欠驱动机械系统的运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
欠驱动机械系统是指驱动器个数少于自由度个数的机械系统。与全驱动机械系统相比,驱动器个数的减少使得这类系统具有重量轻、能耗低、运动灵活等特点。然而,这也将系统的状态量束缚在运动空间中一个不确定的位形上,从而大大增加了这类系统控制设计的难度。近二十年来,欠驱动机械系统的控制问题一直是工程控制领域中一个极具挑战性的课题。
     本文对欠驱动机械系统的运动控制进行了深入的研究,其中包括系统的稳定控制,以及运动规划和跟踪控制研究。论文的主要研究成果和创新点如下:
     (1)针对二自由度欠驱动机械系统,提出一种基于等价输入干扰的稳定控制方法。
     具有一个控制输入和两个自由度的机械系统是一类最简单的欠驱动机械系统。根据这类系统惯性矩阵表现形式的不同,首先将它分为三种类型。然后为每一类构造一个微分同胚变换,将原系统变换为一个结构相对简单的新系统。在对新系统的能控、能观及零点分布等特性进行详尽分析后,提出一种基于等价输入干扰的稳定控制系统设计方法,以达到将新系统渐近稳定在零平衡点处的控制目标,并且由坐标变换的同胚特性来保证原系统在零平衡点处的渐近稳定性。基于等价输入干扰的稳定控制方法仅利用位置量信息便能实现系统的全局稳定控制目标,这不仅能降低控制系统成本,而且还能避免速度噪音对系统控制性能的影响。数值仿真结果显示这一方法在二自由度欠驱动机械系统的稳定时间及运动过程等性能方面,均能达到令人满意的控制效果。
     (2)将基于等价输入干扰的控制方法应用到一类多自由度欠驱动机械系统的全局稳定控制中。
     在基于等价输入干扰的二自由度欠驱动系统稳定控制的研究基础上,探讨这一控制方法在多自由度欠驱动系统中的应用。首先,针对一个三自由度欠驱动机械系统,分析系统的坐标变换以及变换后新系统的特性,构造基于等价输入干扰的稳定控制系统,实现系统在零平衡点处的全局渐近稳定。然后,分析基于等价输入干扰的控制方法在一类n(n>3)自由度欠驱动机械系统中的应用,将这一控制方法的适用范围进一步拓宽。
     (3)针对一类多自由度欠驱动机械系统,提出一种基于力矩耦合的全局稳定控制策略。
     通过分析多自由度欠驱动机械系统的结构特性,构造一个控制输入力矩间的耦合关系,将系统的某些状态变量进行解耦,并将原系统变换为一个由从动子系统和驱动子系统组成的级联系统。然后,对驱动子系统的稳定性以及从动子系统的无源特性进行分析,将原系统在零点处的渐近稳定问题转化为二自由度的从动子系统在零点处的渐近稳定问题。最后,运用基于无源性的方法设计控制器将从动子系统渐近稳定在零点处。将所提控制方法应用到一个平面三连杆机械臂的全局稳定控制中,数值仿真结果显示它能使机械臂快速而平滑的实现渐近稳定,这显示了方法的有效性与实用性。另外,这种基于力矩耦合的稳定控制方法将一个多自由度欠驱动机械系统的稳定控制问题转化为一个二自由度欠驱动系统的稳定控制问题,为一个对二自由度欠驱动系统有效的稳定控制方法在多自由度中的进一步推广搭建了桥梁。
     (4)针对欠驱动Acrobot系统,提出期望运动轨迹的构造方法,并设计跟踪控制器使Acrobot沿期望运动轨迹达到渐近稳定。
     两连杆机械臂Acrobot是一个典型的欠驱动机械系统,控制目标是将它从垂直向下位置摇起并最终稳定在垂直向上位置处。首先,基于Acrobot受重力作用的特性,通过利用一个虚拟摩擦及倒转的方法,为它在初始点和目标点之间设计一条用时最少的期望运动轨迹。然后,将系统的稳定控制问题转化为跟踪控制问题,并基于期望轨迹求取误差方程。最后,设计跟踪控制器使得Acrobot沿这条期望轨迹达到渐近稳定。本文为具有二阶非完整约束的非线性Acrobot系统构造了一条用时最少的期望运动轨迹,这为其它欠驱动非完整机械系统的运动规划起到了借鉴与启迪的作用。另外,本文无需对Acrobot的运动空间进行划分,仅用一个控制器便能实现系统的稳定控制目标,整个控制系统的结构比较简单。更为重要的是,Acrobot系统的整个稳定运动过程及稳定时间能够被准确预测,这为驱动器的选取及试验系统的构造提供了指导。
An underactuated mechanical system (UMS) is a mechanical system that has fewer actuators than degrees of freedom (DOF). Because there are fewer actuators, these kinds of systems are lighter, less energy-consuming, and more flexible than fully actuated ones. However, this characteristic also restricts the states of a UMS to an uncertain manifold of the motion space. As a result, the control design of such a system is very difficult; and the problem of controlling a UMS is a challenging task in the field of engineering control.
