中国矿业大学,1987.
    [45]钟新谷.顶板岩梁结构的稳定性与支护系统刚度[J].煤炭学报,1995 ,20(6):601-606.
    [46]康立勋.大同综采工作面端面漏冒及其控制[D].徐州:中国矿业大学,1994.
    [47]侯忠杰,谢胜华.采场基本顶断裂岩块失稳类型判断曲线讨论[J].矿山压力与顶板管理,2002,2:1-3.
    [48]许家林,钱鸣高.覆岩采动裂隙分布特征的研究[J].矿山压力与顶板管理,1997,3(4):210-212.
    [49]张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报,1990,15(2):46-55.
    [50]高延法,李白英.受奥灰承压水威胁煤层采场底板变形破坏规律研究[J].煤炭学报,1992,17(1):25-27.
    [51]李增琪.计算矿山压力和岩层移动的三维层体模型[J].煤炭学报,1994, 19 (2):109-121.
    [52] WILSON A H. The stability of tunnels in soft roch at depth [J].Proc.Conf.on Rock Engi neering, University Newcasale upon Tyne, 1987, 18 (3):511-515.
    [53] WILSONA H .A method of estimating the closure and strength of lining requierd in drivages surrounding by a yield zone[J].Int J Rock Meth Sci,1990,15(17):349-355.
    [54] ROCKAWAYD J .In vestigation into the Effects of Weak Floor Conditions on the Stability of Coal Pillar [M].United States Bureau of Mines Open File Report Final,1979.
    [55]康红普.软岩巷道底臌的机理及防治[Ml.北京:煤炭工业出版社,1993.
    [56]康红普,陆士良.巷道底臌机理的分析[J].岩石力学与工程学报,1991, 2(4):362-373.
    [57]姜耀东,陆士良.巷道底臌机理的研究[J].煤炭学报,1994, 19(4):343-351.
    [58]武建国.大采高综采工作面与巷道围岩控制技术研究[D].太原:太原理工大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700