重复使用运载器末端区域能量管理与自动着陆技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重复使用运载器(RLV)在末端区域能量管理与自动着陆段的飞行包线大、飞行状态变化剧烈、动力学特性的不确定性高,且在不同的飞行阶段表现为不同的特性,必须解决飞行过程中的制导与控制问题。本文主要解决重复使用运载器末端区域能量管理(TAEM)与自动着陆段的制导与控制问题。
     为了提高重复使用运载器制导与控制系统的自主性和鲁棒性,借用混合动态系统的概念,形成了层次化、模块化的体系结构。这种基于功能的系统结构,大大提高了系统的自主性和对不确定性的自主决策能力,使整个系统具有较好的鲁棒性,且容易修改与维护,为模块的扩展打下了基础。
     利用质点动力学方程在空间上的描述,形成了基于动压剖面的TAEM轨迹设计方法和能量走廊鲁棒性的分析方法。为了提高轨迹剖面对初始条件不确定性的鲁棒性,形成了在线轨迹生成技术相关的概念,分析了在线轨迹生成技术的思想和设计方法。基于动压剖面的轨迹设计方法可以增大积分步长、减小计算时间,提高轨迹设计的鲁棒性能。
     为了改善重复使用运载器末端区域能量管理段的控制系统性能,给出了基于轨迹线性化的控制系统结构,这种结构包括前馈和反馈控制系统,反馈控制保证系统的稳定性,前馈则可以改善系统的动态性能。采用基于轨迹线性化的控制系统结构,可以改善控制系统的动态性能,提高非线性跟踪能力,既可以满足RLV大飞行包线范围内的稳定性要求,又可以适应RLV高空的低动态特性和飞行状态剧烈变化的特点
     根据末端区域能量管理飞行任务的要求,给出了完备的能量管理制导方案,并沿轨迹剖面对制导规律进行了设计,并对制导回路的鲁棒性进行了分析。结果表明,这种制导策略可以满足不同的能量情形,完成末端区域能量管理的任务要求,同时为制导系统的工程实现提供了一种简明方法。
     根据自动着陆段下滑轨迹的特点,给出了基于高度剖面的自动着陆轨迹设计方法,在高度剖面上规划速度剖面,以满足触地速度的要求。为了分析轨迹的特性,给出了自动着陆轨迹鲁棒性的概念和评价方法,对轨迹鲁棒性进行了分析和评价。
     根据无动力投放自动着陆的任务要求,提出了一种基于在线轨迹生成的制导技术。这种制导技术充分考虑RLV的飞行能力,根据初始状态和末端状态规划轨迹剖面,将轨迹生成与制导策略相结合,形成制导回路,具有较好的自主性、鲁棒性和工程实用性。
     最后,在半物理实时仿真环境中,进行全飞行过程和无动力投放自动着陆试验的事务性仿真。结果表明全系统任务管理逻辑的正确性、制导策略与控制策略的合理性以及制导规律与控制规律的鲁棒性。
For Terminal Area Energy Management (TAEM) and Autolanding of Reusable Launch Vehicle (RLV), the flight envelope is wide, the flight states are variable, and the range of uncertainties is large. RLV shows distinct characteristics in different flight phases, the guidance and control (G&C) problems must be resolved. The thesis aims to resolving G&C problems of Terminal Area Energy Management (TAEM) and Autolanding.
     In order to improve the autonomy and the robustness, using the concept of hybrid dynamic system, the modularization, hierarchical architecture is built. The hierarchy architecture basing on functions decomposition can enhance the capability to autonomously perform and make decisions when in the presence of uncertainties, and make entire system robust and easy to maintain.
     The trajectory design method basing on dynamic pressure profile is formed using the nonlinear equations of motion in space, and the method of energy corridor robust analysis is proposed. In order to improve the trajectory robustness to uncertainties of initial states, the correlative concept about online trajectory design is proposed. The idea and design scheme of online trajectory design is analyzed. The trajectory design method basing on dynamic pressure profile can reduce the step of integral and computational time; improve the robust of trajectory design.
     To improve the performance and robustness of TAEM control system for RLV, the nonlinear tracking control system architecture basing on trajectory linearization is developed. This architecture includes two parts: feed-forward control system and feedback control system, the feedback control system is used to augment the stability and the feed-forward control system improves the transition performance. The control system by trajectory linearization can improve the transition performance, and improve the ability of nonlinear tracking. The control system not only can meet the need of stability in large fligh envelope, but also adapt to the chariacters of slow transition of high attitude and fast flight state varity of entire flight.
