自主式水下航行器的最优编队控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究多自主式水下航行器(Autonomous underwater vehicles,AUVs)编队中的轨迹跟踪控制问题与能量最省控制问题。AUV的动态特性是一类比较复杂的非线性系统,状态向量相互之间的耦合性很高,控制难度较大。本文首先综述了国内外AUV控制研究领域的最新成果,对AUV航行中所涉及的多个因素进行数学建模,然后在模型基础上对AUV提出了多种控制要求,并给出了各种要求下系统控制律的求解过程。文章从不同尺度考虑了不同机动类型的AUV在不同编队模式下对应的时滞系统的最优控制问题,对多AUV编队与时滞系统的相关研究做出了贡献。本文主要的研究内容和创新点现概括如下:
     1.化简了六自由度AUV运动学和动力学系统的数学模型,建立了海浪力干扰模型,并考虑了时滞对数学模型的影响。通过对Fossen提出的六自由度AUV模型的简化,给出了合理假设条件下四自由度的AUV非线性数学模型,降低了控制复杂度;依据海浪力学理论,得出了海浪力作为外界扰动系统的一般状态空间描述形式;根据AUV实验数据和水声通信理论,给出了AUV航行过程中时滞的估计,及其在AUV运动系统中的数学表现形式。
     2.研究了一类小尺度下AUV非线性时滞系统的有限时间点到达问题。视AUV运动方程为AUV姿态控制方程与轨迹控制方程组成的级联系统,利用先控制姿态后跟踪轨迹的方法,实现非线性控制问题的线性化。接下来考虑时滞对AUV系统的影响,对线性化模型进行修正使其更贴近实际系统。最后对轨迹控制过程提出有限时间到达的问题,并给出AUV最优控制律的设计方案。用Matlab仿真实例验证了设计方法的有效性。
     3.考虑了一类二维水平面上带有队形约束条件的多AUV编队最优控制问题。提出了地坐标系下描述队形约束条件的控制性能指标,设计以速度为输入量的控制律代替驱动力控制,将AUV动态模型转换为非线性低耦合系统。针对控制要求设计控制器实现最优跟踪控制,并给出了数值仿真实例与轨迹效果图,验证了控制方法的可行性。
     4.提出了“观察者”编队模式,建立了一类大尺度下编队跟踪控制模型。对AUV系统进行了离散化处理,提出了一类含有等状态与控制时滞的离散系统的最优跟踪问题。在求解最优控制律时,将扰动下含有状态与输入时滞的离散系统进行模型转化,使之变成一个无时滞的系统。对该系统求解所得结果为一前馈反馈控制律。仿真结果表明所设计的控制律的有效性。
     5.讨论了大尺度网络环境下AUV的远程能量最省控制问题。首先考虑了大尺度条件下水声通信产生的网络诱导时滞对AUV二阶动力模型的影响,建立了含有时滞的控制模型,并提出最小能量控制的最优性能指标。在控制律设计过程中,首先将系统转换为无时滞状态向量描述的形式,然后通过设计新状态描述的无时滞系统的最优控制律,使AUV系统能够在完成预定要求的同时控制能量输出最省。最后我通过仿真实例证明这套方法的有效性。
     6.研究了含有多时滞影响的多AUV能量最省编队控制问题。描述了“指挥者”编队模式,建立了含有多状态时滞与多控制时滞的AUV集中编队控制系统数学模型,提出了编队能量最省问题。将该问题归纳到一类一般性多时滞时变系统控制问题中,给出该类问题最优控制律的求解方法,得到了最优控制律的解析解形式。通过进行仿真,验证了该算法的有效性。
This paper considers a class of trajactory tracking control and minimum-energy controlproblem for multiple autonomous underwater vehicles (AUVs) formation. The kinematics modelof AUV is a complex non-linear system which has strong coupling between state variables. It’s avery difficult problem to design an optimal control law for AUV kinematics system. In the paper,many research results are surveyed from the field about AUV control. Considering time-delay’seffects, the kinematics model of AUV is developed. Some novel control problems are proposedbase on the AUV system model with time-delays. At the same time, some approaches areproposed to solve them. The optimal control problem for AUV kinematics system is consideredfrom different scales, driving force types and formation patterns. And that is the paper’scontribution to the research of AUVs formation with time-delays. The organization of this paper isas follows.
