微电子制芯领域中磁悬浮精密定位平台的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文系统地综述了国内外微电子技术的发展概况、发展趋势以及微电子产业在世界经济增长中具有的重大影响,概述了光刻技术和光刻设备的研究与发展状况,叙述了当前磁悬浮技术的研究及应用水平,阐明了研制新型磁悬浮精密定位平台的现实意义、重要性和可行性。介绍了磁悬浮技术和直线电机技术的一般理论基础,具体描述了磁悬浮轴承和列车的结构原理。
     在参考国内外光刻机现有定位平台结构形式的基础上,根据磁悬浮轴承和列车的结构原理,以磁悬浮技术为基础、以直线电机无接触驱动为动力,研究并设计了具有自主知识产权的两种结构模式磁悬浮精密定位平台,以适应我国自主研制开发新一代光刻机的需要。通过性价分析对比,最终确定磁悬浮精密定位平台采用V型对称导轨结构形式。在此基础上进行了磁悬浮系统的刚度、阻尼、磁路等分析与设计计算,并给出了相应的取值范围以及指出了在设计计算时应注意的方面。
     对影响定位平台垂直方向稳定精度的误差进行了理论分析,结果表明将工作点的位置选取在悬浮连接点决定的台面中心时,有利于减小磁悬浮误差对平台工作点的稳定精度带来的负面影响。
     分析并计算了导轨式定位平台磁悬浮系统中存在的磁力耦合现象。在建立了磁悬浮系统的动力学模型基础上,对磁悬浮系统进行了解耦控制设计,并对解耦后的磁悬浮定位平台进行了阶跃响应和抗干扰能力的仿真试验。结果表明磁悬浮系统实现了完全解耦,一个输入量仅控制一个输出量,且解耦控制系统具有较好的抗干扰能力。
     利用罗斯-霍维茨判据,理论分析了定位平台磁悬浮控制系统的稳定性。结果显示,磁悬浮系统在与定态相对应的平衡点(i_0,z_0)处是稳定可控的。
     建立了磁悬浮定位平台直线定位运动的数学模型,根据传递函数,运用MATLAB软件中的SIMULINK仿真模块,构造了平台定位运动的PID位置反馈控制仿真模型。在该仿真模型基础上进行了针对多项系数及参数的仿真试验,得到多组试验曲线。分析比较仿真试验曲线可知:采用结构轻量化设计、选用较大弹性系数的直线电机等可以大幅度改善定位系统的位移输出动态性能,提高定应运动的控制精度,并有利于满足设备高生产率的需求。
     构思设计了一种可变阻尼系统。该可变阻尼系统在平台启动时阻尼很小或为零,而当平台接近定位位置的瞬时阻尼很大。它将使定位平台既有高的响应频率,动作灵敏,又具有较高的定位精度。
     制作了磁悬浮精密定位平台的原理样机,在不同状态下进行了原理样机直线定位运动的对比试验。结果表明,磁悬浮状态下的定位精度要高于摩擦状态下的定位精度,
    
    中国科学院博士学位论文:微电子制芯领域中磁悬浮精密定位平台的研究
    磁悬浮结乍J有利于提高平台的定位精度。在现有光栅尺精度为4脚的试验条件下,原
    理样机磁悬浮状态时的定位精度能达到10脚。
     理论分析、计算和试验结果说明:磁悬浮精密定位平台的研制是成功可行的,它
    可以替代传统的摩擦定位平台或气浮定位平台。它无摩擦磨损,克服了由此产生的各
    种缺陷如金属粉尘污染等问题;省略了各种联结传动部件,减轻了机构的重量,消除
    了联结间隙,有效地提高了平台动态响应频率和定位精度。因此,采用磁悬浮精密定
    位平台加压电马达驱动能满足新一代光刻机超洁净制作环境、超精密定位精度、高生
    产效率的要求。
The development status and trend of micro-electronics in China and others countries and the important influence of micro-electronics in the increase of world economy are discussed generally in this paper, and the research and development of laser lithography technology and equipment are summarized. The realistic significance, importance and feasibility of researching a new style of magnetic levitation(maglev) precision stage are narrated. Furthermore, the general theoretical technology of maglev and linear motor is showed also, and the structure principle of maglev-bearing and maglev-vehicle is described concretely.
