异种钢焊接的残余应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异种材料的焊接结构能够充分发挥组成材料的性能优势,而且能够节省贵金属材料因而具有较大的成本优势。随着造船技术不断进步,异种钢焊接的应用愈加广泛。
     焊接残余应力是影响船舶建造质量的重要因素,异种材料连接时,由于材料之间的性能差异尤其是物理性能的差异导致焊接残余应力的问题更为突出。因此有必要研究异种钢结构的残余应力分布情况,为改善焊接工艺,提高船舶建造水平,减少异种钢的焊接残余应力提供理论基础。
     首先本文采用弹塑性有限元法计算了Q235钢与304不锈钢的焊接温度场和焊接残余应力,计算结果表明,由于二者物理性能的差异造成了焊接温度场和残余应力分布的不均匀,焊接残余应力的峰值出现在304不锈钢一侧,其值略低于304不锈钢的屈服强度。
     其次改变了焊接工艺条件,探索了源偏移及输入改变对残余应力的影响。当焊接源偏向Q235钢时,焊接残余应力峰值变化较小,但高应力区减小,焊接变形明显减小,当焊接源偏向304不锈钢时结果相反。当焊接输入增大时会导致焊后高应力区范围的扩大,残余应力的峰值略有降低。
     最后采用红外像仪测量了焊接过程中焊接材料表面的温度变化情况,有限元计算的结果与其符合较好。并将所采用的参数模型推广到异种钢管管对接焊算例中,得到管管焊接中内表面残余应力大于外表面的结论,及其轴向和周向残余应力的分布规律。
The welding structure of dissimilar steels can fulfill the performance advantage of each material fully and save the noble metal. Thus result in a cost advantage. With the development of the shipbuilding technology, the application of dissimilar steels welding has become more and more widely.
     The influence of welding residual stress is an important factor of the quality of the shipbuilding. The residual stresses are complex and difficult to predict because of the differences between mechanical and physical properties of the different materials. Therefore, it is necessary to do researches on the residual stress distribution of the dissimilar steels welding structure, providing a theoretical basis for improving the welding process, raising the level of shipbuilding and reducing the residual stress of welding.
     Firstly, in this paper Elasto-plastic finite element method is used for measuring the welding temperature field and the residual stress in butt-welded Q235 and 304 Stainless Steel. The results indicate that differences between their physics property caused the inhomogeneous distribution of the welding temperature field and the residual stress. And the peaks of the residual stress show on 304 Stainless Steel side, and the peak value is slightly less than the yield strength of 304 Stainless Steel.
     Secondly, the welding parameters were changed in this paper to explore the influences of the offsetting of heat resources and the changing of heat input on the welding residual stress. When the heat source was moved towards Q235, the peak value has small changes, but the high-stress was reduced as well as the welding distortion. On the contrary, when the heat source was moved towards 304 Stainless Steel, the high-stress area would be expanded with higher welding heat, and the peak value of the residual stress was slightly decreased.
     Finally, an infrared thermal imager was also applied to measure surface temperature changing of welding materials during welding, the results are accordant with that drawn from elasto-plastic finite element measurement. Meanwhile the same finite element model were used on residual stresses in dissimilar butt-welded pipes, the results indicate that the residual stress on inner surface is larger than outer surface of dissimilar joint. And the axial and hoop distribution of residual stress were shown in the results.
引文
[1]李萌盛,吴元峰,谢霞.焊接参数对异种钢接头应力影响的数值模拟[J].焊接.2005,(1):16-18.
    [2]R. Kacar, M. Acarer. Microstructure-property relationship in explosively welded duplex stainless steel-steel [J]. Materials Science and Engineering,2003, A363:290-296.
    [3]Bulent Kurt, The interface morphology of diffusion bonded dissimilar stainless steel and medium carbon steel couples [J]. Journal of Materials Processing Technology,2007,190: 138-141.
    [4]王晓燕,张雷,路民旭.双相不锈钢与微合金钢异金属焊接接头的组织及性能[J].北京科技大学学报.2008,30(2):131-136.
    [5]张运祥,王勇,张利红.低碳钢与奥氏体不锈钢焊接裂纹的预防措施[J].内江科技.2009,(10):91-92.
    [6]Anwar Ul-Hamid, Hani M. Tawancy, et al. Failure of weld joints between carbon steel pipe and304 stainless steel elbows [J].. Engineering Failure Analysis,2005,12:181-191.
    [7]李萌盛.异质焊接接头加过程中的碳迁移现象研究[J].材料科学与工艺,1997,5(3):17-21.
    [8]沈利民,巩建鸣,余正刚等.Q235/304碳钢—不锈钢复合板界面结合的有限元模拟[J].焊接学报.2009,30(9):57-65.
    [9]黄文长,潘春旭,付强.珠光体—奥氏体异种钢焊接接头中碳迁移的跟踪观测[J].机械工程材料.2006,30(4):17-19.
    [10]史春元,李元,郭勇.高温下碳在α-γ型异种钢焊接接头中的扩散[J].焊接学报.1999,20(4):258-263.
    [11]D Rosenthal. Mathematical Theory of Heat Distribution during Welding and Welding Journal [M].1941,20(5):220.
    [12]雷卡林著.焊接过程计算[M].北京:机械工业出版社,1958.
    [13]Paley Z,Hibbert PD. Computation of Temperature in Actual Weld Designs [J]. Welding Journal 1975,54(11):385-392.
    [14]J. Goldak, et al, A New Finite Element Model for Welding Heat Sourees [J]. Metallurgical Transactions B,June,1984, Vol,15B,299-305.