     1. The kinematics model of AUV is transformed into a simple one from the six degrees offreedom model proposed by Fossen. The novel model has four degrees of freedom, and fourindependent input variables. The wave force is modeling by two ways. One is treated as adisturbance from external system. The other is treated as a part of input vector. Beyond that, thetime-delays’ effect is described in the kinematic model of AUV according to the experiment dataand underwater acoustic communication.
     2. A class of point-arrive problem was proposed in this section. The AUV kinematic model isa nonlinear system with time-delays which is considered in a small scale. First, the kinematic model of AUV is treated into a cascade system composed of attitude control part and trajectorycontrol part. Then, the approach is proposed like that, controlling the attitude of AUV stable to thereference one at first. After that, controlling the trajectory to follow the reference one underpoint-arrive demand. Next an optimal controller is designed to solve the control problem.Simulation results demonstrate that the approach is simple and effective.
     3. An optimal control problem of multiple AUVs with formation constraint is considered inthis section. First, a reference feasible trajectory for the position and orientation based on velocitycontrol is planned so that it is consistent with vehicle dynamics. Then an optimal performanceindex is proposed to pay attention to both tracking quality and formation constraint. In thefollowing the optimal controller is designed to solve the problem. Using the controller wedemonstrate the physical realization of control system. Simulation results validate that theproposed formation methodology is presented and discussed.
     4. An ‘Observer’ formation mode is proposed and modeling in a large scale. The systemmodel is a linear discrete one with input and state delays under disturbance. Consider an optimaltracking control problem for the system. By introducing a variable transformation, the system istransformed into a non-delayed one. The dynamic output feedback control law has been presentedbased on the design idea of the feedforward and feedback optimal control law. Simulation resultsdemonstrate the effectiveness of the contrl law.
     5. The minimum-energy remote control problem of AUV formation is discussed in a largescale. First, the effects of network delays are considered in the kinematic model of remote controlsystem, and a linear model is constructed with input and state delays. Then, a performance indexis proposed to describe the minimum-energy demand. Next, an optimal control law is designed tosolve the problem. At last, simulation results are shown the performance of the optimal controllaw.
     6. Consider a minimum-energy centralization control problem for multiple AUVs formationwith communication delays. A ‘commander’ formation mode is described to realize the centralizecontrol. The mathematic model of AUVs system is given as a time-varying system with multiplestate and input delays. According to the model, a minimum-energy performance index is proposed.The optimal control law and performance index are given in the form of analytic solutions.Simulation results demonstrate the effectiveness of this approach.
引文
[1] Incze M L. Low-cost, man-portable autonomous underwater vehicles for rapid environmentalassessment. Marine Technology Society Journal,2008,42(4):4-11.
    [2] Murphy A J, Landamore M J, Birmingham R W. The role of autonomous underwater vehicles formarine search and rescue operations. Underwater Technology,2008,27(4):195-205.
    [3] Curtin T B, Crimmins D M, Curcio J, et al. Autonomous underwater vehicles: Trends andtransformations. Marine Technology Society Journal,2005,39(3):65-75.
    [4] Yoon S, Qiao C M. Cooperative search and survey using Autonomous Underwater Vehicles (AUVs).IEEE Transactions on Parallel and Distributed Systems,2011,23(3):364-379.
    [5] Giovanini L, Balderud J, Katebi R. Autonomous and decentralized mission planning for clusters ofUUVs. International Journal of Control,2007,80(7):1169-1179.
