交直流系统次同步振荡建模与机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着“西电东送”发展战略的逐步实施,大容量远距离输电已经成为我国电网的重要特征。为了提高长距离输电线路的输送能力,我国电网广泛采用了串联补偿和高压直流输电技术。然而,由串联补偿和高压直流输电引起的次同步振荡风险成为电网安全稳定运行面临的重要问题。本论文对交直流互联电力系统次同步振荡的建模与机理进行了深入研究,主要工作包括:
     (1)提出了一种应用于次同步振荡分析的汽轮发电机组轴系扭振机械阻尼系数在线测量解耦计算的方法。揭示了并列运行的同型机组发生次同步振荡时存在的同相振荡模式和反相振荡模式现象,并阐明了反相振荡模式的力矩耦合关系。在此基础上,利用反相振荡模式下汽轮发电机组与电网解耦的特性,提出了一种通过主动激发反相振荡模式实现轴系扭振机械阻尼系数在线测量与解耦计算的方法。该方法具有严格的理论基础,且易于现场实施,并在实际系统中得到成功应用,有效的解决了轴系扭振机械阻尼系数在线测量的难题。
     (2)阐明了直流输电系统逆变侧故障引发汽轮发电机组次同步振荡的原因,突破了原有仅认为整流侧故障才引发机组次同步振荡的认识。论文分析了由于逆变侧交流系统扰动引起直流输电系统换相失败,进一步导致整流侧汽轮发电机组次同步振荡的物理过程,理论分析结果与实际录波数据一致,验证了理论分析的正确性。
     (3)完成了具有相近扭振频率的多机系统的次同步振荡机理和特性分析。揭示了在具有相近扭振频率的多机系统中,同时存在机网振荡模式和机组间振荡模式,并分析对比了两种不同振荡模式的阻尼特征。分析了决定机组间振荡模式幅值大小的因素及其对轴系扭振严重程度的影响。据此对在实际系统中发生的次同步振荡现象给出了合理、清晰的解释。
     (4)实现了应用于次同步振荡仿真的轴系变机械阻尼建模方法。该方法将轴系扭振机械阻尼系数作为变量代入转子运动方程,实现了轴系扭振机械阻尼系数在仿真过程中可以连续变化的功能,并在实时数字仿真器RTDS上实现。实现了一种发电机转速脉冲信号输出建模方法。该方法可以模拟与实际现场经由发电机轴系齿盘原理一样的转速脉冲输出,并具有同样的动态特性。进一步针对某大型煤电基地经交直流外送的次同步振荡问题,建立仿真模型,并开展相关次同步振荡机理与特性分析,分析结论与现场实际情况吻合。
With the carrying out of West-East electricity transmission project, large capacity and long distance electricity transmission have been the characteristic of Chinese power grids. The series compensation capacitor and HVDC are widely used in Chinese power grids to increase the transmission capability of long distance lines, which might cause subsynchronous oscillation (SSO) risks to the security and stability of power systems. Simulation modeling and mechanism analysis of subsynchronous oscillations in DC/AC power systems are studied and proposed in this dissertation.
     (1) An on-line measurement approach of generators'torsional mechanical damping coefficients for subsynchronous oscillation analysis is developed in the dissertation. The phenomonen of in-phase mode (IPM) and anti-phase mode (APM) of parallel connected identical turbine-generators is revealed and the torque coupling relationship is analyzed. Based on the above analysis, an active stimulating method for APM is presented and a practical scheme for on-line torsional mechanical damping coefficient measurement is designed. This approach takes advantage of the features of APM and decouples the generators from grids. Moreover, the proposed approach has been implemented in field to realize the on-line measurement of the torsional mechanical damping coefficient.
     (2) The reason for SSO induced by AC faults at inverter station is expounded, which extends the comprehension that only the rectifier station may cause SSO. The process of AC fault at inverter station leading to commutation failure, and then SSO adjacent to rectifier side is analyzed. The SSO in field is duplicated by electromagnetic transient simulation, which verifies the correctness of the theoretical analysis.
     (3) In this dissertation, the mechanism and characteristic of SSO in multi-machine systems with close torsional frequencies are analyzed. The generator-grid mode and the generator-generator mode are revealed and the damping characteristics of the two modes are contrasted. Moreover, the key factor for the torsional risk caused by generator-generator mode, unit combination, is analyzed. Basing on the proposed analysis, the formation mechanism of the SSO phenomenon occurred in actual power plant is expounded clearly.