    Referencing the existing laser lithography tools and according the structure principle of maglev-bearing and maglev-vehicle, two structure patterns of precision stage based on maglev technology and driven non-contactly by linear motor are designed and researched. The two maglev precision stages will be of freedom information property and adapt to develop and manufacture laser lithography tools by ourselves. After the contrast between performance and cost, the maglev precision stage with applying V-shaped symmetry structure is ascertained for the experiment model in the end. According to the V-shaped maglev precision stage, the hardness , damping and magnetic-road are analyzed, designed and calculated for the maglev system. The corresponding value ranges of above parameters are shown and the problems of design in the next stage are pointed out in this paper too.
    Through theory analysis for error that influence the vertical stabilization precision of the stage, the result showes that the negative influence that caused by the error of maglev system and acting on the stabilization precision of the stage working-point can be reduced, if set the work point on the center of the stage that determined by the maglev joint points.
    There are magnetic force coupling and displacement coupling on both horizontal y-axes and vertical z-axes in the maglev system of V-shaped stage, when the stage moves. The magnetic force coupling is analyzed and calculated. After building the dynamics model for the maglev system, discoupling design is run, and the simulation experiment with the leap response and capability of anti-jamming for maglev stage are carried out. The result illuminates that the maglev system is discouple completely, one input just only control one output, and the discoupling control system has good anti-jamming capability.
    By the Routh-Hurwitz rule, the stability of maglev system is analyzed theoretically. The result shows that maglev system is stable and controllable on the balance point
    
    
    ( i0, z0 ) that corresponding to the stationary state.
    Mathematic equation for linear positioning move of the maglev stage is established. According to transfer function, after using the SIMULINK simulation module of MATLAB, simulation model of PID position feedback control for the stage positioning motion is constructed. Basing on the PID simulation model, simulation test for multinomial coefficients and parameters is carried out, and simulation experimental curves are gained. Through analyzing and comparing, the results are presented below: that applying light structure design and selecting larger elasticity coefficient linear motor can improve greatly displacement output dynamic capability of positioning system and controlling precision of position motion, and this is helpful to meet the demand of increase productivity.
    A variable damping system is conceived and designed. This system has very little even zero damping when stage starting; and then the damping becomes very strong when the stage is close to the positioning place. It makes the positioning stage not only has high response frequency and move sensitively, but also has high positioning precision.
    A principled sample machine of maglev positioning stage is manufactured. On different status, comparing tests are carried out for linear positioning motion of the sample. The result shows that the positioning precision when the sample is on maglev status
引文
1.王正华.快速发展的欧洲系统级芯片设计技术[J].21世纪元器件,2001,创刊号.
    2.成芯.半导体市场的走势和对策.Etiri电子信息网,http://www.etiri.com.cn.
    3.陈开盛.亚微米光刻与光掩模新技术现状与研发前景[J].半导体技术,2000,25(5A):18-21.
    4. http: //www.sina.com.cn.
    5.王元阳.21世纪硅微电子技术展望.电子信息:印制电路与贴装,2000,(6):37-40.
    6.生命科学领域中的前沿技术.Etiri电子信息网,http://www.etiri.com.cn
    7.北京规划建设微电子产业.http://www.sina.com.cn.
    8.北京大力发展微电子产业.http://www.sina.com.cn.
    9.王劲松,朱煜.我国“十五”期间IC制造装备的发展战略研究[J].机器人技术与应用,2002,No.2:5-9.
    10.苏雪莲.新世纪光刻技术及光刻设备的发展趋势[J].微电子技术,2001,29(2):8-17.
    11.新世纪的半导体光刻技术集锦.中国电子报,2001,12,10.
    12.冯伯儒,张锦,侯得胜等.微光刻技术的发展[J].微细加工技术,2000,No.1:1-9
    13. Paol G, James G, Owen W. The SIA's 1997 National Technology Roadmap for Semiconductors[J]. Solid State Technol, Jan,1998: 73-78.
    14. David L, Trumper, Michael H, etc. Magnetic/Fluid-Bearing Stage for Atomic-Scale Motion Control[A]. Fourth International Symposium on Magnetic Bearings[C], ETH Zurich, Vergriffen-keine Neuauflage Geplant, 1994: 151-156.
    15. David S, Slocum, Alexander H, etc. Magnetic Bearings for Precision Linear Slides[A]. Proceedings of The Intersociety Energy Conversion Engineering Conference, Public by IEEE. Vol.2 Jul 31-Aug 5, 1989, 0146-955x: 141-145.
