改善三峡水库非汛期水质的调度方式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在温度、光照适宜的3~5月份,三峡水库支流的局部水域易暴发“水华”现象。其主要原因是蓄水后支流由天然状态的流速1~2m/s变成几乎静止,水体紊动和水流流速的降低,造成营养盐的富集和藻类的快速生长。而三峡电站非汛期采用调峰运行,电站调峰有利于干支流水体交换,增大水体紊动和水流流速,从而为改善支流的水质提供了新契机。
     本文主要研究三峡电站调峰对水库水流水质的影响规律,并通过建立非汛期生态调度模型寻求对库区水质改善和电站发电综合最优的调峰运行方式。主要有以下几个方面:
     (1)根据三峡电站非汛期的调峰容量和最小生态需水量,通过EFDC模型模拟不同水位、不同流量和不同调峰幅度对水流水质的影响,分析能够使支流流速达到临界流速时不同水位对应的流量。
     (2)建立准确模拟电站调峰运行时水流水质状况的简单生态动力学模型,模拟整个非汛期不同下泄流量过程对应的营养盐浓度过程,计算出不同调度方式对应的营养盐平均浓度。
     (3)建立改善非汛期三峡水库水质的生态调度模型,即在常规发电调度模型基础上,增加通过水流水质模型计算出的不同调度方式对应的营养盐TP浓度最小化的目标函数,以及满足生态环境基本需求的最小生态需水量和抑制藻类生长的临界流速的约束条件。
     (4)采用基于遗传算法的多目标模糊规划法求解生态调度模型。根据典型年来流量和库区TP负荷,得出对水质有较大改善作用又能满足发电量要求的调峰调度运行方式,给今后三峡电站非汛期的调峰运行提出建议。
During March-May, water bloom phenomenon has taken place in some parts of the Three Gorges Reservoir’s tributaries. The high water level results in the decreases of the flow velocity and turbulence, which leads to the enrichment of nutrient and fast growth of algae. While in non-flood season, Three Gorges Power Station will be in peak-load operation, which will benefit the water exchange between main stream and tributaries and increase the water turbulence and velocity. Therefore, the peak load operation will provide a new way to improve the water quality of tributaries.
     In the paper, the impact of peak load operation on hydraulics and water quality is researched. The best peak load operation mode for both water quality and power generation is found by establishing the ecological optimal dispatching model. The main research work focuses on the following aspects.
     First of all, according to the peak-load regulation capacity and the minimum ecological water requirement, the influences of hydraulics and water quality under different water level, different flow and different peak-load regulate amplitude is simulated in the second part of the paper. Then, by analyzing the results, the corresponding flow discharge of different water level under which the velocity of the tributary can reach the critical velocity of suppressing algal growth is obtained.
     Next, the simple ecological dynamics model reacting to the hydraulics and water quality status in peak-load regulation is set up in the third part of the paper. The model can simulate the nutrient density process of the whole non-flood season, then, the average nutrient density of different dispatching mode is gained.
     In addition, in the last of the third part, an ecological dispatching model of the Three Gorges Power Station is built. The basic thought is based on the conventional power generation optimal dispatching model, with another one objective function and two constraint conditions added. The objective function is the minimum of the TP nutrient density calculated by the ecological dynamics model. One of the constraint conditions is the minimum of the ecological water requirement; the other is the critical velocity above which the algal growth can be suppressed.
     Lastly, the muti-objective fuzzy program is used to resolve the ecological optimal dispatching model based on genetic algorithm. According to the coming water flow and the TP pollutant load, the paper computes the best peak-load dispatching mode in which the water quality of the reservoir can be improved and the power generation can be satisfied. Therefore, some useful suggestions will be provided for the Three Gorges Power Station when it works in peak-load mode.
引文
[1]韩博平,石秋池,陈文祥.中国水库生态学与水库管理研究[M].北京:科学出版社,2003.
    [2]邓春光.三峡库区富营养化研究[M].北京:中国环境科学出版社,2007.
    [3]周建军.关于三峡电厂日调节调度改善库区支流水质的探讨[J].科技导报,2005,23(10):8-12.
    [4]陈求稳,欧阳志云.生态水力学耦合模型及其应用[J].水利学报,2005,36(11):1273-1279.
    [5]张亚,高学平.生态水力学浅议.中国环境水力学2002[M].北京:中国水利水电出版社,2002.
    [6]李大美.生态水力学原理及在富营养化控制中的应用.中国环境水力学2002[M].北京:中国水利水电出版社,2002.
    [7]李文达,王心源.生态水力学原理在巢湖富营养化控制中的应用[J].江苏环境科技,2006,19(1):40-42.
    [8]蒲迅赤,赵文谦等.紊动对水体中有机物降解影响的实验[J].中国环境科学,1999,19(6):485-489.
    [9]李锦绣,廖文根.水流条件巨大变化对有机污染物降解速率影响研究[J].环境科学研究,2002,15(3):45-48.
    [10]李锦绣,杜斌,孙以三.水动力条件对富营养化影响规律探讨[J].水利水电技术,2005,5(36):15-18.