     According to the flight task of TAEM, the energy management scheme is proposed, which is robust. The guidance law is designed along the nominal trajectory profile and the guidance robustness is assessed. The results show that the guidance scheme is robust and full, which can complete the task of TAEM. The guidance loop also provides an approach of realizing guidance system in engineering.
     According to the characteristics of autolanding trajectory, the trajectory design method basing on altitude profile is proposed. The velocity profile is planned along altitude profile, which makes the touchdown velocity agree with the desired states. In order to assess the trajectory performance, the concept of autolanding trajectory robustness is proposed, and the trajectory robustness is assessed.
     Adapt to the task of unpowered dropping autolanding, an adaptive guidance technology with online trajectory shaping is developed. This technology takes full advantage of the vehicle’s flight capability; plans trajectory profile between the known initial states and the desired terminal states; combines online trajectory shaping with guidance scheme; creates the adaptive guidance loop.The adaptive guidance system with online trajectory shaping is robust and practical.
     Last, the hardware-in-loop entire flight simulation and unpowered dropping experimentation simulation are completed. The results show that the mission management is logical, the guidance scheme and control scheme is reasonable, the guidance law and control law is robust.
引文
[1]王振国,可重复使用运载器的研究进展,长沙,国防科技大学出版社,2004:1~50。
    [2]江绍东,国外主要新型可重复使用运载器发展概况,中国航天,2003(12):27~31。
    [3]江绍东,韩鸿硕,美国可重复使用运载器现状,中国航天,2004(5):21~25。
    [4]江绍东,韩鸿硕,欧洲可重复使用运载器现行方案概况,中国航天,2004(6):25~31。
    [5] Dumbacher Dan, NASA’s second generation reusable launch vehicle program introduction, status, and future plans, AIAA 2002-23613.
    [6] Mark Benton, Jim Berry, 2nd Generation RLV: Overview of concept development process and results, AIAA 2003-2848.
    [7] Chiesa S, Grassi M, Russo G, A Small-Scale Low-Cost Technology Demonstrator of a reusable Launch Vehicle, AIAA-2005-3346.
    [8] Brinda V, Arora R K, Janardhana E, Mission Analysis of a Reusable Launch Vehicle Technology Demonstrator (RLV-TD), AIAA-2005-3291.
    [9]曹志杰,国外可重复使用运载器的近期发展,国际太空,2005(11),20~27。
    [10]赵颖,2002年世界运载器发展综述,导弹与航天运载技术,2003(1):19~30。
    [11]杨勇,王小军,重复使用运载器发展趋势及特点,导弹与航天运载技术,2002(5):15-19
    [12]杨勇,我国重复使用运载器发展思路探讨,导弹与航天运载技术,2006(4):1~4。
    [13]果琳丽,中国航天运输系统未来反战战略的思考,导航与航天运载技术,2006(1),1~5。
    [14]才满瑞,赵颖,曹志杰,美国航天运输体系的建立及其运载技术的最新进展,导弹与航天运载技术,2002(1):52~59。
    [15]王鑫,阎杰,于云峰,高超声速天地往返飞行器研究,测控技术,2006(7):83~86。
    [16]解发瑜,李刚,徐忠昌,高超声速飞行器概念以及发展动态,飞航导弹,2004(5):27~32。
    [17]崔而杰,重大研究计划“空天飞行器的若干重大基础问题”研究进展,中国科学基金,2006(5):278~280。
    [18]徐延万,航天飞机控制系统功能综合分析,航天控制,1989(3):1~10。
    [19]张谦,航天飞机的制导、导航控制,航天控制,1989(3):11~19。
    [20]柴霖,袁建平,重复使用运载器GN&C技术发展趋势及特点,导弹与航天运载技术,2004(4):19~24。
    [21] Ander R. Girerd, Onboard Trajectory Generation for Unpowered Landing of Autonomous Reusable Launch Vehicles, thesis of master, MIT, 2001.
    [22] Christina T.Chomel, Design of a robust integrated guidance and control algorithm for thelanding of an autonomous reusable launch vehicle, Thesis of master, MIT, 1998.