     This dissertation concerns the motion control of UMSs, which includes system stabilization control, motion planning, and tracking control. The main results and innovations of this study are as follows:
     (1) An equivalent-input-disturbance-(EID-) based stabilization control method was developed for2-DOF UMSs.
     A mechanical system that has two DOFs and only one actuator is the simplest type of UMS. First,2-DOF UMSs were divided into three categories based on the inertia matrix of the system. And then, a homeomorphic coordinate transformation was devised for each category. It transforms the original system into a new one with a relatively simple structure. After the controllability, observability, arrangement of zero points, and other properties of the transformed system were thoroughly analyzed, the EID approach was used to globally stabilize the transformed system at the zero equilibrium point. The stabilizing control objective of the original system at the zero point is guaranteed by the homeomorphism of the coordinate transformation. The EID-based approach uses the state variables of position, but not velocity, to ensure global stabilization of2-DOF UMSs. This not only reduces the cost of the control system, but also avoids the influence of speed noise on control performance. Simulation results show that this method yields satisfactory results for stabilization time, motion process, and other measures of control performance for2-DOF UMSs.
     (2) The EID-based control method was extended to the global stabilization of UMSs with multiple DOFs.
     The results of the study on the EID-based stabilization control of2-DOF UMSs were used as a basis for examining the application of the EID-based approach to a multi-DOF UMS. First, a coordinate transformation for a3-DOF UMS was devised, and the properties of the transformed system were analyzed. Next, an EID-based control system was developed that stabilizes the3-DOF UMS at the zero equilibrium point. Then, the EID-based approach was applied to an n-DOF UMS (n>3), thereby further extending the applicability of this control method.
     (3) A torque-coupling-based stabilization control strategy was devised for a class of multi-DOF UMSs.
     An analysis of the structural characteristics of a class of multi-DOF UMSs was used to work out the coupling relationship between control torques. This relationship decouples some state variables of the system from others and changes the original system into a cascade-connected system consisting of a driving subsystem and a2-DOF driven subsystem. Next, the stability of the driving subsystem and the passivity of the driven subsystem were analyzed, and the results were used to convert the problem of asymptotically stabilizing the multi-DOF UMS at the zero equilibrium point into the problem of stabilizing the2-DOF driven subsystem at the zero equilibrium point. Finally, a passivity-based method was used to stabilize the driven subsystem at the zero point. The proposed method is employed on the global stabilization of a horizontal three-link manipulator. Simulation results show that the manipulator is quickly and smoothly stabilized at the target point. This demonstrates the validity and practicability of the method. In addition, this torque-coupled-based control strategy transforms the stabilization of an n-DOF UMS (n≥3) into that of a2-DOF UMS, and it might enable a control method for stabilizing a2-DOF UMS to be generalized to the stabilization of a multi-DOF one.
     (4) For an underactuated Acrobot system, a method of constructing a time-optimal desired trajectory was devised; and a tracking controller was designed that asymptotically stabilizes the Acrobot at the target position along the desired trajectory.
     A two-link Acrobot is a typical UMS. A common control objective is to swing it up from the straight-down position and stabilize it at the straight-up position. First, an artificial friction and rewinding approach was used to construct a time-optimal trajectory from the start position to the target position. Then, the stabilization control problem was converted into a tracking control problem; and an error dynamic equation was obtained based on the desired motion trajectory. Finally, a tracking controller was designed that asymptotically stabilized the Acrobot at the target position along the desired trajectory. In this study, a time-optimal trajectory for a nonlinear Acrobot system with a second-order nonholonomic constraint was constructed. It provides a guideline for the motion planning of other underactuated nonholonomic mechanical systems. Moreover, the trajectory-tracking-based stabilization control strategy is simple and efficient. It does not require division of the motion space of the Acrobot, and it uses just a single controller for motion control. Most importantly, the stabilizing movement and the settling time of the Acrobot can be accurately predicted from the desired trajectory. These can be used as guidelines for selecting actuators as well as for evaluating an experimental Acrobot system design.