     (4) The modeling method for generator shaft multi-mass model with alterable mechanical damping for subsynchronous oscillation simulation is developed, by wich the torsional mechanical damping coefficients are treated as variables. The proposed modeling method is implemented at RTDS simulator. A modeling method for generator rotor speed impulse output in real time simulation is developed. By this means, the rotor impulse signals have the same dynamic response characteristics to that generated by the tooth wheel fixed on the turbine generator shafts. Furthermore, a detailed simuation model of an actual DC/AC power transmission system is developed and the mechanism and characteristic analysis of SSO is conducted, which verify the theoretical analysis.
引文
[1]曾培炎.西电东送:开创中国电力新格局[J].中共党史研究,201 0,3:5-14
    [2]刘振亚,张启平.国家电网发展模式研究[J].中国电机工程学报,2010,33(7): 1-11
    [3]刘振亚.特高压电网[M].北京:中国经济出版社,2005:1-10
    [4]印永华.特高压大电网发展规划研究[J].电网与清洁能源,2009,25(10):1-3
    [5]张运洲,白建华.“十二五”电力规划重大问题解析[J].能源技术经济,2011,23(1):1-5,15
    [6]Farmer R G, Schwalb A L, Katz E. Navajo project report on subsynchronous resonance analysis and solutions [J]. IEEE Trans on Power Apparatus and Systems,1977,96(4),1226-1232.
    [7]周孝信,郭剑波,林集明,武守原.电力系统可控串联电容补偿[M].北京:科学出版社,2009:38-45
    [8]P. M. Anderson, R. G. Farmer.电力系统串联补偿[M].北京:中国电力出版社,2008:55-75
    [9]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002:12-23
    [10]Kundur P. Power system stability and control [M]. New York:McGraw-hill, 1994:1025-1029.
    [11]程时杰,曹一家,江全元.电力系统次同步振荡的理论与方法[M].北京:科学出版社,2009:3-19
    [12]Subsynchronous Resonance Working Group of the System Dynamic Performance Subcommittee. Reader's Guide to subsynchronous resonance [J]. IEEE Trans on Power System,1992,7(1),150-157.
    [13]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2005:89-99
    [14]Bahrman M, Larsen E V, Piwko R J, Petel H S. Experience with HVDC-turbine-generator torsional interaction at Square Butte [J]. IEEE Trans on Power Apparatus and Systems,1980,99(3),966-975.
    [15]徐政,张帆.托克托电厂串补送出方案次同步谐振问题的计算和分析[J].中国电力,2006,39(11):21-26
    [16]李宝国,张明,郭锡玖.上都电厂串补输电系统次同步谐振解决方案研究[J]. 中国电力,2008,41(5):75-78
    [17]刘世宇,谢小荣,王仲鸿.我国火电基地串补输电系统的次同步谐振问题[J].电网技术,2008,32(1):5-8
    [18]陈陈.伊敏一大庆500kV输电系统次同步谐振分析[J].电网技术,2000,24(5):10-12
    [19]李立,洪潮.贵广二回直流输电系统次同步振荡问题分析[J].电力系统自动化,2007,31(7):90-93
    [20]胡江溢,黄家裕,卞蓓蕾.阳城500kV输电系统次同步谐振研究[J].电网技术,1998,22(9):27-30.
    [21]李光琦,张士学,张直平.频率扫描方法分析西北330千伏主网高串补度水平下的次同步谐振可能性[J].中国电机工程学报,1992,12(1):57-61.
    [22]龚乐年.浅析机组轴系扭振时的机械(模态)阻尼[J].电网技术,1995,19(8):29-33.
    [23]Walker D N, Bowler C E J, Jackon R L, Hodges D A. Results of subsynchronous resonance test at Mohave [J]. IEEE Trans on Power Apparatus and Systems,1975,94(5):1878-1892.
    [24]Anderson P M,Agrawal B L, Van Ness J E. Subsvnchronous Resonance in Power Systems [M]. New York:IEEE Press,1990:209-211.
    [25]Othman H A, Angquist L. Analytical modeling of thyristor-controlled series capacitor for SSR studies [J]. IEEE Trans on Power Systems,1996,11(1): 119-127.