    [23] Chisholm C.Tracy, Integrated entry guidance and control for autonomous reusable launch vehicles, Thesis of master, MIT, 1997.
    [24] Moore Thomas E, Space Shuttle Entry Terminal Area Energy Management, NASA-TM-104744.
    [25] Carman Golbert L, Montez Moises N, Shuttle TAEM guidance and flight control, NASA-TM-81100.
    [26] Grubler A.C, New methodologies for onboard generation of terminal aero energy management trajectories for autonomous reusable launch vehicle, [Thesis of master], MIT, 2002.
    [27] Hanson John M, A plan for advanced guidance and control technology for 2nd generation reusable launch vehicles, AIAA 2002-4557.
    [28] Hanson John M, Jones Robert E, Advanced Guidance and Control Methods for Reusable Launch Vehicles: Test Results, AIAA 2002-4561.
    [29] Hanson John M, A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles, AIAA 2002-4557.
    [30] Schierman John D, Hull Jason R, Gandhi Neha, Flight Test Results of an Adaptive Guidance System for Reusable Launch Vehicles, AIAA 2004-4771.
    [31] Hanson John M, Advanced guidance and control project for reusable launch vehicles, AIAA 2000-3957.
    [32] Greg A. Dukeman, Atmospheric ascent guidance for rocket powered launch vehicles, AIAA 2002-4559.
    [33] Lu P, Sun H, Closed-loop endo-atmospheric ascent guidance, AIAA 2002-4558.
    [34] Hattis Philip, Overview of the kistler K1 guidance and control system, AIAA 99-4208.
    [35] Schierman J D, Hull J R, Ward D G, Adaptive guidance with trajectory reshaping for reusable launch vehicles, AIAA 2002-4458.
    [36] Tsikalas, G.M, Space Shuttle Autoland Design, AIAA 82-1604.
    [37] M. W. Kishi, Donald E.Gavert, Development and Performance Evaluation of the Space Shuttle Vehicle Guidance and Control for Return to Launch Site Aborts, AIAA-80-0907.
    [38] Srinivas R. Vadali, Involute Abort Guidance, AIAA-97-0460.
    [39] Gottfried Sachs, Michael Mayrhofer, Optimal abort trajectory control for a winged orbital stage, AIAA-98-4150.
    [40] Kevin E. Dutton, Optimal return-to-launchsite abort trajctories for an HL-20 personnel launch system vehicle, AIAA-93-3691.
    [41] Matthew V. Jessick and Donald L. Knobbs, Integrated guidance and control algorithms for the national Launch system, AIAA-92-4305.
    [42] David K. Schmidt, Integrated Control of Hypersonic Vehicles- A necessity not just a possibility, AIAA-93-3761-CP.
    [43] M. Christopher Cotting and Timothy H. Cox, A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design, AIAA 2005-32.
    [44] Ken Gee and Chun Y. Tang, RLV Aerodynamic and Trajectory Analysis Using an Agent-based framework, AIAA 2004-4329.
    [45] Isaac Kaminer, Eric Hallberg, Trajectory tracking for autonomous vehicles: an integrated approach to guidance and control, AIAA 97-3625.
    [46] Fisher J E, Lawrence D A, Autocommander--A supervisory controller for integrated guidance and control for the 2nd generation reusable launch vehicles, AIAA 2002-4562.
    [47] Fisher Joseph E, Tim Bevacqua, Integrated G&C Implementation Within IDOS–A Simulink Based Reusable Launch Vehicle Simulation, AIAA 2003-5496.
    [48] Igor Alonso Portillo, Ella M. Atkins, Adaptive trajectory planning for flight management systems, AIAA-2002-1073.
    [49] Aron, E.C., Barton, G.H., and Bottkol, M.S, RADX-34—A Future-X Demonstration of Autonomous Robust Abort Technologies on the X-34, AAS 01-015.
    [50] Ashley D. Hill, X-33 trajectory optimization and design, AIAA-98-4408.
    [51] H. C. Chou and M.D. Ardema, Near-optimal Re-entry Trajectories for Reusable Launch Vehicles, A97-37277.
    [52] Ken Gee and Chun Y. Tang., RLV Aerodynamic and Trajectory Analysis Using an Agent-based Framework, AIAA 2004-4329.
    [53] Dr. George Hunter, Toward a Standardized Reference Set of Trajectory Modeling Errors, AIAA 2004-5037.
