掺硼金刚石膜的制备及其电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用直流热阴极CVD方法,以液态硼酸三甲酯作为硼源,在P型(100)硅衬底上制备了掺硼金刚石(BDD)膜。利用扫描电子显微镜(SEM)、激光拉曼光谱仪、X射线衍射仪(XRD)等方法对样品进行了表征,利用电化学工作站测试了掺硼金刚石膜的电化学特性,利用BDD电极降解目标污染物(硝基苯),测试其降解效率。具体工作如下:
     1、研究工艺参数(硼酸三甲酯流量、基片温度和反应气压)对掺硼金刚石膜生长特性的影响。结果表明,硼酸三甲酯流量和基片温度这两项工艺参数对制备掺硼金刚石膜的影响较大,而反应气压的影响较小。
     硼掺杂明显的改变了金刚石薄膜的形态,晶格发生了畸变,随着硼酸三甲酯流量的增加(0~30sccm)晶格常数增大,掺硼金刚石膜的品质呈先上升后下降的趋势,当硼酸三甲酯流量为10sccm时达到最佳。利用电输运特性测试系统对掺硼金刚石膜的电阻率进行了测试,发现电阻率随掺硼量增加急剧降低,当硼酸三甲酯流量达到1sccm以后,薄膜表面电阻率基本保持在同一数量级上(100 ?.cm)不再变化。
     基片温度对掺硼金刚石膜的表面形貌影响很大,实验中选择的温度区间是750℃~1050℃,低温时晶粒细小,而高温时晶粒较大。高温会给掺硼金刚石膜带来张应力,且随温度升高逐渐增大。
     2、利用电化学工作站测试掺硼金刚石膜的电化学特性。结果表明,掺硼浓度对掺硼金刚石膜电极的电化学特性有很大的影响,当硼酸三甲酯流量为1sccm时,BDD电极的电势窗口最宽、背景电流最小、析氧电位最高。
     3、利用硝基苯溶液模拟有机废水,质量浓度为36mg/L,利用COD标定仪测定了金刚石膜电极对硝基苯的降解效果。
In this paper, Boron doped diamond films were prepared on P(100) silicon substrates by DC hot cathode CVD system, B(OCH3)3 was the doped chemical. The samples we prepared were characterized by scanning electronic microscope (SEM), X-ray diffractometer (XRD), Raman spectrum microscopy etc. The electrochemical performance of BDD electrodes were tested by electrochemical workstation. The degradation efficiency of nitrobenzene at BDD electrodes was measured. The main work we done showed as follow:
     1. The influence of B(OCH3)3 flow rate, substrate temperature and gas pressure was studied. It shows that B(OCH3)3 flow rate and substrate temperature were the main factors that effect on the growth of boron doped diamond films.
     The doped boron atom changed the structure of diamond significantly. As the flow rate of B(OCH3)3 increased, which ranges from 0 to 30 sccm, the lattice constant rises from 0.35665nm to 0.35746nm, the crystal grain surface turned smooth and the Raman spectrum suggests that the quality of diamond films has a trend of descending after ascending. The surface resistivity of BDD films decreased rapidly, and finally gets stable when the flow rate greater than 1sccm, which reaches about 100 ?·cm.
     Substrate temperature ranges from 750℃to 1050℃, the crystal grain enlarged with the substrate temperature rise up, and the tensile stress was also increased.
     2. The electrochemical performance of BDD electrode was tested by electrochemical workstation. B(OCH3)3 flow rate effects on the performance of BDD electrode strongly. The electrode has the widest potential window, lowest background current, highest oxygen evolution potential when the B(OCH3)3 flow rate is 1 sccm.
     3. We chose 36mg/L nitrobenzene solution as the pollutant. The degradation of nitrobenzene on BDD electrode was measured by COD analyzer.
引文
[1]郑友进,贾晓鹏,马红安.添加剂LiF对FeNi粉末触媒合成金刚石的影响[J].功能材料,2009, 40(8):1359-1360.
    [2]杨小倩,胡晓君,沈荷生等.CVD金刚石薄膜的掺硼研究[J].机械工程材料,2002,26(1):16-18
    [3]王光祖.人造金刚石合成技术开拓创新的五十年[J].金刚石与磨料磨具工程, 2004, 12(6):73-77.
    [4] F.P.Bundy, H.T.Hall, H.M.Strong, etal. Man-made diamond[J]. Nature, 1955, 176: 51-55.