    [6] Fiorelli E, Leonard N E, Bhatta P, et al. Multi-AUV control and adaptive sampling in Monterey Bay.IEEE Journal of Oceanic Engineering,2006,31(4):935-948.
    [7] Hemond H F, Mueller A V, Hemond M. Field testing of lake water chemistry with a portable and anAUV-based aass spectrometer. Journal of the American Society for Mass Spectrometry,2008,19(10):1403-1410.
    [8] Wood S, Nulph A, Howell B. Application of autonomous underwater vehicles. Sea Technology,2004,45(12):10-14.
    [9] Goodman L, Wang Z. Turbulence observations in the northern bight of Monterey Bay from a smallAUV. Journal of Marine Systems,2009,77(4):441-458.
    [10] Ageev M D. Application of solar and wave energies for long-range autonomous underwater vehicles.Advanced Robotics,2002,16(1):43-55.
    [11] Doole G J, Ramilan T, Pannell D J, et al. Framework for evaluating management interventions forwater-quality improvement across multiple agents. Environmental Modelling and Software,2011,26(7):860-872.
    [12] Edwards J R, Schmidt H, LePage K D. Bistatic synthetic aperture target detection and imaging withan AUV. IEEE Journal of Oceanic Engineering,2001,26(4):690-699.
    [13] Kim K, Choi H S. Analysis on the controlled nonlinear motion of a test bed AUV-SNUUV I. OceanEngineering,2007,34(8-9):1138-1150.
    [14] Li W, Farrell J A, Pang S, et al. Moth-inspired chemical plume tracing on an autonomous underwatervehicle. IEEE Transactions Robotics,2006,22(2):292-307.
    [15] Mayer L A. Frontiers in seafloor mapping and visualization. Marine geophysical researches.2006,27(1):7-17.
    [16]吴正平,关治洪,吴先用.基于一致性理论的多机器人系统队形控制.控制与决策,2007,22(11):1241-1244.
    [17] Lu X Q, Austin F, Chen S H. Flocking in multi-agent systems with active virtual leader andtime-varying delays coupling. Communications Nonlinear Science Numerical Simulation,2011,16(2):1014-1026.
    [18]杨波,方京华.具有通信约束的分布式水下航行器群编队控制.华中科技大学学报,2009,37(2):57-60.
    [19] Akyildiz I F, Pompili D, Melodia T. Underwater acoustic sensor networks: Research challenges. AdHoc Networks,2005,3(3):257-279.
    [20] Chyba M, Haberkorn T, Singh S B, et al. Increasing underwater vehicle autonomy by reducing energyconsumption. Ocean Engineering,2009,36(1),62-73.
    [21] Li J H, Lee P M. Design of an adaptive nonlinear controller for depth control of an autonomousunderwater vehicle. Ocean Engineering,2005,32(17-18):2165-2181.
    [22] Petillot Y, Tena Ruiz I, Lane D M. Underwater vehicle obstacle avoidance and path planning using amulti-beam forward looking sonar. Oceanic Engineering, IEEE Journal of,2001,26(2):240-251.
    [23] Fossen T I. Guidance and control of ocean vehicles [J]. New York,1994.
    [24] Evans J C, Keller K M, Smith J S, et al. Docking techniques and evaluation trials of the SWIMMERAUV: An autonomous deployment AUV for workclass ROVs. Proceedings of the Oceans ConferenceRecord (IEEE),2001.520-528.
    [25] Jones T S. Inspection of composites using the automated ultrasonic scanning system (AUSS).Materials Evaluation,1985,43(6):746-753.
    [26] Cowen S, Briest S, Dombrowski J. Underwater docking of autonomous undersea vehicles usingoptical terminal guidance. Oceans Conference Record (IEEE),1997,2:1143-1147.
    [27] Healey A J. Application of formation control for multi-vehicle robotic minesweeping. Decision andControl,2001. Proceedings of the40th IEEE Conference on. IEEE,2001,2:1497-1502.