    [54] Gregg H. Barton, Steven G. Tragesser, Autolading Trajectory Design for the X-34, AIAA atmospheric flight conference and exhibit, Portland, Oregon, August 9-11, 1999, P15-30.
    [55] Gregg H. Barton, New Methodologies for Assessing the Rrobustness of the X-34 Autolanding Trajectories, 24th annual AAs guidance and control conference, January 31-February 2001, P30-41.
    [56] Girerd A and Barton G, Next Generation Entry Guidance– Onboard Trajectory Generation for Unpowered Drop Tests, AIAA 2000-3960.
    [57] Schierman J D, Hull J R, and Ward D G, On-line Trajectory Command Reshaping for Reusable Launch Vehicles, AIAA 2003-5439.
    [58] Horneman Kenneth R and Kluever Craig A, Terminal Area Energy Management Trajectory Planning for an Unpowered Reusable Launch Vehicle, AIAA 2004-5183.
    [59] Oppenheimer Michael W and Doman David B, On-Line Adaptive Estimation and Trajectory Reshaping, AIAA 2005-6436.
    [60] Jason R. Hull, Neha Gandhi and John D. Schierman, In-Flight TAEM/Final Approach Trajectory Generation for Reusable Launch Vehicles, AIAA 2005-7114.
    [61] J. D. Schierman. J. R. Hull and D. G. Ward, Adaptive guidance with trajectory reshaping for reusable Launch vehicles, AIAA-2002-4458.
    [62] John D. Schierman, David G. Ward, Jason R. Hull, Adaptive Guidance Systems for Hypersonic Reusable Launch Vehicles, IEEE, 2001.
    [63] Eric N. Johnson, Anthony J. Calise, Adaptive Guidance and Control For Autonomous Launch Vehicles, IEEE, 2001.
    [64] J.D.Schierman, D.G.Ward, J.F. Monaco, A reconfigurable guidance approach for reusable launch vehicles, AIAA-2001-4429.
    [65] Greg A. Dukeman, Closed-Loop Nominal and Abort Atmospheric Ascent Guidance for Rocket-Powered Launch Vehicles, PHD thesis of Georgia Institute of Technology,2005.
    [66] Francisco Miguel, Camacho Camara, Development and Design of the Terminal Area Energy Management Guidance for a Reusable Launch Vehicle, Master of Science Thesis of Delft university of technology, 2003.
    [67] Tetsujiro Ninomiya, Hirokazu Suzuki, and Taro Tsukamoto, Evaluation of Guidance and Control System of High Speed Flight Demonstrator Phase II, AIAA 2005-3274.
    [68] Matthew D. Johnson, Anthony J. Calise, Eric N. Johnson, Further evaluation of an adaptive method for launch vehicle fligh control, AIAA 2004-5016.
    [69] Taro TSUKAMOTO and Hirokazu SUZUKF, Guidance and control design for Hope-X high speed flight demonstrator for phase II, AIAA 2001-1831.
    [70] Taro TSUKAMOTO, Hirokazu SUZUKI, Tetsujiro NINOMIYA, Guidance and Control for the High Speed Flight Demonstration Phase II, AIAA 2004-4944.
    [71] Yoshikazu Miyazawa, Guidance and control law for automatic landing flight experiment ofreentry space vehicle, AIAA-93-3818-CP.
    [72] John D. Schierman, David G. Ward, Jason R. Hull, Integrated Adaptive Guidance and Control for Re-Entry Vehicles with Flight-Test Results, Journal of guidance, control and dynamics, Vol27, No6, 11–12, 2004: P975~988.
    [73] Costa R, Studies for Terminal Area GNC of Reusable Launch Vehicles, AIAA 2003-5438.
    [74] Gallaher M. Coughlin, D. Krupp D, A guidance and control Assessment of three vertical landing options for rlv, AIAA-96-3702.
    [75] Koji Ishizuka, A reentry guidance law employing simple real-time integration, AIAA-98-4329.
    [76] E. Fallon, A. Taylor, Landing System Design Summary Of the K-l Reusable Launch Vehicle, AIAA-99-4720.
    [77] C. A. Kluever, Unpowered Approach and Landing Guidance Using Trajectory Planning, AIAA2004-4770.
    [78] Masahiro Ohno, Yasuhiro Yamaguchi, Robust flight control law design for an automatic landing flight Experiment, Control Engineering Practice, 1999(7):1143~1151.