引文
[1]黄雨华,董遇泰.现代机械设计理论和方法.沈阳:东北大学出版社,2001
    [2]周祥龙,赵景波.欠驱动非线性控制方法综述.工业仪表与自动化装置,2004,5:10~13
    [3]Angeles J. An innovative drive for wheeled mobile robots. IEEE/ASME Transactions on Mechatronics,2005,10 (1):43-49
    [4]阳洪,吴忠.基于飞轮的欠驱动航天器姿态控制器设计.控制理论与应用,2008,25(3):506~510
    [5]Altug E, Ostrowski P, Mahony R. Control of a quadrotor helicopter using visual feedback. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington DC, USA,2002.72-77
    [6]Luo Z. Direct strain feedback control of flexible robot arms:New theoretical and experimental results. IEEE Transactions on Automatic Control,1993,38 (11):1610-1622
    [7]Tortopidis I, Papadopoulos E. On point-to-point motion planning for underactuated space manipulator systems. Robotics and Autonomous Systems, 2007,55(2):122-131
    [8]Olfati-Saber R. Global stabilization of a flat underactuated system:the inertia wheel pendulum. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA,2001.3764-3765
    [9]高丙团,黄学良.欠驱动2DTORA基于部分反馈线性化的非线性控制设计.东南大学学报(自然科学版),2011,41(2):321~325
    [10]孟廷豪,王忠庆,温志芳.板球系统的经典控制和模糊控制的研究.科技信息,2011,14(2):137~138
    [11]Akesson J, Astram K. Safe manual control of the furuta pendulum. Proceedings of the 2001 IEEE International Conference on Control Applications, Mexico City, Mexico,2001.890-895
    [12]高丙团,陈宏钧,张晓华.欠驱动系统控制设计综述.电机与控制学报,2006,10(5):541~546
    [13]Martin P, Devasia S, Paden B. A different look at output tracking:control of a VTOL aircraft. Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, Florida USA,1994.2376-2381
    [14]Tayebi A, McGilvray S. Attitude stabilization of a VTOL quadrotor aircraft. IEEE Transactions on Control Systems Technology,2006,14 (3):562-571
    [15]Sira-Ramfrez, H. On the control of underactuated ship:A trajectory planning approach. Proceedings of the 38th IEEE Conference on Decision and Control, Mexico City, Mexico,1999.2192-2197
    [16]Pettersen Y, Nijmeijer H. Underactuated ship tracking control:theory and experiments. International Journal of Control,2001,74 (14):1435-1446
    [17]郭晨,汪洋,孙富春,沈智鹏.欠驱动水面船舶运动控制研究综述.控制与决策,2009,24(3):321~329
    [18]Leonard N. Stability of a bottom-heavy underwater vehicle. Automatica,1997, 33 (3):331-346
    [19]Eriksen C, Osse T, Light D, et al. Seaglider:a long-range autonomous underwater vehicle for oceanographic research. IEEE Transactions on Oceanic Engineering,2001,26 (4):424-436
    [20]Takahashi T, Yamakita M, Hyon S. An optimization approach for underactuated running robot. Proceedings of SICE-ICASE International Joint Conference, Bexco, Busan, Korea,2006.3505-3510
    [21]Li H, Xiao W. Application in the motion planning of underactuated hexapod robot based on genetic algorithms and particle swarm optimization. Proceedings of the 3rd International Conference on Measuring Technology and Mechatronics Automation, Shanghai, China,2011.515-518
    [22]林壮,朱齐丹,邢卓异.基于遗传优化的水平欠驱动机械臂分层滑模控制.控制与决策,2008,23(1):99~102
    [23]Bergerman M, Xu Y. Robust joint and cartesian control of underactuated manipulators. Journal of Dynamic Systems, Measurement, and Control,1996, 118 (3):557-565
    [24]高丙团,陈宏钧,张晓华.龙门吊车系统的动力学建模.计算机仿真,2006,23(2):50~52
    [25]Fang Y, Dixon E, Dawson M, Zergeroglu E. Nonlinear coupling control laws for an underactuated overhead crane system. IEEE/ASME Transactons on Mechatronics,2003,8 (3):418-423
    [26]Bosse M, Nourani-Vatani N, Roberts J. Coverage algorithms for an under-actuated car-like vehicle in an uncertain environment. Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 2007.698-703
    [27]Raimondi M. Fuzzy adaptive EKF motion control for non-holonomic and underactuated cars with parametric and non-parametric uncertainties. IET Control Theory and Applications,2007,5 (1):1311-1321
    [28]Kolmanovsky I, McClamroch H. Developments of the nonholonomic control problems. IEEE Control Systems Magazine,1995,15 (6):20-36
    [29]Hunt R, Su R, Meyer G. Global transformations of nonlinear systems. IEEE Transactions on Automatic Control,1983,28 (1):24-31
    [30]Brockeet R. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory,1983,27:181-191
    [31]Sun Z, Xia X. On nonregular feedback linearization, Automatica,1997,33 (7): 1339-1344
    [32]Parra-Vega V, Arimoto S. A passivity-based adaptive sliding mode position-force control for robot. International Journal of Adaptive Control and Signal Processing,1996,10 (4-5):365-377
    [33]Canudas de Wit C, Fixot N, Astrom J. Trajectory tracking in robot manipulators via nonlinear estimated state feedback. IEEE Transactons on Robotics and Automation,1992,8(1):138-144
    [34]Kuc T, Han W. An adaptive PID learning control of robot manipulators. Automatica,2000,36 (5):717-725
    [35]Parra-Vega V, Arimoto S, Liu Y, et al. Dynamic sliding PID control for tracking of robot manipulators:Theory and experiments. IEEE Transactons on Robotics and Automation,2003,19 (6):967-976