    [28] Healey A J, Kim J. Control and random searching with multiple robots. Decision and Control,2000.Proceedings of the39th IEEE Conference on. IEEE,2000,1:340-345.
    [29] Zimmerman R, D'Spain G L, Chadwell C D. Decreasing the radiated acoustic and vibration noise of amid-size AUV. IEEE Journal of Oceanic Engineering,2005,30(1):179-187.
    [30] Zhang Y, Streitlien K, Bellingham J G, et al. Acoustic Doppler velocimeter flow measurement froman autonomous underwater vehicle with applications to deep ocean convection. Journal ofAtmospheric and Oceanic Technology,2001,18(12):2038-2051.
    [31] Willcox J S, Bellingham J G, Zhang Y, et al. Performance metrics for oceanographic surveys withautonomous underwater vehicles. Oceanic Engineering, IEEE Journal of,2001,26(4):711-725.
    [32] Von Alt C J, Grassle J F. LEO-15an unmanned long term environmental observatory. OCEANS'92.Mastering the Oceans Through Technology. Proceedings. IEEE,1992,2:849-854.
    [33] Fodrea L R, Healey A J. Obstacle avoidance considerations for the REMUS autonomous underwatervehicle [C]. ASME,2003.
    [34] Yoerger D R, Jakuba M, Bradley A M, et al. Techniques for deep sea near bottom survey using anautonomous underwater vehicle. International Journal of Robotics Research,2007,26(1):41-54.
    [35] Maki T. Development of advanced secondary cables for the Kaiko. Sea Technology,2006,47(7):32-34.
    [36] Murashima T, Nakajoh H, Takami H, et al.11,000m class free fall mooring system. OCEANS2009-EUROPE. IEEE,2009:1-5.
    [37] Wang X, Shang J, Luo Z, et al. Reviews of power systems and environmental energy conversion forunmanned underwater vehicles. Renewable and Sustainable Energy Reviews,2012,16(4):1958-1970.
    [38] Molnar L, Omerdic E, Toal D. Guidance navigation and control system for the Tethra unmannedunderwater vehicle. International Journal of Control,2007,80(7):1050-1076.
    [39] Xu W, Sun F, Li J. Integrated navigation for an autonomous underwater vehicle carrying syntheticaperture sonar. IET Radar, Sonar&Navigation,2012,6(9):905-912.
    [40] Wernli R L. AUVs-the maturity of the technology [M]. IEEE,1999.
    [41] Woo J, Ageev M D. Development and Preliminary Sea Trial of r OKPO-6000J AUV. Theproceedings of the Second (1997) ISOPE Ocean Mining Symposium: Seoul, Korea,1997: explorationand survey, environment, mining systems and technology, and processing. International Society ofOffshore&Polar Engineers,1997:35.
    [42]李一平,封锡盛.“CR01”6000m自治水下机器人在太平洋锰结核调查中的应用.高技术通讯,2001,11(1):85-87.
    [43]李一平,燕奎臣.“CR-02”自治水下机器人在定点调查中的应用.机器人,2002,24(5):386-390.
    [44]段国强.智能水下机器人(AUV)自救模糊专家系统仿真研究[D].华中科技大学,2005.
    [45] Vanni F, Aguiar A P, Pascoal A. Nonlinear motion control of multiple Autonomous UnderwaterVehicles. Proceedings of the7th IFAC Conference on Control Applications in Marine Systems,2007.75-80.
    [46] Lapierre L, Jouvencel B. Robust nonlinear path-following control of an AUV. IEEE Journal ofOceanic Engineering,2008,33(2):89-102.
    [47] Repoulias F, Papadopoulos E. Trajectory planning and tracking control of underactuated AUVs.Robotics and Automation,2005. ICRA2005. Proceedings of the2005IEEE International Conferenceon. IEEE,2005:1610-1615.