    16. David L, Trumper. Control and Actuator Design for A Precision Magnetic Suspension Linear Bearing[J]. Proceedings of SPIE - The International Society for Optical Engineering Vol. 1696, Apr 21-22 1993, Sponsored by: SPIE - Int Soc for Opt Engineering, Bellingham, WA, USA Publ. by Int Soc for Optical Engineering, 0277-786x: 2-15.
    17. Williams M E, Trumpet D L, Hocken R. Magnetic Bearing Stage for Photolithography[A]. CIRP Annals Vol.42, 1993, 0007-8506: 607-610.
    18. Weck E H, Manfred, Wahner, etc. Linear Magnetic Bearing and Levitation System for
    
     Machine Tools[A]. CIRP Annals - Manufacturing Technology Vol.47, 1998, Hallwag PublLtd, 0007-8506: 311-314.
    19. Martin R, Karl P. Nonlinear Modeling of A Magnetically Guided Machine Tool Axis[A]. Fourth International Symposium on Magnetic Bearings[C], ETH Zurich, Vergriffen-keine Neuauflage geplant, 1994: 413-418.
    20. Alexander K. Precison Magneticlly Suspende XY Stage[A]. Fourth International Symposium on Magnetic Beatings[C], ETH Zurich, Vergriffen-keine Neuauflage geplant, 1994: 177-182.
    21. Auer F, Vanbeek H F. Practical Application of a Magnetic Bearing and Linear Propulsion Unit for Six Degrees of Freedom Positioning[A]. Fourth International Symposium on Magnetic Beatings[C], ETH Zurich, Vergriffen-keine Neuauflage geplant, 1994: 183-188.
    22. Kawakatsu H, Harmes B, Takashi S. Laser Sensing and New Stator Designs for A Linear Slider[A]. Fourth International Symposium on Magnetic Beatings[C], ETH Zurich, Vergriffen-keine Neuauflage geplant, 1994:189-192.
    23. Kim O S, Han D C, Chang I B, etc. Tracking Performance Improvement of A Magnetic Levitation Stage Using Two Degrees-of-Freedom H-infinity Loop Shaping Controller[A]. Fourth International Symposium on Magnetic Beatings[C], ETH Zurich, Vergriffen-keine Neuauflage geplant, 1994: 419-424.
    24.Schweitzer.G,Traxler.A,Bleuler.H 著.虞烈,袁崇军译.主动磁轴承——基础、性能及应用[M].第一版.北京.新时代出版社,1997.
    25. Traxler A. Eigenschaften und Auslegung von Berührungsfreien Elektromagnetischen Lagern[M].Diss.ETH Zürich Nr.7851, 1985.
    26.新世纪的半导体光刻技术集锦.中国电子报,2001,12,10.
    27. Williams M, Faill P, Bischoff P, etc. Six Degree of Freedom Mag-Lev stage Development[J]. SPIE, 1997, Vol.3051: 856-867.
    28. Kazunori I, Fumio S. New Scanners for The 100 um Era[J]. SPIE, 2001, Vol.4346: 621-633.
    29. Earnshow S. On The Nature of The Molecular Forces Which Regulate The Constitution of The Lumiferous Ether. Trans.Camb.Phil.Soc.7(1842): 97-112.
    30. Braunbek W. Frei Schwebende Krper im Elektrischen und Magnetischen[J]. Feld.Z.Phys., 112 (1939): 753-763.
    31. Jung V. Magnetisches Schweben. Springer-Verlag, Berlin, 1988.
    32. Kemper H. Overhead Suspension Railway with Wheelless Vehicles Employing Magnetic Suspension from Iron Rails. Germ.Pat.Nos.643316(1937) and 644302(1937).
    
    
    33. Bohn G, Steinmetz G. The Electromagnetic Levitation and Guidance Technology of The 'Transrapid' Test Facility Emsland[J]. IEEE Transactions on Magnetics. 1984, 20 (5): 1666-1671.
    34. Meins J, Miller L, Mayer M J. The High Speed Maglev Thansportation System Transparid[J]. IEEE Transactions on Magnetics, 1988, 24(2): 808-811.