    [36]Jafarov E, Parlakc A, Istefanopulos Y. A new variable structure PID controller design for robot manipulators. IEEE Transactons on Control Systems Technology,2005,13 (1):122-130
    [37]Woong K, Khalil H. Adaptive output feedback control of robot manipulators using high-gain observer. International Journal of Control,1997,67 (6): 869-886
    [38]Wichlund Y, Sordalen J, Egeland O. Control properties of underactuated vehicles. Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan,1995.2009-2014
    [39]Reyhanoglu M, Schaf A, McClamroch N, Kolmanovsky I. Nonlinear control of a class of underactuated systems. Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan,1996.1682-1687
    [40]Luca D, Iannitti S, Mattone R, Oriolo G Control problems in underactuated manipulators. Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como, Italy,2001.855-861
    [41]Olfati-Saber R. Fixed point controllers and stabilization of the cart-pole system and the rotating pendulum. Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, USA,1999.1174-1181
    [42]Cheng F, Zhong G, Li Y, Xu Z. Fuzzy control of a double-inverted pendulum. Fuzzy Sets and Systems,1996,79 (3):315-321
    [43]Cheng C, Chen C. Controller design for an overhead crane system with uncretainty. Control Engineering Practice,1996,4 (5):645-653
    [44]薛方正,厚之成,李秀敏,李楠.欠驱动机器人的切换姿态优化及全局稳定控制.仪器仪表学报,2012,33(5):1035~1040
    [45]Spong M, Block D. The pendubot:A mechatronic system for control research and education. Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, Los Angeles, USA,1995.555-556
    [46]Mahindrakar A, Rao S, Banavar R. Point-to-point control of a 2R planar horizontal underactuated manipulator. Mechanism and Machine Theory,2006, 41 (7):838-844
    [47]刘庆波,余跃庆.平面2R欠驱动机器人的轨迹规划与控制.中国机械工程,2007,18(24):2899~2902
    [48]Park H, Yang H, Park Y, Kim S. Position and vibration control of a flexible robot manipulator using hybrid controller. Robotics and Autonomous Systems, 1999,28(1):31-41
    [49]Oriolo G, Nakamura Y. Control of mechanical systems with second-order nonholonomic constraints:underactuated manipulators. Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, UK,1991. 2398-2403
    [50]Bergerman M, Lee C, Xu Y. Dynamic coupling of underactuated manipulators. Proceedings of the 4th IEEE Conference on Control Applications, Albany, USA,1995.500-505
    [51]Nakamura T, Suzuki T, Koinuma M. Nonlinear behavior and control of a nonholonomic free-joint manipulator. IEEE Transactons on Robotics and Automation,1997,13 (6):853-862
    [52]Lee C, Xu Y. Actuabiliiy of underactuated manipulators. Technical Report, The Robotics Institute, Carnegie Mellon University, June 1994.
    [53]Murray R, Hauser J. A case study in approximate linearization:the acrobot example. Technical Report, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, April 1991.
    [54]Bortoff S, Spong M. Pseudolinearization of the acrobot using spline functions. Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, Arizona, USA,1992.593-598
    [55]Sussmann H. A general theorem on symmetries and local controllability. Proceedings of the 24th IEEE Conference on Decision and Control, Ft. Lauderdale, Florida, USA,1985.27-32
    [56]Mullhaupt P, Srinivasan B, Bonvin D. Analysis of exclusively-kinetic two-link underactuated mechanical systems. Automatica,2002,38 (9):1565-1573
    [57]Mahindrakar A, Banavar N. Controllability properties of a planar 3R underactuated manipulator. Proceedings of the 2002 International Conference on Control Applications, Glasgow, Scotland, UK,2002.489-494
    [58]Luca A, Iannitti S. A simple STLC test for mechanical systems underactuated by one control. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington DC, USA,2002:1735-1740
    [59]Bullo F, Lynch M. Kinematic Controllability for decoupled trajectory planning in underactuated mechanical systems. IEEE Transactions on Robotics and Automation,2001,17 (4):402-412
    [60]Chen W, Zhang X, Su L. Vibration controllability of underactuated robots with flexible links. Proceedings of International Technology and Innovation Conference, Hangzhou, China,2006.1872-1878
    [61]Suzuki T, Nakamura Y. Control of manipulators with free-joints via the averaging method. Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, USA,1997.2998-3005
    [62]Shiriaev A, Sandberg A, Canudas-de-Wit C. Motion planning and feedback stabilization of periodic orbits for an acrobot. Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas,2004. 290-295
    [63]Freidovich L, Robertsson A, Shiriaev A, Johansson R. Periodic motions of the pendubot via virtual holonomic constraints:Theory and experiments. Automatica,2008,44 (3):785-791