    [79] H. Ben, R. van den Bunt and B. Fischer, High Angle of Attack Approach and Landing Control Law Design for the X-31A, AIAA 2002-0247.
    [80] J. M. Biannic and P. Apkarian, A new approach to fixed-order Hinf syntheis application to autoland design, AIAA-2001-4282.
    [81] J. M. Bauschat, Flight testing robust autoland control laws, AIAA 2001-4208.
    [82] Gertjan Looye, Hans-Dieter Joos and Dehlia Willemsen. Application of an Optimization based Design Process for Robust Autoland Control Laws, AIAA-2001-4206.
    [83] Charles E. Hall, Michael W. Gallaher, Neal D. Hendrix, X-33 attitude control system design for Ascent, transition and entry flight regimes, AIAA-98-4411.
    [84] John M. Hanson, Dan J. Coughlin, Gregory A. Dukeman, Ascent, transition, entry and abort guidance algorithm design for the x-33 vehicle, AIAA-98-4409.
    [85] Youngtae Woo, Linear controller design for the longitudinal model of a reusable launch vehicle, ICCAS2005, June 2-5, KINTEX, Gyeonggi-Do, Korea.
    [86] M. Christopher dotting and John J. Burken, Reconfigurable control design for full x-33 envelope, AIAA-2001-4379.
    [87] Matthew D. Johnson, Anthony J. Calise, Eric N. Johnson, Evaluation of an adaptive method for launch vehicle flight control, AIAA 2003-5789.
    [88] J: Davidson, Flight Control Laws for NASA’s Hyper-X Research Vehicle, AIAA-99-4124.
    [89] Michael Ruth, Jaime Fernandez and Chisholm Tracy, X-34 Auto-landing guidance, navigation and control, Advances in the astronautical sciences, Vol107, AAS01-013.
    [90] Viet H. Nguyen, The X-40A as a guidance, navigation and control technology demonstrator and validation tool, Advances in the astronautical sciences, Vol107, AAS 01-017.
    [91] J. Davidson, Flight control laws for NASA’s Hyper-X research vehicle, AIAA-99-4124.
    [92] Catherine Bahm, Ethan Baumann, The X-43A Hyper-X Mach 7 flight 2 guidance, navigation and control overview and flight test results, AIAA 2005-3275.
    [93] Phillip J. Joyce and John B. Pomroy, The Hyper-X launch vehicles: challenges and design considerations for hypersonic flight testing, AIAA 2005-3333.
    [94] Y. Shtessel and J. McDuffie, Sliding mode control of the x-33 vehicles in launch and re-entry modes, AIAA-98-4414.
    [95] Y. Shtessel, Sliding mode control of the x-33 with an engine Faliure, AIAA 2000-3883.
    [96] Y. Shtessel, Reusable launch vehicles control in sliding modes, AIAA-97-3533.
    [97] Shtessel, Y, Zhu, J, and Daniels, D, Reusable Launch Vehicle Attitude Control using a Time Varying Sliding Mode Control Technique, AIAA 2002-4779.
    [98] Yusi Shtessel, Don Krupp, Reusable Launch Vehicle trajectory control in sliding modes, Proceedings of the American Control Conference, Albuquerque, New Mexico, June 1997:p2557~2561.
    [99] Dongjun Shin and Jinho Kim, Robust spacecraft attitude control using sliding mode control, AIAA-98-4432.
    [100] Jovan D. Boskovic, Sai-Ming Li, and Raman K. Mehra, Robust stabilization of spacecraft in the presence of control input saturation using sliding mode control, AIAA-99-4047.
    [101] R. A. Hess and S. R. Wells, Sliding Mode Control Applied to Reconfigurable Flight Control Design, AIAA-2002-0245.
    [102] Y. Shtessel, Reusable launch vehicle control in multiple time scale sliding modes, AIAA-2000-4155.
    [103] Johnson, E., Calise, A., and Corban, J.E., A Six Degree-of-Freedom Adaptive Flight Control Architecture for Trajectory Following, AIAA-2002-4776.
    [104] Calise A. J, Development of a reconfigurable flight control law for the x-36 tailless fighter aircraft, AIAA-2000-3940.
    [105] Brinker J. S, Flight testing of a reconfigurable flight control law on the x-36 tailless fighteraircraft, AIAA-2000-3941.