    [26]Backer D H, Boukarim G E, Aquila R D, Piwko R J. subsynchronous resonance studies and mitigation methods for series capacitor applications [C]. Proceeding of IEEE PES Conference, Durban, South Africa,2005.
    [27]Walker D N, Adams S L, Placek R J, Torsional vibration and fatigue of turbine-generator shafts [J], IEEE Trans on Power Apparatus and Systems,1981, 100(11):4373-4380.
    [28]Ramey D G, Sismour A C, Kung G C, Important parameters in considering transient torques on turbine-generator shaft systems [J]. IEEE Trans on Power Apparatus and Systems,1980,99(1),311-317.
    [29]Perkins B K, Iravani M R. Dynamic modeling of a TCSC with application to SSR analysis [J]. IEEE Trans on Power Systems,12(4):1619-1625.
    [30]Mattavelli P, Stankovic A M, Verghese G C. SSR analysis with dynamic model of thyristor-controlled series capacitor [J]. IEEE Trans on Power Systems,1999, 14(1):200-208.
    [31]Yang X, Chen C. HVDC dynamic modelling for small signal analysis [J]. Proceedings of IEE Gener. Transm. Distrib,2004,151(6):740-746,
    [32]Kim D J, Nam H K, Moon Y H. A practical approach to HVDC system control for damping subsynchronous oscillation using the novel eigenvalue analysis program [J], IEEE Trans on Power Systems,22(4):1926-1934.
    [33]Subsynchronous Resonance Working Group of the System Dynamic Performance Subcommittee, Definations and symbols for subsynchronous oscillation [J], IEEE Trans. Power Apparatus and System, vol.104, no.6, pp. 1326-1333,June.1985.
    [34]K. Mortensen, E. V. Larsen, R. J. Piwko, Field tests and analysis of torsional interaction between the coal creek turbine-generators and the CU HVDC system [J], IEEE Trans. Power App. Syst., vol.100, no.1, pp.336-344, Jan.1981.
    [35]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004:160-164.
    [36]巍家鼎,毕新建,邓兰儒,等.多机电力系统中同步发电机组次同步扭转振荡分析的一种新算法[J].中国电机工程学报,1990,10(5).
    [37]杨帆,王西田,徐英新,等.同型多机电力系统间扭振互作用的等效简化研究[J].中国电机工程学报,2006,26(5):6-11.
    [38]徐政.复转矩系数法的适用性分析及其时域仿真实现[J].中国电机工程学报,2000,20(6):1-4.
    [39]徐政,罗惠群,祝瑞金.电力系统次同步振荡问题的分析方法概述[J].电网技术,1999,23(6):36-39.
    [40]Alden R T H. Nolan P J, Bayne J P. Shaft dynamic in closely coupled identical generators [J]. IEEE Trans on Power Apparatus and Systems,1977,96(3): 721-728.
    [41]Hara T, Kobayashi N, Takie A, et al. Development of a damping analysis program for multi-generator power systems [J]. IEEE Trans on Power Systems, 1994,9(4):1803-1810.
    [42]周长春,徐政,王冠.多机电力系统扭振相互作用的研究综述[J].电网技术,2004,28(6):1-4.
    [43]Jennings G D, Grad S A, Harley R G, et al. Subsynchronous resonance of a power station with two identical generating units [J]. IEE Proceedings, Pt. C, 1986,133(1):33-43.
    [44]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003.
    [45]余贻鑫,王成山.电力系统稳定性理论与方法[M].北京:科学出版社,1999.
    [46]韩祯祥,电力系统稳定[M].北京:中国电力出版社,1995.
    [47]Rustebakke H M, Concordia C. Self-excited oscillations in a transmission system using series capacitors [J]. IEEE Transactions on Power Apparatus and Systems,1970,89(7):1504-1512.
    [48]Yacamimi R. How HVDC schemes can excite torsional oscillations in turbo-alternator shafts. Proceeding of IEE-Generation [J], Transmission and Disturbance,1995,142(6):613-617.
    [49]IEEE Subsynchronous Resonance Working Group.Proposed terms and definitions for subsynchronous oscillations [J]. IEEE Transmissions on Power Apparatus and Systems,1980,99(2):506-511.