    35. Rogg D. General Survey of The Possible Applications and Development Tendencies of Magnetic Levitation Technology[J]. IEEE Transactions on Magnetics, 1984, 20(5): 1696-1701.
    36. Sinha P K. Design of A Magnetically Levitation Vehicle [J]. IEEE Transactions on Magnetics, 1984, 20(5): 1672-1674.
    37. Suzuli S, Kawashima M, Hosoda Y, etc. HSST-03 System[J]. IEEE Transactions on Magnetics, 1984, 20(5): 1675-1677.
    38. Fujisaki K, Masada E. Dynamic Behaviour of A Magnetic Wheel[J]. IEEE Transactions on Magnetics, 1984, 20(5): 1678-1680.
    39. Mirzamani S J O, Asher G M, Paul R J A. Feasibility of Passive Damping from Mixed-Mu Levitation[J]. IEEE Transactions on Magnetics, 1984, 20(5): 1681-1683.
    40. Eastham J F, Rodger D. The Performance of Inductoin Levitators[J]. IEEE Transactions on Magnetics, 1984, 20(5): 1684-1686.
    41. Jones D I, Owen R G. A Magnetically Lebitated Anti-vibration Mount[J]. IEEE Transactions on Magnetics, 1984, 20(5): 1687-1689.
    42. Tsukamoto O, Yasuda K, Chen J Z. A New Magnetic Levitation System With AC Magnets[J]. IEEE Transactions on Magnetics, 1988, 24(2): 1497-1500.
    43. Mirzamani S J O, Paul R J A. Guidance Dynamics of Mixed-Mu Levitators for Maglev Vehicles[J]. IEEE Transactions on Magnetics, 1984, 21(6): 2404-2407.
    44. Abdelfatah M, Mohamed, Ilene B V. Imbalance Compensation and Automation Balancing in Magnetic Bearing Systems Using the Q-Parameterization Theory[J]. IEEE Transactions on Control Systems Technology, 1995, 3(2): 202-211.
    45. Boehm J, Gerber R, Hartlely J R. Development of Active Magnetic Bearing for High Speed Rotors[J]. IEEE Transactions on Magnetics, 1990, 26(5): 2544-2546.
    46. Nonami K, Ide N, Ueyama H. Robust Control of Magnetic Beating Systems Using μ-Synthesis with Descriptor Form[J]. 日本机械学会论文集(C篇), 1996, 63(606): 137-143.
    47. Suzuki Y. Vibration Control of An Active Electromagnetic Bearing-Rotor System Excited by Ground Motion[J]. 日本机械学会论文集(C篇), 1996, 63(610): 89-93.
    48. Hisatai M. Adaptive for Unbalance Vibration Suppression[J]. 日本机械学会论文集
    
    (C篇), 1995, 62(597): 58-63.
    49. Taguchi N, Ishimatsu T, Woo S J, etc. Control of Unbalance Vibration on The Magnetic Beatings[J]. 日本机械学会论文集(C篇), 1994, 61(585): 125-130.
    50. Suzuki Y. Foundation-Ecited Response of A Rotor Suspended by Active Electromagnetic Bearings[J]. 日本机械学会论文集(C篇), 1995, 62(594): 22-27.
    51. Nagy G, Rosenwasser S, Mehle G. The Evaluation and Testing of Graphite Fiber Composite Materials for High Speed Rotors[J]. IEEE Transactions on Magnetics, 1999, 35(1): 289-293.
    52. Nagaya S, Hirano N, Takenaka M, etc. Fundamental Study on High Tc Superconducting Magnetic Bearings for Flywheel System[J]. IEEE Transactions on Superconductivity, 1995, 5(2): 643-649.
    53. Fujie J. An Advanced Arrangement of the Combined Propulsion, Levitation and Guidance System of Superconducting Maglev[J]. IEEE Transactions on Magnetics, 1999, 35(5): 4049-4051.
    54. Goodall R M, MacLeod C J, EI-Abbar A A, etc. Control Aspects of Superconducting Magnets for Magnetic Suspensions and Bearings[J]. IEEE Transactions on Superconductivity, 1995, 5(2): 650-653.
    55. Ohashi S. Effect of The Damper Coils on The Rotational Motion of The Superconducting Magnetically Levitated Bogie[J]. IEEE Transactions on Magnetics, 2000, 36(5): 3680-3682.