    [48] Pettersen K Y, Egeland O. Time-varying exponential stabilization of the position and attitude of anunderactuated autonomous underwater vehicle. Automatic Control, IEEE Transactions on,1999,44(1):112-115.
    [49] Pettersen K Y, Egeland O. Position and attitude control of an underactuated autonomous underwatervehicle. Decision and Control,1996, Proceedings of the35th IEEE. IEEE,1996,1:987-991.
    [50] Repoulias F, Papadopoulos E. Planar trajectory planning and tracking control design forunderactuated AUVs. Ocean Engineering,2007,34(11):1650-1667.
    [51] Biggs J, Holderbaum W. Optimal kinematic control of an autonomous underwater vehicle. IEEETransactions on Automatic Control,2009,54(7):1623-1626.
    [52] Binney J, Krause A, Sukhatme G S. Informative path planning for an autonomous underwater vehicle.Proceedings of the IEEE International Conference on Robotics and Automation ICRA,2010.4791-4796.
    [53] Soulignac M. Feasible and Optimal Path Planning in Strong Current Fields. IEEE Transaction onRobotics.2011,27(1):89-98.
    [54] Samson C. Control of chained systems application to path following and time-varyingpoint-stablilization of mobile robots. IEEE Transactions on Automatic Control,1995,40(1):64-77.
    [55] Lapierre L, Soetanto D. Nonlinear path-following control of an AUV. Ocean Engineering,2007,34(11-12):1734-1744.
    [56] Fossen T I, Breivik M, Skjetne R. Line-of-sight path following of underactuated marine craft.Proceedings of the6th IFAC MCMC, Girona, Spain,2003.244-249.
    [57] Bian X Q, Cheng X Q, Jia H M, et al. A bottom-following controller for underactuated AUV based oniterative sliding and increment feedback. Control and Decision,2011,26(2):289-292.
    [58] Aguiar A P, Hespanha J P, Pascoal A M. Switched seesaw control for the stabilization ofunderactuated vehicles. Automatica,2007,43(12):1997-2008.
    [59] Moreau L. Stability of multiagent systems with time-dependent communication links. IEEETransactions on Automatic Control,2005,50(2):169-182.
    [60]李开生,张慧慧.双体多驱动小车非完整约束点镇定问题.机器人,2004,26(5):425-433.
    [61] Sun S L, Cui P Y. Path tracking and a practical point stabilization of mobile robot. Robotics andComputer-Integrated Manufacturing,2004,20(1):29-34.
    [62] Aguiar A P, Pascoal A M. Dynamic Positioning and Way-Point Tracking of Underactuated AUVs inthe Presence of Ocean Currents, International Journal of Control,2007,80(7):1092-1108.
    [63] Pettersen K Y, Fossen T I. Underactuated Dynamic Positioning of a Ship-Experimantal Result, IEEETransactions on Control Systems Technology,2000,8(5):856-863.
    [64] Lindegaard K P, Fossen T I. A model based wave filter for surface vessels using position, velocity andpartial acceleration feedback, Proceedings of the IEEE Conference on Decision and Control,2001,1:946-951.
    [65] Jiang Z P. Global tracking control of underactuated ships by Lyapunov’s direct method, Automatica,2002,38(1):301-309.
    [66] Desai J P, Ostrowski J, Kumar V. Controlling formation of multiple mobile robots. Proceedings ofIEEE International Conference on Robotics and Automation,1998.2864-2869.
    [67] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. International Journal ofRobotics Research,1986,5(1):290-298.
    [68] Edwards D B, Bean T A, Odell D L, et al. A leader-follower algorithm for multiple AUV formations.Autonomous Underwater Vehicles,2004IEEE/OES,2004.40-46.
    [69] Desai J, Ostrowski J P, Kumar V. Modeling and control of formations of nonholonomic mobile robots.IEEE Transactions on Robotics and Automation,2001,17(6):905-908.