    [50]IEEE Subsynchronous Resonance Working Group. Terms, definitions and symbols for subsynchronous oscillations [J]. IEEE Transmissions on Power Apparatus and Systems,1985,104(6):1326-1334.
    [51]IEEE Subsynchronous Resonance Working Group.A bibliography for the study of subsynchronous resonance between rotating machines and power systems [J]. IEEE Transmissions on Power Apparatus and Systems,1976,95(1):216-218.
    [52]IEEE Subsynchronous Resonance Working Group. First supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems [J]. IEEE Transmissions on Power Apparatus and Systems,1979,98(6):1872-1875.
    [53]IEEE Subsynchronous Resonance Working Group. First supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems [J]. IEEE Transmissions on Power Apparatus and Systems,1979,98(6):1872-1875.
    [54]IEEE Subsynchronous Resonance Working Group. Second supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems [J]. IEEE Transmissions on Power Apparatus and Systems,1985,104(2):321-327.
    [55]IEEE Subsynchronous Resonance Working Group. Third supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems [J]. IEEE Transmissions on Power Systems,1991, 6(2):830-833.
    [56]Iravani M R, Agrawal B L, Baker D H. Fourth supplement to a bibliography for the study of subsynchronous resonance between rotating machines and power systems [J]. IEEE Transmissions on Power Systems,1997,12(3):1276-1282.
    [57]Padiyar K R. Analysis of Subsynchronous Resonance in Power Systems. Kluwer Academic Publisher [M],1998.
    [58]周长春,徐政.一种评价多个直流换流站系统次同步扭振相互作用的新指标[J].中国电机工程学报,2004,24(4):6-11.
    [59]周长春,徐政.由直流输电引起的次同步振荡的阻尼特性分析[J].中国电机工程学报,2003,23(10):6-10.
    [60]黄胜利,宋瑞华,赵宏图,周孝信.应用动态向量模型分析高压直流输电系统引起的次同步振荡现象[J].中国电机工程学报,2003,23(7):1-4.
    [61]江全元,程时杰,曹一家,廖晓昕,罗成.基于鲁里叶型Lyapunov函数的电力系统次同步谐振稳定运行域的分析[J].中国电机工程学报,2002,22(8):1-5.
    [62]刘晓东,陈陈.基于采样—数据模型方法的可控串联补偿系统对次同步振荡一致作用的计算分析[J].中国电机工程学报,2001,21(2):1-5.
    [63]江振华,程时杰,傅予力,廖晓听.含有可控串联补偿电容的电力系统次同步谐振研究[J].中国电机工程学报,2000,20(6):47-52.
    [64]徐政,罗慧群,祝瑞金.电力系统次同步振荡问题的分析方法概述[J].电网技术,1999,23(6):36-39.
    [65]吴俊勇,程时杰.具有直流输电的电力系统次同步谐振的研究[J].电力系统自动化,1996.
    [66]傅惟惠,孙德昌,骆远志,黄家裕,朱云生,罗时年,史大军.具有串联补偿的大型电力系统中次同步谐振(SSR)分析[J]..电力系统自动化,1995,19(9):21-25.
    [67]倪以信,王艳春,陈寿孙,张宝霖.多机系统直流输电引起的次同步振荡研究[J].中国电机工程学报,1993,13(2):64-71.
    [68]王晓弘,周孝信.用户自定义建模方法在次同步振荡小扰动分析中的应用[J].电网技术,1993,17(2):27-31.
    [69]张文涛.次同步谐振问题及防止措施[J].电网技术,1989,13(2):59-65.
    [70]Larsen E H, Baker D H. Series compensation operating limits-a new concept for subsynchronous resonance stability analysis [J]. IEEE Transmissions on Power Apparatus and Systems,1980,99(5):1855-1863.
    [71]Achilles R A, Ramirez A R. A in-depth analysis of critical parameters affecting loading SSR countermeasures [J]. IEEE Transmissions on Power Apparatus and Systems,1985,104(2):357-365.
    [72]EI-Serafi A M, Niamet M Y, Hag E. Contribution of power system stabilizers to the damping of torsional oscillations of large turbo-generators [J]. Electric Machines and Power Systems,1986,11(6):451-464.
    [73]Uchida N, Nagao T. A new eigen-analysis mothod of steady-state stability studies for large power systems:A matrix method. IEEE Transmissions on Power Systems,1988,3(2):706-714.