    56. Ohashi S, Ohsaki H, Masada E. Effect of The Active Damper Coil System on The Lateral Displacement of The Magnetically Levitated Bogie[J]. IEEE Transactions on Magnetics, 1999, 35(5): 4001-4003.
    57. Stoye P, Fuchs G, Gawalek W, etc. Static Forces in A Superconducting Magnet Bearing[J]. IEEE Transactions on Magnetics, 1995, 31(6): 4220-4222.
    58. Fuklyama H, Seki K, Takizawa T, etc. Rotational Accuracy of Superconducting Magnetic Bearings[J]. 日本机械学会论文集(C篇), 1995, 62(593): 270-275.
    59. Xia Z, Chen Q Y, Ma K B, etc. Design of Superconducting Magnetic Bearing with High Levitating Force for Flywheel Energy Storage Systems[J]. IEEE Transactions on Applied Suerconductivity, 1995, 5(2): 622-625.
    60. Todake T, Ishibashi E, Enokizono M. Dynamic Magnetic Field Analysis of Electromagnetic Suspension Element[J]. IEEE Transactions on Magnetics, 1999, 35(3): 1151-1154.
    61. Nakata T, Takahashi N. Application of The Finite Element Method to The Design of Permanent Magnets[J]. IEEE Transaction on Magnetics, 1982, 18(6): 1049-1051.
    
    
    62. Sinha P K, Hadjiiski L M, Zhou F B, etc. Electromagnetic Suspension: New Result Using Neural Networks[J]. IEEE Transactions on Magnetics, 1993, 29(6): 2971-2973.
    63. Tozoni O V. New Stable Magnetodynamic Suspension System[J]. IEEE Transactions on Magnetics, 1999, 35(2): 4268-4274.
    64. Tozoni O V. Designing a Magnetodynamic Stable Suspension System[J]. IEEE Transactions on Magnetics, 1999, 35(5): 1047-1054.
    65.江浩,连级三.磁悬浮列车在世界上的发展与展望[J].铁道学报,1991,13(2): 95-101.
    66.蒋启龙,张昆仑,连级三.磁悬浮轴承系统的数学模型与控制分析[J].西南交通大学学报,1999,34(4):413-418.
    67.江浩,连级三.单磁铁悬浮系统的动态模型与控制[J].西南交通大学学报,1992,83(1):59-67.
    68.尹力明,陈贵荣.吸力型磁悬浮列车的悬浮电磁铁的设计原理和计算方法[J].机车电传动,1992,(5):14-20.
    69.陈贵荣,常文森,尹力明.磁悬浮列车悬浮点磁铁设计研究[J].国防科技大学学报,15(4):10-15.
    70.胡基士.EMS型磁浮列车悬浮力分析[J].2001,西南交通大学学报,36(1):44-47.
    71.唐怀平,高芳清.磁浮列车系统动力特性及耦合振动试验研究[J].西南交通大学学报,2001,36(2):149-152.
    72.尹力明,杨泉林.采用永磁悬挂体的磁悬浮系统建模与系统设计方法[J].机车电传动,1999,(2):11-14.
    73.陈贵荣.磁悬浮列车电磁铁的磁场饱和与承载能力分析[J].机车电传动,1998,(3):15-17.
    74.蒋启龙.磁悬浮列车悬浮导向方案研究[J].西南交通大学学报,1996,31(5):533-539.
    75.尹力明,谢云德,陈顺良.单磁浮转向架的试验研究[J].机车电传动,1995,(6):1-4.
    76.李红,左鹏,刘伟志等.6t单转向架磁浮试验车的研究[J].铁道学报,1999,21(2):26-32.
    77.谢云德,常文森,尹力明.磁悬浮列车系统轨道动力学分析与试验研究[J].国防科技大学学报,1997,19(5):58-63.
    78.李云钢,常文森,龙志强.EMS磁浮列车的轨道共振和悬浮控制系统设计[J].国防科技大学学报,1999,21(2):93-96.
    79.周晓兵,龙志强,李云钢等.磁悬浮列车滑模变结构控制器设计及实现[J].国防科技大学学报,1997,19(4):87-93.
    
    
    80.胡基士,潘慧龙.磁浮列车受流器设计依据分析[J].西南交通大学学报,2000,35(2):170-173.
    81.肖劲伟,尹力明.非线性控制在磁悬浮系统中的应用[J].国防科技大学学报,1999,21(6):106-108.