    [70] Andrea M, Enrico S, Alessio T. Autonomous underwater vehicle teams for adaptive ocean sampling: adata-driven approach. Ocean Dynamics,2011,61(11):1981-1994.
    [71] Beard R W, Lawton J, Hadaegh, F. Y.. A coordination architecture for spacecraft formation control.IEEE Transactions on Control Systems Technology,2001,9(6):777-790.
    [72] Ren W, Beard R W. Decentralized scheme for spacecraft formation flying via the virtrual structureapproach. Journal of Guidance, Control and Dynamics,2004,27(1):73-82.
    [73] Goodridge S G. A fuzzy behavior-based nervous system for an autonomous mobile robot [D]. NorthCarolina State University,1994.
    [74] Balch T, Arkin R C. Behavior-based formation control for multi-robot teams. IEEE Transaction onRobotics and Automation,1998,14(6):1-15.
    [75] Su G K, Suzuki I. Distributed algorithms for formation of geometric patterns with many mobile robots.Journal of Robotic Systems,1996,13(3):127-139.
    [76] Dunbar W B, Murra Y R M. Distributed receding horizon control with application to multi-vehicleformation stabilization. Automatica,2006,42(4):549-558.
    [77] Kumar R P, Kumar C S, Sen D, et al. Discrete time-delay control of an autonomous underwatervehicle: Theory and experimental results. Ocean Engineering,2009,36(1):74-81.
    [78] Healey A J, Marco D B. Experimental verification of mission planning by autonomous missionexecution and data visualization using the NPS AUV II. Autonomous Underwater VehicleTechnology,1992. AUV'92., Proceedings of the1992Symposium on. IEEE,1992:65-72.
    [79] Ghabcheloo R, Aguiar A P, Pascoal A, et al. Coordinated path-following in the presence ofcommunication losses and time delays. SIAM Journal on Control and Optimization,2009,48(1):234-265.
    [80] Glegg S A L, Olivieri M P, Coulson R K, et al. A passive sonar system based on an autonomousunderwater vehicle. Oceanic Engineering, IEEE Journal of,2001,26(4):700-710.
    [81] Richard J P. Time-delay systems: an overview of some recent advances and open problems,Automatica,2003,39(10):1667-1694.
    [82] Wu W. Finite difference-based output feedback control for a class of nonlinear systems with samplingtime-delay, Journal of Process Control,2009,19(5):906-913.
    [83] Krstic M. Input delay compensation for forward complete and strict-feedforward nonlinearsystems, IEEE Transactions on Automatic Control,2010,55(2):287-303.
    [84] Dlapa M, Prokop R. Algebraic approach to controller design using structured singular value, ControlEngineering Practice,2010,18(4):358-382.
    [85] Jiang X, Han Q L. On Designing Fuzzy Controllers for a Class of Nonlinear Networked ControlSystems, IEEE Transactions on Fuzzy Systems,2008,16(4):1050-1060.
    [86]唐功友,王芳.具有小时滞的线性大系统的次优控制.控制理论与应用,2003,20(1):121-124.
    [87] Yue D, Han Q L. Delayed feedback control of uncertain systems with time-varying input delay,Automatica,2005,41(2):233-240.
    [88] Basin M, Rodriguez-Gonzalez J. A closed-form optimal control for linear systems with equal stateand input delays, Automatica,2005,41(5):915-920.
    [89] Basin M, Rodriguez-Gonzalez J, Martinez Zuniga R. Optimal controller for linear systems with timedelays in input and observations, Dynamics of Continuous, Discrete and Impulsive Systems,2005,12B:1-14.
    [90] Basin M, Rodriguez-Gonzalez J. Optimal control for linear systems with multiple time delays incontrol input, IEEE Transactions on Automatic Control,2006,51(1):91-97.
    [91] Basin M, Pérez J. An optimal regulator for linear systems with multiple state delays, Dynamics ofContinuous, Discrete and Impulsive Systems,2007,14A(S2):279-284.