    [64]Shiriaev A, Perram J, Canudas-de-Wit C. Constructive tool for orbital stabilization of underactuated nonlinear systems:Virtual constraints approach. IEEE Transactions on Automatic Control,2005,50 (8):1164-1176
    [65]Shiriaev A, Freidovich L, Robertsson A, et al. Virtual holonomic constraints based design of stable oscillations of Furuta pendulum:Theory and experiments. IEEE Transactions on Robotics,2007,23 (4):827-832
    [66]La Hera P, Freidovich L, Shiriaev A, et al. New approach for swinging up the Furuta pendulum:Theory and experiments. Mechatronics,2009,19 (8): 1240-1250
    [67]Yabuno H. Motion control of a two-link underactuated manipulator without state feedback of unactuated link (utilization of bifurcations under high-frequency excitation). Proceedings of the 5th International Workshop on Robot Motion and Control, Dymaczewo, Poland,2005.213-218
    [68]Alonson D, Paolini E, Moiola J. Global bifurcation analysis of a controlled underactuated mechanical system. Nonlinear Dynamics,2005,40 (3):205-225
    [69]Arai H, Tachi S. Position control of a manipulator with passive joints using dynamic coupling. IEEE Transactions on Robotics and Automation,1991,7 (4): 528-534
    [70]Fantoni I, Lozano R, Annaswamy A. Adaptive stabilization of underactuated flexible-joint robots using an energy approach and min-max algorithms. Proceedings of the American Control Conference, Chicago, Illinois, USA, 2000.2511-2512
    [71]Yu K, Shito Y, Inooka H. Position control of an underactuated manipulator using joint friction. International Journal of Non-linear Mechanics,1998,33 (4):607-614
    [72]Spong M. The swing up control problem for the acrobot. IEEE Control Systems Magazine,1995,15 (1):49-55
    [73]Xin X, Kaneda M. A new solution to the swing up contol problem for the acrobot. Proceedings of the 40th SICE Annual Conference, Nagoya, Japan, 2001.124-129
    [74]Henmi T, Deng M, Inoue A. Swing-up control of the acrobot using a new partial linearization controller based on the Lyapunov theorem. Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, Ft. Lauderdale, Florida, USA,2006.60-65
    [75]Zhang M, Tarn T. Hybrid control of the pendubot. IEEE/ASME Transactions on Mechatronics,2002,7 (1):79-86
    [76]Arisoy A, Gokasan O, Bogosyan S. Partial feedback linearization control of a single flexible link robot manipulator. Proceedings of the 2nd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey,2005. 282-287
    [77]Fantoni I, Lozano R, Spong M. Energy based control of the pendubot. IEEE Transactions on Automatic Control,2000,45 (4):725-729
    [78]Xin X, Kaneda M, Oki T. The swing up control for the pendubot based on energy control approach. Proceedings of the 15th IFAC World Congress, Barcelona, Spain,2002.
    [79]Xin X, Kaneda M. The swing up control for the acrobot based on energy control approach. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, USA,2002.3261-3266
    [80]Xin X, Kaneda M. New analytical results of the energy based swinging up control of the acrobot. Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas,2004.704-709
    [81]Xin X, Guo L. Can the energy and actuated variables of underactuated mechanical systems be controlled?-Example of the acrobot with counterweight. Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China,2009.1962-1967
    [82]Lai X, She J, Yang S, Wu M. Comprehensive unified control strategy for underactuated two-link manipulators. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2009,39 (2):389-398
    [83]Xin X. Analysis of the energy based swing-up control for a double pendulum on a Cart. Proceedings of the 17th IFAC World Congress, Seoul, Korea,2008. 4828-4833
    [84]Xin X, Kaneda M. Analysis of the energy-based control for swinging up two pendulums. IEEE Transactions on Automatic Control,2005,50 (5):679-684
    [85]Zhong W, Rock H. Energy and passivity based control of the double inverted pendulum on a cart. Proceedings of the 2001 IEEE International Conference on Control Applications, Mexico City, Mexico,2001:896-901
    [86]郭卫平,刘殿通.二级摆型吊车系统动态及基于无源的控制.系统仿真学报,2008,20(18):4945~4948
    [87]高丙团.TORA的动力学建模及基于能量的控制设计.自动化学报,2008,34(9):1221~1224
    [88]Li E, Liang Z, Hou Z, Tan M. Energy-based balance control approach to the ball and beam system. International Journal of Control,2009,82 (6):981-992
    [89]Lai X, She J, Yang S, Wu M. Control of acrobot based on non-smooth Lyapunov function and comprehensive stability analysis. IET Control Theory and Applications,2008,2 (3):181-191
    [90]Olfati-Saber R. Normal forms for underactuated mechanical systems with symmetry. IEEE Transactions on Automatic Control,2002,47 (2):305-308
    [91]Rosas-Flores J, Alvarez-Gallegos J, Castro-Linares R. Stabilization of a class of underactuated systems. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, New South Wales, Australia,2000.2168-2173
    [92]焦晓红,关新平.非线性系统分析与设计.北京:电子工业出版社,2008.