    82.张钢,虞烈,谢友柏.推力磁轴承的力学特性及其对径向磁轴承的影响[J].机械工程学报,2000,36(12):5-8.
    83.胡业发,周祖德,王晓光等.磁力轴承转子系统的力耦合和力矩耦合分析[J].机械工程学报,2002,38(12):25-28.
    84.徐华,刘淑琴,虞烈.转动惯量测试台磁悬浮系统电磁阻尼的研究[J].西安交通大学学报,2001,35(12):1288-1291.
    85.赵蕾,张德魁,杨作兴等.电磁铁轴承最优刚度与系统结构参数关系的研究[J].机械工程学报,2000,36(12):62-64.
    86.曹建荣,虞烈,谢友柏.主动磁悬浮推力轴承的状态反馈线性化控制[J].西安交通大学学报,2000,34(10):67-71.
    87.王洪礼,吴志强.磁力轴承的电磁力分析及刚度研究[J].天津大学学报,1992,(4):15-20.
    88.王洪礼,吴志强.磁力轴承转子系统的Hopf分叉[J].天津大学学报,1994,27(6):752-757.
    89.曾励,陈飞,宋爱平.动力磁悬浮轴承的研究现状及关键技术[J].中国机械工程,2001,12(11):1319-1322.
    90.赵凯华,陈熙谋.电磁学(下册)[M].第一版.北京.人民教育出版社,1978.
    91.连级三.磁浮列车原理及技术特征[J].电力机车技术,2001,24(3):23-26.
    92.S.A.纳斯尔,I.波尔达.直线电机[M].第一版.北京.科学出版社,1982.
    93.邓星钟,周祖德,邓坚.机电传动控制[M].第三版.武汉.华中科技大学出版社,2001.
    94.宋文荣,于国飞,孙宝玉等.微电子制造领域的磁悬浮精密定位平台的结构设计研究[J].光学精密工程,2002,10(3):271-275.
    95.宋文荣,于国飞,王延风等.磁悬浮微进给机构研究[J].中国机械工程,2003,14(13):1090-1093.
    96.张伯霖,张志润,肖曙红.超高速加工与机床的零传动[J].中国机械工程,1996,7(5):37-41
    97.张伯霖,程光华,李锻能等.超高速机床进给系统的零传动[J].制造技术与机床,1997,8:8-12
    98.林其壬,赵佑民.磁路设计原理[M].第一版.北京.机械工业出版社,1987.
    99.程守洙,江之永.普通物理学(第二册)[M].第四版.北京.高等教育出版社,1982
    
    
    100.邓中亮,王先逵.直线电机的智能化PID控制[J].电气传动,1993,23(2):25-29.
    101.陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].第一版.北京.机械工业出版社,1998.
    102.宋文荣,于国飞,何惠阳.磁悬浮进给机构的磁力耦合[J].光学精密工程,2004,12(2).
    103.宋文荣,张玲,于国飞等.进给机构磁悬浮系统的解耦控制分析[J].哈尔滨工业大学学报(已录用).
    104.郑大钟.线性系统理论[M].北京:清华大学出版社,1998:161-173.
    105.刘秉正.非线性动力学与混沌基础[M].第一版.长春.东北师范大学出版社,1994.
    106.褚亦清,李翠英.非线性振动分析[M].第一版.北京.北京理工大学出版社,1996.
    107.舒仲周,张继业,曹登庆.运动稳定性[M].第一版.北京.中国铁道出版社,2001.
    108.胡寿松.自动控制原理[M].第三版.北京.国防工业出版社,1994.
    109.宋文荣,于国飞,何惠阳.磁悬浮进给机构的PID控制及仿真试验[J].微细加工技术,2003,9(3):62-65.
    110.宋文荣,于国飞,王延风等.磁悬浮进给机构的PID控制[J].哈尔滨工业大学学报,2004,36(1):28-31.
    111. Parker Hannifin Corporation. 406000LXR Series Linear Positioner Product Manual. 1999, 6.
    112. Micro-epsilon Company. CapaNCDT: Non-Contact Capacitive Displacement Measuring Systems. http://www.micro-epsilon.com/me/htdocs/publicweb/EN.htm. 2002.
    113.宋文荣,于国飞,王延风等.六维磁悬浮纳米级精密工件台的研究[J].微细加工技术,2003,3(1):15-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700