    [106] Doman D Leggett, Development of a Hybrid Direct Indirect Adaptive Control System for the X-33, AIAA-2000-4156.
    [107] R. R. da Costa Q. P. Chu, and J. A. Mulder, Re-Entry Flight Controller Design using Nonlinear Dynamic Inversion, AIAA-2001-4219.
    [108] Juliana S, Flight control of atmospheric re-entry vehicle with nonlinear dynamic inversion, AIAA-2004-5330.
    [109] Bollino, Kevin P; Oppenheimer, Michael W, Optimal Guidance Command Generation and Tracking for Reusable Launch Vehicle Reentry. AIAA-2006-6691
    [110] Juliana S, The Analytical Derivation of Non-linear Dynamic Inversion Control for Parametric Uncertain System, AIAA 2005-5849.
    [111] Juliana S, Flight envelope clearance of atmospheric re-entry module with flight control, AIAA-2004-5170.
    [112] da Costa, R. R. Chu, Q. P. Mulder, J, A. Re-entry flight controller design using nonlinear dynamic inversion, AIAA-2001-4219.
    [113] Georgie Jennifer, Valasek John, Selection of longitudinal desired dynamics for dynamic inversion controlled re-entry vehicles, AIAA-2001-4382.
    [114] Roenneke, Axel J, Nonlinear flight control for a high lift reentry vehicle, AIAA-95-3370.
    [115] Sungyung Lim, Fault tolerant controller design using hybrid linear parameter varying control, AIAA 2003-5492.
    [116] Fuyuto Terui, Taro Tsukamoto, LPV controller for the lateral direction motion of re-entry vehicle, AIAA-99-4138.
    [117] Fen Wu, LPV controller interpolation for improved gain-scheduling control performance, AIAA-2002-4759.
    [118] Atsumi Oharat, Yasuhiro Yamaguchi and Toshiki Morito, LPV Modeling and Gain Scheduled Control of Re-entry Vehicle in Approach and Landing Phase, AIAA 2001-4038.
    [119] Johnson E N , et al. Feedback linearization with neural network augmentation applied to X-33 attitude control, AIAA-2000-4157.
    [120] Zhu J. Jim; Brad D. Banker; Charles E. Hall, X-33 ascent flight control design by trajectory linearization - A singular perturbation approach, AIAA2000-4159.
    [121] Xiaofei Wu; Rouslan Ignatov; Gerhard Muenst, A nonlinear flight controller design for a UFO by trajectory linearization method part I– Modeling, Proceedings of the Thirty-FourthSoutheastern Symposium on System Theory, 2002: p97~102.
    [122] Xiaofei Wu; Tony Adami; Jacob Campbell; A nonlinear flight controller design for a UFO by trajectory linearization method part II-Controller design, Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory, 2002, p103~107.
    [123] Zhu, J. Jim; Huizenga, Andrew; A type two trajectory linearization controller for a reusable launch vehicle - A singular perturbation approach, AIAA2004-5184.
    [124] Bevacqua, Tim; Best, Eric; Huizenga, Andrew; Cooper, David; Zhu, J. Jim, Improved trajectory linearization flight controller for reusable launch vehicles, AIAA2004-0875.
    [125] Zhu, J., Lawrence, D., Fisher, J., Shtessel, Y., Hodel, A.S., and Lu, P, Direct Fault Tolerant RLV Attitude Control-A Singular Perturbation Approach, AIAA 2002-4778.
    [126] Brian L. Stevens and Frank L. Lewis, Aircraft control and simulation, John Wiley & Sons, INC, New York, 1993:p1~110.
    [127] Duane Mcruer and Irving Ashkenas, Aircraft dynamics and automatic control, Princeton University Press, Princeton, New Jersey, 1973:p1~200.
    [128] Kazuyuki Ito, Akio Gofuku, Hybrid autonomous control for heterogeneous multi-agent system, Proceedings of the 2003 IEEWRSJ Inti Conference on Intelligent Robots and Systems Las Vegas. Nevada October 2003: p2500~2505.
    [129] Panos J. Antsaklis, Kevin M. Passino and S. J. Wang, An introduction to autonomous control systems, IEEE Control Systems, 1991: p5~12.
    [130] M. Pachter, Challenges of autonomous control, IEEE Control Systems, 1998: p92~97.