    [74]余耀南.动态电力系统[M].北京:水利电力出版社,1985.
    [75]Pakiyar K R. Analysis of subsynchronous resonance in power systems [M]. Boston:Kluwer Academic Publisher,1989.
    [76]Laughton M A. Matrix analysis of dynamic stability in synchronous multi-machine systems [C]. Proceeding of IEE,1996,113:323-336.
    [77]Undrill J M. Dynamic stability calculation in an artibrary number of interconnected synchronous machines [J]. IEEE Transmissions on Power Apparatus and Systems,1968,87(3):835-844.
    [78]Alden R T H, El-Din H M Z. Multi-machine dynamic stability calculations [J]. IEEE Transmissions on Power Apparatus and Systems,1976,95(5):1529-1534.
    [79]Wang L, Semlyen A. Application of sparse eigenvalue technique to the small signal stability analysis of large power systems [J]. IEEE Transmissions on Power Systems,1990,5(4):635-642.
    [80]Uchida N, Nagao T. A new eigen-analysis mothod of steady-state stability studies for large power systems:A matrix method [J]. IEEE Transmissions on Power Systems,1988,3(2):706-714.
    [81]Zhou E Z, Chen S S, Ni Y X, Zhang B L. Modified selective modal analysis method and its application in the analysis of power system dynamics [J]. IEEE Transmissions on Power Systems,1991,6(3):1189-1198
    [82]夏道止.电力系统分析(下册)[M].北京:中国电力出版社,1994
    [83]陈陈.几种次同步振荡分析方法和工具概述[J].电网技术,1998,2(8):10-13.
    [84]徐政,祝瑞金,罗慧群.华东电网次同步振荡特性研究[J].电网技术,1999,23(7):20-23.
    [85]权白露.直流输电次同步振荡的早期判断[J].高电压技术,1995,21(2):71-73.
    [86]Canay I M. A novel approach to the torsional interaction and electrical damping of the synchronous machine:part one-theory [J]. IEEE Transmissions on Power Apparatus and Systems,1982,101(10):3630-3638.
    [87]倪以信,王艳春,陈寿孙.多机系统HVDC的轴系扭振的扫频—复数力矩分析[J].电力系统及其自动化学报,1997,17(3):175-178.
    [88]倪以信,王艳春,陈寿孙,张宝霖.多机系统直流输电引起的次同步振荡研究[J].中国电机工程学报,1993,13(2):64-71.
    [89]吕士荣,刘晓鹏,郭强,夏道止.含TCSC的电力系统次同步谐振的复转矩系数分析法[J].电力系统自动化,1999,23(12):16-20.
    [90]Canay I M. A novel approach to the torsional interaction and electrical damping of the synchronous machine:part two— application to an artibrary network [J]. IEEE Transmissions on Power Apparatus and Systems,1982,101(10): 3639-3646.
    [91]Lambrecht D, Kulig T. Torsional performance of turbine-generator shafts especially under resonant excitation [J]. IEEE Transmissions on Power Apparatus and Systems,1982,101(10):3689-3702.
    [92]Lee D C, Beaulieu R E, Rogers G J. Effect of generator characteristic on turbine-generator shaft torsionals [J]. IEEE Transmissions on Power Apparatus and Systems,1985,104(6):1255-1259.
    [93]Itelberg Ed, Balda J C, Boje E S, Harley R G. Stabilizing SSR oscillation with a shunt reactor controller for uncertain levels of series compensations [J]. IEEE Transmissions on Power Systems,1988,3(8):936-943.
    [94]Agrawal B L, Farmer R G. Effective damping for SSR analysis of parallel turbine-generators [J]. IEEE Transmissions on Power Systems,1988,3(11): 1441-1448.
    [95]Iravani M R. Coupling phenomenon of torsional modes [J]. IEEE Trans on Power Systems,1989,4(3):881-889.
    [96]Jennings G D, Harley R G. Torsional interaction between non-identical turbine-generator [J]. IEEE Transmissions on Power Systems,1990,5(4).
    [97]Padiyar K R, Varma R K. Damping torque analysis of static Var system controls [J]. IEEE Transactions on Power Systems,1991,6(2):458-465.