    [93]Olfati-Saber R. Control of underactuated mechanical systems with two degrees of freedom and symmetry. Proceedings of the American Control Conference, Chicago, Illinios, USA,2000.4092-4096
    [94]Qaiser N, Iqbal N, Qaiser N. Stabilization of inertia wheel pendulum using multiple sliding surfaces control technique. Proceedings of the IEEE Multitopic Conference, Islamabad, Pakistan,2006.461-466
    [95]Qaiser N, Iqbal N, Qaiser N. TORA stabilization via dynamic surface control technique. Proceedings of the IEEE International Conference on Emerging Technologies, Islamabad, Pakistan,2005.488-493
    [96]Qaiser N, Iqbal N, Hussain A, Qaiser N. Exponential stabilization of a class of underactuated mechanical systems using dynamic surface control. International Journal of Control, Automation, and Systems,2007,5 (5): 547-558
    [97]Qaiser N, Iqbal N, Hussain A, Qaiser N. Exponential stabilization of the inertia wheel pendulum using dynamic surface control. Journal of Circuits, Systems, and Computers,2007,16 (1):81-92
    [98]Qaiser N, Iqbal N, Qaiser N. A novel nonlinear controller design for the inertia wheel pendulum. Proceedings of the 5th International Bhurban Conference on Applied Sciences and Technology, Islamabad, Pakistan,2007.58-62
    [99]Nair S, Leonard N. A normal form for energy shaping:Application to the furuta pendulum. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, USA,2002.516-521
    [100]Ortega R, van der Schaft A, Maschke B, Escobar G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica,2002,38 (4):585-596
    [101]于海生,王海亮,赵克友.永磁同步电机的哈密顿建模与无源性控制.电机与控制学报,2006,10(3):229~233
    [102]Bloch A, Leonard N, Marsden J. Controlled lagrangians and the stabilization of mechanical systems I:The first matching theorem. IEEE Transactions on Automatic Control,2000,45 (12):2253-2270
    [103]Bloch A, Chang D, Leonard N, Marsden J. Controlled lagrangians and the stabilization of mechanical systems II:Potential shaping. IEEE Transactions on Automatic Control,2001,46 (10):1556-1571
    [104]Ortega R, Spong M. Stabilization of underactuated mechanical system via interconnection and damping assignment. Proceedings of Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Princeton, New Jersey, USA,2000.69-74
    [105]Gomez-Estern F, Ortega R, Rubio F, Aracil J. Stabilization of a class of underactuated mechanical systems via total energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA,2001. 1137-1143
    [106]Ortega R, Spong M, Gomez-Estern F, Blankenstein G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control,2002,47 (8): 1218-1233
    [107]Gomez-Estern F, Schaft A. Physical damping in IDA-PBC controlled underactuated mechanical systems. European Journal of Control,2004,10 (5): 451-468
    [108]Acosta J, Ortega R, Astolfi A, Mahindrakar A. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Transactions on Automatic Control,2005,50 (12): 1936-1955
    [109]Mahindrakar A, Astolfi A, Ortega R, Viola G. Further Constructive Results on Interconnection and Damping Assignment Control of Mechanical Systems: The Acrobot Example. Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA,2006.5584-5589
    [110]Muralidharan V, Ravichandran M, Mahindrakar A. Extending interconnection and damping assignment passivity-based control (IDA-PBC) to underactuated mechanical systems with nonholonomic Pfaffian constraints:The mobile inverted pendulum robot. Proceedings of the 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference, Shanghai, China,2009.6305-6310
    [111]White W, Foss M, Guo X. A direct lyapunov approach for a class of underactuated mechanical systems. Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA,2006.103-110
    [112]White W, Foss M, Guo X. A direct lyapunov approach for stabilization of underactuated mechanical systems. Proceedings of the 2007 American Control Conference, New York City, USA,2007.4817-4822
    [113]White W, Foss M, Patenaude J, Guo X, Garcia D. Improvements in direct lyapunov stabilization of underactuated mechanical systems. Proceedings of the 2008 American Control Conference, Seattle, Washington, USA,2008. 2927-2932
    [114]Man Z, Paplinski A, Wu H. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Transactions on Automatic Control,1994,39 (12):2464-2469
    [115]童克文,张兴,张昱,谢震,曹仁贤.基于新型趋近律的永磁同步电动机滑模变结构控制.中国电机工程学报,2008,28(21):102~106
    [116]Chwa D. Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Transactions on Control Systems Technology, 2004,12 (4):637-644
    [117]Hirschorn R. Generalized sliding-mode control for multi-input nonlinear systems. IEEE Transactions on Automatic Control,2006,51 (9):1410-1422
    [118]王伟,易建强,赵冬斌,刘殿通.桥式吊车系统的分级滑模控制方法.自动化学报,2004,30(5):784~788
    [119]Wang W, Zhao D, Liu D. Design of a stable sliding-mode controller for a class of second-order underactuated systems. IET Control Theory and Applications, 2004,151 (6):683-690