    [5]王光祖,汪静,陶刚.不断发展的金刚石合成与应用技术[J].超硬材料与宝石, 2002, 9(3):1-4.
    [6]中国机械工业年鉴编辑委员会.中国磨料磨削工业年鉴[M].北京:机械工业出版社, 1999.
    [7]李发宁,张鹤鸣,等.宽禁带半导体金刚石[J]电子科技,2004,7:43-49.
    [8]陈光华,张阳.金刚石薄膜的制备与应用[M].北京:化学工业出版社,2004.
    [9] J.T.Huang, S.C.Hu et al. Desegregation of boron at the grain boundaries of the in situ boron doped diamond films[J]. Applied Physics Letters, 1995, 67(16):2382-2384.
    [10] H.H.Hsieh,Y.K.Chang.X-ray-absorption studies of boron-doped diamond films[J]. Applied Physics Letters, 1999,75(15):2229-2231.
    [11] F.Brunet, A.Deneuville, P.Germi et al. Variation of the cell parameter of polycry- stalline boron doped diamond films[J].Applied Physics, 1997,81(3):1120-1125.
    [12] B.V. Spitsyn, L. Bouilov, L.B.V. Derjaguin. Vapor growth of diamond on diamond and other Surfaces[J].Journal of Crystal Growth.1981,52:219-226.
    [13] J.A.N.Goncalves, G.M. Sandonato. Characterization of boron doped CVD diamond films by Raman spectroscopy and X-ray diffractometr[J]. Diamond and Related Materials, 2002, 11:1578-1583.
    [14] S.J.Breuer,P.R.Briddon. Ab initio investigation of the native defects in diamond and self-diffusion [J].Physical Review B.1995, 51(11):6984-6994.
    [15] X.J. Hu, Y.B. Dai, R.B. Li et al. A molecalar dynamics study of interstitial boron indiamond[J]. Physics Review B, 2003, 327:39-42.
    [16] C.Weigel, D.Peak, J.W. Corbett et al. Carbon interstitial in the diamond lattice[J]. Physics Review B, 1973, 8:2906-2915.
    [17] D.J.Chadi.Self-interstitial bonding configurations in GaAs and Si[J]. Physics Re- view B, 1992,46:9400-9407.
    [18] S.Matsumoto, Y.Sato,M.TsuTsumi, N.Setaka. Growth of diamond particals from methane-hydrogen gas[J]. Journal of Material Science, 1982, 17:3106-3111.
    [19] M.Kamo, Y.Sato, S.Matsumoto, N.Setaka. Diamond synthesis from gas phase in microwave plasma[J].Journal of Crystal Growth, 1983, 62:642-645.
    [20] E.A.Ekimov, V.A.Sidorov, E.D.Bauer, N.N.Mel'nik, N.J.Curro, J.D.Thompson, S.M.Stishov, Super conductivity in diamond[J].Nature,2004,428:542-547.
    [21] Y.Takano, M.Nagao, I.Sakaguchi, M.Tachiki, T.Hatano, K.Kobayashi, H.Umezawa, H.Kawarada, Super conductivity in CVD Diamond Thin Film Well-Above Liquid Helium Temperature [J].Applied Physics Letters, 2004,85:2851-2856.
    [22] N.Vinokur, B.Miller, Y.Avyigal et al. Electrochemical Behavior of Boron‐ Doped Diamond Electrodes [J]. Journal of The Electrochemical Society, 1996, 143: 1238-1243.
    [23] G.M.Swain. Electrochemistry and the environment[J]. Journal of The Electroche- mical Society, 1994, 141: 3382-3386
    [24] T.N.Rao, T.Miwa et al, Fabrication of Through-Hole Diamond Membranes by Plasma Etching Using Anodic Porous Alumina Mask[J]. Analytical Chemistry, 1999, 71: 2506-2511.
    [25] J.Xu, Q.Chen. The Structure and Electrochemical Behavior of Nitrogen- Containing Nanocrystalline Diamond Films Deposited from CH4/N2/Ar Mixtures [J]. Analytical Chemistry, 1998, 70: 3146-3152.
    [26] A.M. Polcaro, P.C. Ricci, S. Palmas et al. Characterization of boron doped diamond electrodes during oxidation processes: Relationship between electrochemical activity and ageing time[J].Thin Solid Films, 2006, 515:2073-2078.
    [27]李春燕,吕宪义,金曾孙等.掺硼多晶金刚石膜的电化学性能研究[J].高等学校化学学报,2006,27(11):2136-2139.