    [92] Basin M, Pérez J. An optimal regulator for linear systems with multiple state and input delays,Optimal Control Applications and Methods,2007,28(1):45-57.
    [93] Tang G Y. Suboptimal control for nonlinear systems: a successive approximation approach. Systemsand Control Letters,2005,54(5):429-434.
    [94] Tang G Y, Wang H H. Successive approximation approach of optimal control for nonlineardiscrete-time systems. International Journal of Systems Science,2005,36(3):153-161.
    [95]刘永清,唐功友.大型动力系统的理论与应用:滞后、稳定与控制[J].华南理工大学出版社,1992.
    [96] Zhang H S, Duan G R, Xie L H. Linear quadratic regulation for linear time-varying systems withmultiple input delays, Automatica,2006,42(9),1465-1476.
    [97] Zhang H S, Xie L H. Control and estimation for systems with input/output delays [M]. Berlin:Springer,2007.
    [98] Yanushevsky R T. Lyapunov's approach to analysis, synthesis and robustness of nonlinear systemswith delays. Nonlinear Analysis,1997,30(3):1469-1478.
    [99] Slater G L, Wells W R. On the Reduction of Optimal Time-Delay systems to ordinary ones, IEEETransactions on Automatic Control,1972,17(1),154-155.
    [100]杨熙鑫.自主式水下航行器的点镇定及编队控制研究[D].中国海洋大学,2012.
    [101] Huang C M., Tsai J S H, Shieh L S. The observer-based linear quadratic sub~optimal digital trackerfor analogy systems with input and state delays. Optimal Control Applications and Methods,2003,24(4):197-236.
    [102] Marzban H R, Razzaghi M. Optimal control of linear delay systems via hybrid block-pulse andLegendre polynomials. Journal of the Franklin Institute,2004,341(3):279-293.
    [103] Singly T, Vadali S R. Robust time-optimal control: frequency domain approach. Journal of Guidance,Control, and Dynamics,1994,17(2):346-353.
    [104] Tsai J S H, Shieh C S, Sun Y Y. Observer-based hybrid control of sampled-data uncertain system withinput time delay. International Journal of General Systems,1999,28(4-5):315-349.
    [105] Kumar R P, Kumar C S, Sen D. A Discrete time-delay control of an autonomous underwater vehicle:Theory and experimental results. Ocean Engineering,2009,36(1):74-81.
    [106] Xiao F, Wang L. Asynchronous consensus in continuous-time multi-agent systems with switchingtopology and time-varying delays. IEEE Transactions on Automatic Control,2008,53(8):1804-1816.
    [107] Zhang L C, Xu D M, Li J, et al. Design and experiment of automatic pilot for long-rang AUVs.Proceedings of the3rd IEEE Conference on Industrial Electronics and Applications,2008.1824-1827.
    [108] Healey A J, Lienard D. Multivariable sliding-mode control for autonomous diving and steering ofunmanned underwater vehicles. IEEE Journal of Oceanic Engineering,1993,18(3):327-339.
    [109] K llstr m C G, str m K J, Thorell N E, et al. Adaptive autopilots for tankers[J]. Automatica,1979,15(3):241-254.
    [110] Prestero T T J. Verification of a six-degree of freedom simulation model for the REMUS autonomousunderwater vehicle. Massachusetts Institute of Technology,2001.
    [111] Behal A, Dawson D M, Dixon W E, et al. Tracking and regulation control of an underactuated surfacevessel with nonintegrable dynamics. Automatic Control, IEEE Transactions on,2002,47(3):495-500.
    [112] Reyhanoglu M. Exponential stabilization of an underactuated autonomous surface vessel. Automatica,1997,33(12):2249-2254.
    [113] Gorman J C, Cooke N J, Winner J L. Measuring team situation awareness in decentralized commandand control environments. Ergonomics,2006,49(12-13):1312-1325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700