    [98]Ge S Y, Chung T S. Optimal Active Power Flow Dispathc Incorporating FACTS Services [C]. ICEE'96, Beijing,1996,909-913.
    [99]Yin Z D, Tong L Y, Chen Y T. A study on the characteristic of TCSC based on digital simulations and physical experiments [C]. International Conference on Poswer System Technology (Powercon), Beijing,1998,328-332.
    [100]吕士荣,刘晓鹏,郭强,夏道止.次同步谐振分析中复转矩系数与特征值之间的关系[J].电力系统自动化,1999,23(12):16-20.
    [101]Ban G, Prikler L, Karady G G. Investigation of the transients in the advanced series compensation scheme [C].1996, CIGRE session 14-21.
    [102]Helbing S G, Karady G G. Investigation of an advanced form of series compensation [J]. IEEE Transmissions on Power Delivery,1997,12(4): 1635-1641.
    [103]Ghosh A, Ledwich G. Modeling and control of thyristor controlled series compensators [C]. IEE Proceeding,1995,142(3):297-304.
    [104]Dommel H W, Digital computer solution of electro-magnetic transients in single and multiphase networks [J]. IEEE Transmissions on Power Apparatus and Systems,1969,88(4):388-399.
    [105]Woodford D A, Gole A M, Menzies R W. Digital simulation of DC links and AC machine models to electro-magnetic transients programs [J]. IEEE Transmissions on Power Apparatus and Systems,1984,103(9):2446-2451.
    [106]黄家裕,陈礼义,孙德昌.电力系统数字仿真[M].北京:水利电力出版社,1995.
    [107]Smith J M. Mathematical modeling and digital simulation for engineers and scientists [M]. New York:John Wiley & Sons Inc.,1977.
    [108]Stott B. Power system dynamic response calculation [C]. Proceedings of the IEEE,1979,67(2).
    [109]Dembart B, Erisman A M, Gate E G, Epton M A, Dommel H. Power system dynamic analysis. Final report on EPRI EI-484(Research Project 670-1),1977.
    [110]Kundur P. Power system stability and control [M]. New York:McGraw-hill, 1994:836-872.
    [111]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002:152-169
    [112]RTDS user's manual. RTDS Technologies. Inc.
    [113]Walker D N, Bower C E J, Baker D H. Torsional dynamics of closely coupled turbine-generators [J], IEEE Trans on Power Apparatus and Systems,1978, 97(4):1458-1466.
    [114]Iravani M R. Coupling phenomenon of torsional modes [J]. IEEE Trans on Power Systems,1989,4(3):881-889.
    [115]Mortensen K, Larsen E V, Piwko R J. Field tests and analysis of torsional interaction between the coal creek turbine-generators and the CU HVDC system [J]. IEEE Trans on Power Apparatus and Systems,1981,100(1):336-344.
    [116]Subsynchronous Resonance Working Group of the System Dynamic Performance Subcommittee. Definations and symbols for subsynchronous oscillation [J]. IEEE Trans on Power Apparatus and Systems,1985,104(6): 1326-1333.
    [117]Kundur P. Power system stability and control [M]. McGraw-hill,1994: 1041-1050.
    [118]R. J. Piwko, E. V. Larsen, HVDC system control for damping of subsynchronous oscillations [J], IEEE Trans. Power Apparatus and System, pp. 2203-2212, July.1982.
    [119]Y.-Y. Hsu and L. Wang, Modal control of an HVDC system for the damping of subsynchronous oscillations [C], IEE Proceeding, vol.136, Pt. C, no 2, pp78-86, Mar.1989.
    [120]Q. Y. Jiang, Y. J. Cao, S. J. Cheng, A genetic approach to design a HVDC supplementary damping controller [J],IEEE Trans. Power Delivery, vol.20, no.2, pp.1059-1064, April.2005.
    [121]S. Svensson, K. Mortensen, Damping of subsynchronous oscillation by an HVDC link, an HVDC simulator study [J], IEEE Trans. Power Apparatus and System, vol.100, no.3, pp.1431-1439, Mar.1981.
    [122]J. Arrillaga, High voltage direct current transmission [M]. The institution of electrical engineers,1998, charper5, pp.100-128.
    [123]E. Rumpf, S. Ranade, Comparison of suitable control system for HVDC stations connected to weak ac systems, part Ⅰ:new control systems [J], IEEE Trans. Power Apparatus and System, vol.91, no.2, pp.549-555,1972.