    [131] Piyush Dikshit, Katia Guimaraes, Architecture of autonomous systems, NASA-CR-192974.
    [132] Bruce T. Clough, Unmanned aerial vehicles: autonomous control challenges, a researcher’s perspective, AIAA 2003-6504
    [133] Marilyn Jarriel, Duncan Adams, An Effective Transfer of Autonomous Control Technology, Proceedings of the 1999 IEEE, International Symposium on Intelligent ControVIntelligent Systems and Semiotics Cambridge, MA September 15-17, 1999: p326~321.
    [134]邹明能,唐万生,一类混合动态系统的控制综合,系统工程学报,vol19(4),2004:329~336。
    [135]胡红革,分布式控制系统的混合Petri网建模和分析,仪器仪表学报,vol25(4),2004:886~888。
    [136]张健,分布式卫星系统(DSS)及其自主控制技术分析,航天控制,vol22(5),2004:16~19。
    [137]李智斌,航天器智能自主控制技术发展现状与展望,航天控制,2002(4):1~7。
    [138]李智斌,航天器自主控制与智能信息处理技术,航天控制,vol22(5),2004:20~25。
    [139]代树武,孙辉先,航天器自主运行技术的进展,宇航学报,vol24(1),2003:17~22。
    [140]张建,戴金海,基于Agent的卫星自主控制体系结构,上海航天,2006(1):31~40。
    [141]代树武,孙辉先,卫星运行中的自主控制技术,空间科学学报,Vol22(2),2002:147~153。
    [142]张建,戴金海,面向多星协同的卫星自组织自主控制体系结构,国防科技大学学报,Vol27(5),2005:95~98。
    [143]秦世引,燕飞,小卫星及其星座的智能控制自主控制系统,中国空间科学技术,2004(5):15~21。
    [144]唐强,朱志强,王建元,国外无人机自主飞行控制研究,系统工程与电子技术,vol26(3),2004:418~422。
    [145]周锐,李惠峰,无人战术飞行器的自主控制。控制与决策,vol16(3),2001:344~346。
    [146]杨晖,无人作战飞机自主控制技术研究,飞行力学,vol24(2),2006:1~4。
    [147]杨晖,先进无人机飞行控制技术研究,飞行力学,vol20(1),2002:1~4。
    [148] Ashley D. Hill, X-33 trajectory optimization and design, AIAA-98-4408.
    [149] Rajesh Kumar Arora, MR Ananthasayanam, Trajectory design for a reusable launch vehicle demonstrator during re-entry phase, AIAA 2003-5547.
    [150] Craig A. Kluever and Kenneth R. Horneman, Terminal Trajectory Planning and Optimization for an Unpowered Reusable Launch Vehicle, AIAA 2005-6058.
    [151] Kenneth D. Mease, P. Teufely, H. Sch onenberger, Re-entry trajectory planning for a reusable launch vehicle, AIAA 99-4160.
    [152] Mickle, M.C.; Zhu, J.J, Skid to turn control of the APKWS missile using trajectory linearization technique, Proceedings of the 2001 American Control Conference, 2001(5), p3346-3351.
    [153] Yong Liu, Xiaofei Wu, Omni-directional mobile robot controller design by trajectory linearization, Proceedings of the 2003 American Control Conference, 2003(4), p3423-3428.
    [154] Xiaofei Wu, Yong Liu; Zhu, J.J. Design and real time testing of a trajectory linearization flight controller for the "Quanser UFO", Proceedings of the 2003 American Control Conference, 2003(5), p3913-3918.
    [155] Mickle, M.C, Zhu J.J, Bank-to-turn roll-yaw-pitch autopilot design using dynamic nonlinear inversion and PD-eigenvalue assignment, Proceedings of the 2000 American Control Conference, ACC, 2000(2), p1359-1364.
    [156] Huang, R. Mickle, M.C, Nonlinear time-varying observer design using trajectorylinearization, Proceedings of the 2003 American Control Conference, 2003(6), p4772-8.