    [120]Yi J, Wang W, Zhao D, Liu X. Cascade sliding-mode controller for large-scale underactuated systems. Proceedings of IEEE International Conference on Intelligent Robots and Systems, Edmonton, Alta, Canada,2005.301-306
    [121]Qian D, Yi J, Zhao D. C Control of a class of under-actuated systems with saturation using hierarchical sliding mode. Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, California, USA,2008. 2429-2434
    [122]Wang W, Liu X, Yi J. Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems. IET Control Theory and Applications,2007,1 (1):163-172
    [123]Xu R, Ozguner U. Sliding mode control of a class of underactuated systems. Automatica,2008,44 (1):233-241
    [124]Brown S, Passion K. Intelligent control for an acrobot. Journal of Intelligent and Robotic Systems,1997,18 (3):209-248
    [125]Lai X, She J, Ohyama Y, Cai Z. A fuzzy control strategy for acrobot combining model-free and model-based control. IET Control Theory and Applications,1999,146 (6):505-510
    [126]Lai X, Yang S, She J, Wu M. Singularity avoidance for acrobots based on fuzzy-control strategy. Robotics and Autonomous Systems,2009,57 (2): 202-211
    [127]Duong S, Kinjo H, Uezato E, Yamamoto T. A switch controller design for the acrobot using neural network and genetic algorithm. Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam,2008.1540-1344
    [128]Tanaka K, Taniguchi T, Wang H. Fuzzy control based on quadratic-A Linear Matrix inequality approach. Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida, USA,1998.2914-2919
    [129]Li W, Tanaka K, Wang H. Acrobatic control of a pendubot. IEEE Transactions on Fuzzy Systems,2004,12 (4):549-552
    [130]Suzuki T, Kinoshita T, Gunji S. Analysis and control of 3R underactuated manipulator. Proceedings of the SICE Annual Conference, Tokyo, Japan,2008. 3086-3091
    [131]Luca A, Oriolo G. Motion planning and trajectory control of an underactuated three-link robot via dynamic feedback linearization. Proceedings of the 2000 IEEE International Conference on Robotics and Automation, Piscataway, New Jersey, USA,2000.2789-2795
    [132]Imura J, Kobayashi K, Yoshikawa T. Nonholonomic control of 3 link planar manipulator with a free joint. Proceedings of the 35th Conference on Decision and Control, Kobe, Japan,1996.1435-1436
    [133]Lynch K, Shiroma N, Arai H, Tanie K. Collision-free trajectory planning for a 3-DOF robot with a passive joint. International Journal of Robotics Research, 2000,19 (12):1171-1184
    [134]Luca A, Oriolo G. Motion planning under gravity for underactuated three-link robots. Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan,2000.139-144
    [135]Xie J, Li Z. Dynamic model and motion control analysis of three-link gymnastic robot on horizontal bar. Proceedings of the 2003 IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, China,2003.83-87
    [136]Xin X, Kaneda M. Swing-up control for a 3-DOF gymnastic robot with passive first joint:design and analysis. IEEE Transactions on Robotics,2007,23 (6): 1277-1285
    [137]Lai X, Zhang A, She J, Wu M. Motion control of underactuated three-link gymnast robot based on combination of energy and posture. IET Control Theory and Applications,2011,5 (13):1484-1493
    [138]Terra M, Siqueira A, Bergerman M. Underactuated manipulator robot control via linear matrix inequality. Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona, USA,1999.3416-3421
    [139]赖旭芝.一类多自由度欠驱动手臂机器人的控制策略.高技术通讯,2001,11(9):81~84
    [140]Xin X, She J, Yamasaki T, Liu Y. Swing-up control based on virtual composite links for n-link underactuated robot with passive first joint. Automatica,2009, 45 (9):1986-1994
    [141]Xin X, She J, Liu Y. A unified solution to swing-up control for n-link planar robot with single passive joint based on virtual composite links and passivity. Nonlinear Dynamics,2012,67 (2):909-923
    [142]Olfati-Saber R, Megretski A. Controlller design for the beam-and-ball system. Proceedings of the 37th Conference on Decision and Control, Tampa, Florida, USA,1998.4555-4560
    [143]Olfati-Saber R. Global configuration stabilization for the VTOL aircraft with strong input coupling. IEEE Transactions on Automatic Control,2002,47 (11): 1949-1422
    [144]Jiang Z. Global tracking control of underactuated ships by Lyapunov's direct method. Automatica,2002,38 (2):301-309
    [145]Pathak K, FranchJ, Agrawal S. Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Transactions on Robotics,2005,21 (3):505-513
    [146]Gans N, Hutchinson S. Visual servo velocity and pose control of a wheeled inverted pendulum through partial-feedback linearization. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,2006.3823-3828
    [147]Xu R, Ozguner U. Sliding mode control of a quadrotor helicopter. Proceedings of the 45th Conference on Decision and Control, San Diego, Florida, California, USA,2006.4555-4560
    [148]廖煜雷,庞永杰.一类欠驱动机械系统轨迹跟踪的滑模控制方法.中南大学学报(自然科学版),2011,42(1):219~227
    [149]Isidori A. Nonlinear control systems (2nd ed.). London, Springer-Verlag,1999.