    [11] Poff N L, Wellnitz T, Monroe J. Redundancy among stream grazers across a current velocity gradient [J]. Oecologia, 2003, 134:262-269.
    [12] Mitrovic S M, Oliver R L, Rees C, et al. Critical flow velocities for the growth and dominance of Anabaena circinalis in some turbid freshwater river[J]. Freshwater Biology, 2003, 48:164-174.
    [13] Escartin J, Aubrey D G.. Flow structure and dispersion within algal mats. Estuarine[J]. Coastal and Shelf Science, 1995. 40:451-172.
    [14]李崇明,黄真理,张晟等.三峡水库藻类“水华”预测[J].长江流域资源与环境,2007,16(1):1-6.
    [15]吕新华.大型水利工程的生态调度[J].科技进步与对策,2006,7:129-131.
    [16]程根伟,陈桂蓉.试验三峡水库生态调度,促进长江水沙科学管理[J].水利学报,2007,10(增):526-530.
    [17]李翀,廖文根,陈大庆等.基于水力学模型的三峡库区四大家鱼产卵场推求[J].水利学报,2007,38(11):1285-1289.
    [18]钮新强,谭培伦.三峡工程生态调度的若干探讨[J].中国水利,2006,14:8-11.
    [19]胡征宇,蔡庆华.三峡水库蓄水前后水生态系统动态的初步研究[J].水生生物学报,2006,30(1):1-6.
    [20]李锦绣,禹雪中.三峡库区支流富营养化模型开发研究[J].水科学进展,2005,16(6):777-783.
    [21]董哲仁,孙东亚,赵进勇.水库多目标生态调度[J].水利水电技术,2007,1(38): 28-32.
    [22]李建坤.日调节水电站对区域水资源和水环境的影响分析[J].湖南水利水电,2005,1:38-39.
    [23] A.哈尔比等.水电站调峰对河流生态的影响[J].水利水电快报. 2002,(231):3-5.
    [24]邹进,刘可真.水资源系统运行与优化调度[M].北京:冶金工业出版社,2006.
    [25]钟成华等.三峡水库蓄水后大宁河水体富营养化调查及评价[J].灌溉排水学报. 2004,23(3):20-23.
    [26]李永建,李斗果,王德蕊.三峡工程Ⅱ期蓄水对支流富营养化的影响[J].西南农业大学学报, 2005,27(4):474-478.
    [27] Hamrick, J. M., 1992: A three-dimensional environmental fluid dynamics computer code: theoretical and computational aspects, Special report No.317 in Applied Marine Science and Ocean Engineering.
    [28] Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems.Rev. Geophys. Space Phys, 20, 851-875.
    [29]陈景秋,赵万星,季振刚.重庆两江汇流水动力模型[J].水动力学研究与进展,2005,20(12):829-835.
    [30]黄颖,李义天,韩飞.三峡电站日调节对下游河道水面比降的影响[J].水运工程学报,2004,9(3):62-66.
    [31]汤维贵,田力.三峡—葛洲坝梯级电站调峰分析[J].中国三峡建设,2004,5:63-64.
    [32] Simon M. Mitrovic, Bruce C. Chessman, Lee C. Bowling and Richard H. Cooke. 2006: Medelling suppression of cyanobacterial blooms by flow management in a lowland river. River Res. Applic. 22: 109-114.
    [33]黄真理,李玉梁等.三峡水库水质预测和环境容量计算[M],北京:中国水利水电出版社,2006.
    [34]槐文信,赵明登,童汉毅.河道及近海水流的数值模拟[M],北京:科学出版社,2004.
    [35]杨景芳.微机计算水力学[M],大连:大连理工出版社,1991.
    [36]穆祥鹏.复杂输水系统的水力仿真与控制研究[D]:[博士学位论文],天津:天津大学. 2008.
    [37]练继建,王俊,万五一等.变时步的特征线法计算复杂输水系统的水力过渡过程[J].水利水电技术,2003,34(9):12-14.
    [38]傅国伟.河流水质数学模型及其模拟计算[M],北京:中国环境科学出版社,1987.
    [39]彭泽洲,杨天行,梁秀娟等.水环境数学模型及其应用[M],北京:化学工业出版社,2007.
    [40]马超.梯级水电站短期优化调度和竞价策略研究[D]:[硕士学位论文],天津:天津大学,2006.
    [41]解可新,韩健,林友联.最优化方法[M],天津:天津大学出版社,2004.
    [42]徐玖平,李军.多目标决策的理论与方法[M],北京:清华大学出版社,2005.
    [43]杨海林.基于遗传算法的河流水质模型参数估值系统研究[D]:[硕士学位论文],西华大学,2003.
    [44]王小平,曹立明.遗传算法理论、应用与软件实现[M],西安:西安交通大学出版社,2002.
    [45]雷英杰. MATLAB遗传算法工具箱及应用[M],西安:西安电子科技大学出版社,2005.
    [46]金相灿.中国湖泊环境[M],北京:海洋出版社,1995.
    [47]王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准[J].中国富营养化评价方法及分级标准,2002,18(5):47-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700