    [28] V.A.Pedrosa, L.Codognoto, S.A.Machado et al. A comparative study of 4-nitro Phenol quantification in Pure and natural waters[J].Joumal of Electroanalyticalchemistry.2004,573(l):11-18.
    [29]胡陈果.高硼掺杂金刚石膜电极的电化学应用研究[J].物理学和高新技术,2002,31(2):93-96.
    [30]李学敏,金刚石薄膜电极的电化学特性及其在污水处理中的应用研究[D].博士学位论文,清华大学,2004.
    [31]金曾孙,吕宪义,邹广田等.热阴极辉光等离子体化学相沉积制备金刚石膜的工艺,中国发明专利CN94116283.4,1995-09-06.
    [32]白亦真,金曾孙,姜志刚等.热阴极辉光放电对金刚石膜沉积的影响[J].材料研究学报,2003,17 (5):537-540.
    [33]吕宪义,金曾孙,郝世强等.氧等离子体对金刚石膜的刻蚀研究[J].新型碳材料,2003,18(3): 191-194.
    [34] R.E Rowles, S.T. Komarov,et al. Mechanism of surface smoothing of diamond by a hydrogen plasma[J]. Diamond and Related Materials, 1997(6):791-795.
    [35] Donmelly C M, Mccullough R W, Gedoles J. Etching of graphiteand diamond by thermal energy hydrogen atoms[J]. Diamond and Related Materials, 1997(6): 787-790.
    [36]戴达煌,周克崧等.金刚石薄膜沉积制备工艺及应用[M],北京:冶金工业出版社,2001.
    [37]王季陶,张卫,刘志杰等.金刚石低压气相生长的热力学耦合模型[M],北京:科学出版社,1998.
    [38] A.Sawabe,H.Yasuda,T.Inuzuka,et al. Growth of Diamond Thin Films in a DC Discharge Plasma [J].Applied Surface Science 1988, 33/34:539-545.
    [39]刘峰斌,不同表面端基掺硼金刚石薄膜的微观结构及性能[D].博士学位论文,清华大学,2000.
    [40]白亦真,金曾孙,姜志刚等.热阴极辉光放电对金刚石膜沉积的影响[J].材料研究学报,2003,17 (5):537-540.
    [41] H.A.Hoff, A.A.Moitish, J.S.Batle, et al. Comparative fractography of chemical vapor and combustion deposited diamond films [J]. Journal of Materials Research, 1990, (5):2572- 2588.
    [42]廖克俊,王万录,张振刚等.热灯丝CVD金刚石膜硼掺杂效应研究[J].物理学报.1996, 45 (10):1771-1776.
    [43]王玉光,化学气相合成金刚石膜的特性研究[D].博士学位论文,中国科学院物理研究所,2000.
    [44] M.Bernard, A.Deneuville, P.Muret, Non-destructive determination of the boron concentration of heavily doped metallic diamond thin films from Raman spectroscopy [J]. Diamond and Related Materials 2004, 13(2): 282-286.
    [45] M.Bernard, C.Baron, A.Deneuville, About the origin of the low wave number structures of the Raman spectra of heavily boron doped diamond films[J]. Diamond and Related Materials 2004 (13) 896–899.
    [46]刘树林、张华曹、柴常春.半导体器件物理[M].北京:电子工业出版社,2005
    [47] H.Kiyouta, E.Matsushima, K.Sato, etal. ElectricalProperties of B-doped Homoe- pitaxial Diamond (001) Film[J].Diamond andRelatedMaterials,1997,6: 1753-1758.
    [48] C.F. Chen, S.H.Chen Electrical Properties of Boron-doped Diamond Films After Annealing Treatment[J].Diamond Related Materials,1995,4:451-455.
    [49]彭鸿雁,赵立新,金曾孙等.激光功率密度对类金刚石膜结构性能的影响[J].物理学报,2003,54(9):17-19.
    [50] C.Michael, et al. Standard Electrochemical Behavior of High-Quality, Boron-Doped Polycrystalline Diamond Thin-Film Electrodes[J].Analytical Chemistry,2000, 72:3793-3804.
    [51] F.Beck, W.Kaiser, H.Krohn. Boron doped diamond (BDD)-layers on titanium substrates as electrodes in applied electrochemistry[J]. Electrochimica Acta 2000, 45:4691-4695.
    [52]胡晓君,曹华珍,郑国渠等.掺硼浓度对金刚石薄膜电极电化学性能影响的研究[J].高校化学工程学报2006,20(6):932-937.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700