    [124]E. Rumpf, S. Ranade, Comparison of suitable control system for HVDC stations connected to weak ac systems, part Ⅱ :operational behaviour of the HVDC tramission [J], IEEE Trans. Power Apparatus and System, vol.91, no.2, pp. 555-564,1972.
    [125]L. D. Zhang, L. Dofnas, A novel method to mitigate commutation failures in HVDC Systems [J], Proceedings PowerCon 2002. vol.1, pp.51-56. Oct.2002, pp.51-56.
    [126]周长春,徐政.由直流输电引起的次同步振荡的阻尼特性分析[J].中国电机工程学报,2003,23(10):6-10.
    [127]巍家鼎,毕新建,邓兰儒,等.多机电力系统中同步发电机组次同步扭转振荡分析的一种新算法[J].中国电机工程学报,1990,10(5).
    [128]徐政.复转矩系数法的适用性分析及其时域仿真实现[J].中国电机工程学报,2000,20(6):1-4.
    [129]徐政,罗惠群,祝瑞金.电力系统次同步振荡问题的分析方法概述[J].电网技术,1999,23(6):36-39.
    [130]Alden R T H, Nolan P J. Bayne J P. Shaft dynamic in closely coupled identical generators [J]. IEEE Trans on Power Apparatus and Systems,1977,96(3): 721-728.
    [131]Hara T, Kobayashi N, Takie A, et al. Development of a damping analysis program for multi-generator power systems [J]. IEEE Trans on Power Systems, 1994,9(4):1803-1810.
    [132]周长春,徐政,王冠.多机电力系统扭振相互作用的研究综述[J].电网技术,2004,28(6):1-4.
    [133]Jennings G D, Grad S A, Harley R G. et al. Subsynchronous resonance of a power station with two identical generating units [J]. IEE Proceedings, Pt. C, 1986,133(1):33-43.
    [134]张恒涛.汽轮发电机组轴系扭转振荡的实测技术[J].动力工程,1992,12(3):1-7.
    [135]于达人,王西田,徐基豫,周欢.扭振测量方法的动态特性[J].汽轮机技术,1996,(1):24-27.
    [136]鲍文,王西田,于达仁,杨昆.汽轮发电机组轴系扭振研究综述[J].汽轮机技术,1998(4):193-203.
    [137]王西田,于达仁,鲍文,苏杰先.一种新型的次同步扭振测量方法[J].电力系统自动化,2000(17):1-3.
    [138]于达仁,王西田,鲍文,苏杰先.基于多传感器信息融合技术的汽轮发电机轴系扭振刚性转速的估计[J].中国电机功臣学报,2001,21(5):29-33.
    [139]孙妙平,李群湛,高师湃.串补电路中次同步谐振检测和抑制研究[J].铁道学报,2003(2):107-110.
    [140]Yuan B T, Ni Y X, Wang Y C. A new microprocessor based device for monitoring subsynchronous oscillation in power systems [C].2nd International Conference on Advances in Power System Control,Operation and Management, APSCOM-93,1993(2):712-717.
    [141]Hauer J F, Mittelstadt W A, Piwko R J, Damsky B L, Eden J D. Test results and initial operating experience for the BPA 500kV thyristor controlled series capacitor-modulation, SSR and performance monitoring [C]. IEEE Technical Application Conference and Workshops Northcon95,1995:274-279.
    [142]Schwalb L. Test of performance and operating experience with the Navajo SSR protective equipment [C]. Proceedings of the American Power Referecne,1977, 39(4):1144-1154.
    [143]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002:304-309.
    [144]程时杰,曹一家,江全元.电力系统次同步振荡的理论与方法[M].北京:科学出版社,2009:308-308
    [145]Bowler C E J, Ewart D N, Concordia C. Self-excited torsional frequency oscillation with series capacitors[J]. IEEE Trans on Power Apparatus and Systems,1973,92(5):1688-1695.
    [146]M Szechtam, T Wess, C V Thio, A benchmark model for HVDC studies [C]. AC and DC power transmission,1991.
    [147]Iravani M R. Torsional oscillations of unequally-loaded parallel identical turbine-generators [J]. IEEE Trans on Power Systems,1989,4(4):1514-1524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700