    [150]Santibanez V, Kelly R, Sandoval J. Control of the inertia wheel pendulum by bounded torques. Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain,2005.8266-8270
    [151]Tadmor G. Dissipative design, lossless dynamics, and the nonlinear TORA benchmark example. IEEE Transactions on Control Systems Technology, Robotics and Automation,2001,9 (2):391-398
    [152]Smith M, Lee M, Gruver W. Designing a fuzzy controller for the acrobot to compensate for external disturbances. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Orlando, Florida, USA,1997. 2264-2268
    [153]Fantoni I, Heudiasyc R. Global stabilization of the cart-pendulum system using saturation functions. Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA,2003.4393-4398
    [154]Popescu C, Wang Y, Roth Z. Passivity based control of spring coupled underactuated horizontal double pendulums. Proceedings of Florida Conference of recent Advances in Robotics, SeaTech, Dania Beach, Florida, USA,2003.1-17
    [155]Willson S, Mullhaupt Ph, Bonvin D. Quotient method for controlling the acrobot. Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China,2009.1770-1775
    [156]Khalil H. Nonlinear systems (3rd ed.). Englewood Cliffs, NJ:prentice Hall, 2002.
    [157]She J, Kobayashi H, Ohyama Y, Xin X. Disturbance estimation and rejection-An equivalent input disturbance estimator approach. Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas,2004.1736-1741
    [158]She J, Xin X, Ohyama Y. Estimation of equivalent input disturbance improves vehicular steering control. IEEE Transactions on Vehicular Technology,2007, 56 (6):3722-3731
    [159]She J, Fang M, Ohyama Y, Hashimoto H, Wu M. Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Transactions on Industrial Electronics,2008,55 (1):380-389
    [160]She J, Xin X, Pan Y. Equivalent-input-disturbance approach-Analysis and application to disturbance rejection in dual-stage feed drive control system. IEEE Transactions on Mechatronics,2011,16 (2):330-340
    [161]Anderson B, Moore J. Optimal control:linear quadratic method. Englewood Cliffs, NJ:prentice Hall Inc.,1989.
    [162]Kimura H. A new approach to perfect regulation and the bounded peaking in linear multivariable control systems. IEEE Transactions on Automatic Control, 1981,26(1):253-270
    [163]Zhou K, Doyle J, Glover K. Robust and optical control. Englewood Cliffs, NJ: Prentice-Hall,1996.
    [164]Spong M, Corke P, Lozano R. Nonlinear control of the reaction wheel pendulum. Automatica,2001,37 (11):1845-1851
    [165]Ye H, Hu Y, Huang S, Gui W. Novel stabilization design for the inertia wheel pendulum. Proceedings of the 27th Chinese Control Conference, Kunming, China,2008.26-30
    [166]Wan C, Bernstein D, Coppola V. Global stabilization of the oscillating eccentric rotor. Nonlinear Dynamics,1996,10 (1):49-62
    [167]Huang L, Lin H, Chung H. Design of self-tuning fuzzy sliding mode control for TORA system. Expert Systems with Applications,2007,32 (1):201-212
    [168]高丙团,陈宏钧.一类欠驱动机械系统的嵌套饱和控制.系统仿真学报,2009,21(5):1436~1442
    [169]何广平,陆震,王凤翔.平面三连杆欠驱动机械臂谐波函数控制方法.航空学报,2004,25(5):520~524
    [170]Mahindrakar Arun D, Banavar R, Reyhanoglu M. Discontinuous feedback control of a 3 link planar PPR underactuated manipulator. Proceedings of the 40th IEEE Conference on Decision and Control, Oriando, Florida USA,2001. 2424-2429
    [171]Luca Alessanro D, Oriolo G. Motion planning and trajectory control of an underactuated three-Link robot via dynamic feedback linearization. Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, CA, USA,2000.2789-2795
    [172]Mahindrakar Arun D, Banavar R, Reyhanoglu M. Controllability and point-to-point control of 3-DOF planar horizontal underactuated manipulators. International Journal of Control,2005,78 (1):1-13
    [173]Arai H, Tanie K, Shiroma N. Feedback control of a 3-DOF planar underactuated manipulator. Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico,1997.703-709
    [174]Arai H, Tanie K, Shiroma N. Nonholonomic Control of a three-DOF planar underactuated manipulator. IEEE Transactions on Robotics and Automation, 1998,5 (14):681-695
    [175]Imura J, Kobayashi K, Yoshikawa T. Nonholonomic control of 3 link planar manipulator with a free joint. Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan,1996.1435-1436
    [176]Shiriaev A, Pogromsky A, Ludvigsen H, Egelandl O. On global properties of passivity-based control of an inverted pendulum. International Journal of Robust and Nonlinear Control,2000,10 (4):283-300
    [177]Fantoni I, Lozano R, Spong Mark W. Energy based control of the pendubot. IEEE Transactions on Automatic Control,2000,45 (4):725-729
    [178]Shiriaev S. On passivity based control for partial stabilization of underactuated systems. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia,2000.2174-2179
    [179]Xin X, Kaneda M. Analysis of the energy-based swing-up control of the Acrobot. International Journal of Robust and Nonlinear Control,2007,17 (16): 1503-1524
    [180]吴麒,慕春棣.自动控制原理(上册).北京:清华大学出版社,1992
    [181]Tomas-Rodriguez M, Banks S. Linear, time-varying approximations to nonlinear dynamical systems:with applications in control and optimization. Lecture Notes in Control and Information Sciences, Springer-Verlag,2010. 81-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700