    [157]朱亮,姜长生,陈海通等,基于单隐层神经网络的空天飞行器直接自适应轨迹线性化控制,宇航学报,2006(3):338~350。
    [158]朱亮,姜长生,方炜,基于非线性干扰观测器的不确定非线性系统鲁棒轨迹线性化控制,信息与控制,2006(6):705~710。
    [159]张春雨,姜长生,朱亮,基于模糊干扰观测器的空天飞行器轨迹线性化控制,宇航学报,2007(1):33~38。
    [160]朱秋芳,姜长生,朱亮,谢祥华,基于TLC方法的空-空导弹三维末制导律研究,弹箭与制导学报,2007(1)。
    [161]张春雨,姜长生,非线性系统的鲁棒自适应模糊轨迹线性化控制,应用科学学报,2007(3):300~305。
    [162]张春雨,姜长生,空天飞行器的鲁棒自适应模糊轨迹线性化控制,航空动力学报,2007(6):915~922。
    [163]朱秋芳,姜长生,朱亮等,采用TLC方法的超机动飞行控制系统设计,南京航空航天大学学报,2007(3):379~383。
    [164]张春雨,姜长生,朱亮,基于模糊干扰观测器的轨迹线性化控制研究,系统工程与电子技术,2007(6):920~925。
    [165]朱亮,姜长生,基于非线性干扰观测器的空天飞行器轨迹线性化控制,南京航空航天大学学报,2007(4):491~495。
    [167] T. T. Myers, Space shuttle flying qualities and criteria assessment, NASA-CR-4049.
    [168] Norman C. Weingarten and Charles R. Chalk, Application of Calspan pitch rate control system to the space shuttle for approach and landing, NASA-CR-170402.
    [169] P. Riseborough, Automatic Take-Off and Landing Control for Small UAV’s, http://ascc2004.ee.mu.oz.au/proceedings/papers/P110.pdf
    [170] Jeffrey E. Bauer, Robert Clarke, Flight Test of the X-29A at High Angle of Attack: Flight Dynamics and Controls, NASA-TP-3573.
    [171] William D. Grantham, Handling qualities of a wide-body transport airplane utilizing Pitch Active Control Systems for Relaxed Static Stability Application, NASA-TP-2482.
    [172] Aaron J. Ostroff, Melissa S. Proffitt, Longitudinal control design approach for high angle of attack aircraft, NASA-TP-3302.
    [173] Sukumar Kamalasadan1, Adel A. Ghandakly, A Fighter Aircraft Pitch Rate Control based on Neural Network Parallel Controller, IEEE International Conference on computationalIntelligence for Measurement Systems and Applications Giardini Naxos, Italy, 20-22 July 2005, p135~140.
    [174] Daigoro Ito, Jennifer Georgie, John Valasek, Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion, NASA/TP-2002-210771.
    [175] S. M YANG, N. H. HUANG, Application of H-infinity Control to Pitch Autopilot of Missiles, http://ieeexplore.ieee.org/iel5/7/10254/00481283.pdf?arnumber=481283.
    [176] Jeff S. Shamma, Michael Athans, Analysis of gain scheduled control for nonlinear plants, IEEE Transaction on automatic control, Vol35(8), august, 1990: p898~907.
    [177] Wilson J. Rugh, Research on gain scheduling, Automatica, Vol36, 2000: p1401~1425.
    [178] Beno?t Clementa, Gilles Ducb, Sophie Mauffrey. Aerospace launch vehicle control: a gain scheduling approach. Control Engineering Practice, Vol13, 2005: p333~347.
    [179]黄一敏,直升机飞行控制技术研究,[博士学位论文],南京,南京航空航天大学,1999。
    [180]杨一栋,空间飞行器再入返回制导与控制,北京,国防工业出版社,2006年2月。
    [181]李立早,RLV无动力自动着陆段轨迹设计与验证,[硕士学位论文],南京,南京航空航天大学,2005。
    [182]马启鑫,RLV自动着陆段纵向控制系统研究,[硕士学位论文],南京,南京航空航天大学,2005。
    [183]汪元,RLV无动力投放自动着陆纵向控制系统的设计研究,[硕士学位论文],南京,南京航空航天大学,2005。
    [184]吴了泥,RLV无动力横侧向控制律设计,[硕士学位论文],南京,南京航空航天大学,2005。
    [185] Amitabh, Saraf, Landing footprint computation for entry vehicles, AIAA-2004-4774.
    [186] L. McWhorter, Orbiter autoland, AIAA-92-1273.
    [187] F. Y, Hadaegh, Autonomous spacecraft guidance and control, AIAA-96-3924.
    [188]耿通奋,集成化仿真设备实时仿真软件设计技术研究,[硕士学位论文],南京,南京航空航天大学,2003。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700