    [15]陈楚,汪建华,杨洪庆.非线性焊接传导的有限元分析和计算[J].焊接学报1983,3:139-148.
    [16]陈楚,汪建华,杨洪庆.水下焊接冷却特性的有限元分析[J].海洋工程1983,4:34-38.
    [17]汪建华等.三维瞬态焊接温度场的有限元模拟[J].上海交通大学学报,1996,30(3):120-125.
    [18]蔡洪能,唐慕尧.TIG焊接温度场的有限元分析[J].机械工程学报,1996,32(2):34-39.
    [19]张初冬.焊接场的二维有限元分析[J].大连铁道学院学报,1992,13(3):80-87.
    [20]陈翠欣,李午申,王庆鹏等.焊接温度场的三维动态有限元模拟[J].天津大学学报,2005,38(5):465-470.
    [21]张华军,张广军,蔡春波等.摆动焊接动态过程温度场数值模拟[J].焊接学报,2008,29(2):69-77.
    [22]尹昕,赵海燕,刘大成.双束电子束焊接温度场的数值模拟[J].清华大学学报,2008,48(5):777-780.
    [23]史志伟.T92/12CrlMoV异种钢焊接温度场的数值模拟[J].制造业信息化,2010(4):99-104.
    [24]Yueda, Analysis of elastic-plastic stress and strain during welding [J], Trand. Japan Welding Soc,1971,2(2):90-94
    [25]Vaidyanathan. Residual dresses due to circumferenlial welds [J]. Journal of Engineering Materials and Technology,1973,73:233-239.
    [26]K. S. Alfredsson and B. L. Josef son. Harmonic Response of a Spot Welded Box Beam-Inf iuence of Welding Residual Stresses and Deformations [J]. Proc. IUTAM Symposium on Mechanica lEffects of Welding. Lulea, Swueden june,1991:1-8.
    [27]T. inoue. Metallo-Thermo-mechanics Application to Phase Transformation In Corporated Proeesses [J].Proc. Theoretical Prediction in Jioning and Welding.1996,11:89-112.
    [28]Lelindgren. Lkarlsson. Deformations and stresses in welding of shell Structures [J]. International Journal for Numerical Methods in Engineering,1998,25:635-638.
    [29]汪建华,戚新海,钟小敏等.考虑相变的焊接动态和残余应力的研究[C].第六届全国焊接学术会议论文集,第5册,1990:209-212.
    [30]汪建华,陶瓷金属扩散焊接的残余应力及其缓和措施[J].硅酸盐学报,1995.23(2):605-609.
    [31]李宵,李栋才.超载拉伸消除焊接残余应力的计算机模拟[J].西安石油学院学报,1999.14(2)46-49.
    [32]陈俊梅,霍立兴,张玉凤.十字接头焊接残余应力的有限元计算[A].第三届计算机在焊接中的应用技术交流会论文集[C].2000,11:121-124.
    [33]Dean Deng, FEM prediction of welding residual stress and distortion in carbon steel [J]. Materials and Design,2009,30:359-366
    [34]Hidekazu Murakawa, Dean Deng. Prediction of welding distortion and residual stress in a thin plate utt-welded joint. [J] Computational Materials Science.2008,43:353-365.
    [35]Akbari D, Sattari-Far I, Effect of the welding heat input on residual stresses in butt-welds of dissimilar pipe joints, International Journal of Pressure Vessels and Piping (2009), doi:10.1016/j. ijpvp.2009.07.005
    [36]Ranjbar Nodeh, S. Serajzadeh, A. H. Kokabi. Simulation of welding residual stresses in resistance spot welding, FE modeling and X-ray verification. [J]Journal of materials processing technology.2008,20(5):60-69.
    [37]贾坤荣,刘军,岳珠峰.厚板焊接温度场和残余应力场的数值模拟[J].金属铸锻焊技术,2009(9):102-105.
    [38]董洁,吴成,庞玉华等.Q345R钢焊接接头不同部位补焊残余应力的有限元分析[J].特殊钢,2008,29(3):36-38.
    [39]刘俊,陆皓,陈俊梅.Q345R焊接残余应力的温度—组织—应力耦合分析[J].焊接学报,2009,30(2):95-99.
    [40]陈虎,巩建鸣,涂善东.典型封闭环焊缝多道焊焊接残余应力的模拟分析[J].焊接学报,2006,27(10):74-78.
    [41]赵智力,杨建国,刘雪松等.强度失配对接接头残余应力分布的有限元预测[J].焊接学报,2009,30(8):97-101.
    [42]胡桂明,周昌玉,张国栋等.焊接残余应力对接头尘化腐蚀影响的有限元模拟[J].焊接学报,2009,30(1):42-47.
    [43]傅永华.有限元分析基础[M].武汉:武汉大学出版社,1998.
    [44]梁清香.有限元与Marc实现[M].北京:机械工业出版社,2003.
    [45]梁晓燕,中厚板多道焊焊接过程中温度场和应力场的三维数值模拟[D].武汉:华中科技大学材料学院,2004.
    [46]朱援祥,王勤,赵学荣,孙秦明.基于ANSYS平台的焊接残余应力模拟[J].武汉理工大学学报.2004,26(6):69-72.
    [47]莫春立,钱百年,国旭明等.焊接源计算模式的研究进展[J].焊接学报,2001,22(3):93-98.
    [48]郭培军.水火弯板加工自动化关键技术研究.[D].大连:大连理工大学船舶工程系.2005
    [49]陈火红.Marc有限元实例分析教程[M].北京:机械工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700