导电加切削有限元模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电加切削技术是改善难加工材料切削加工性能,提高表面加工质量、降低刀具耐用度的有效方法。国内外学者已对该加工技术进行了多年研究,但对切削过程具有重要影响的切削力及切削温度研究较少。本文主要研究内容如下:
     1.加电阻。导电加切削是通过加电阻对局部切削区材料进行快速加而发挥作用的,因此研究加电阻的形成机理、组成结构及经验公式,对分析导电加切削机理具有重要意义。本文基于电接触理论及导电加切削特征,提出了切削区加电阻的三维结构模型。设计正交实验;对加电阻进行精确检测,建立了加电阻与切削用量、加电流的经验公式,该经验公式较好地反映了YT726导电加切削淬硬GCr15轴承钢时加电阻的变化规律。
     2.导电加切削的有限元模拟分析。切削过程的模拟仿真在优化实验参数、节约生产成本、提高实验效率等方面具有重要意义。本文首先对导电加切削过程中的电、力、耦合情况进行分析,将加电阻焦耳效应引起的温升视为工件材料的初始温度,使用与材料硬度相关的AISI52100本构关系描述材料的流动应力,在此基础上利用有限元软件DEFORM模拟切削过程。根据模拟结果,预测了导电加切削过程中的切削力和切削温度。为了验证有限元模型的准确性,使用相同的实验参数进行切削实验,测量了YT726硬质合金刀具导电加切削淬硬GCr15轴承钢的切削力。切削力的模拟值与实验值具有一致的变化趋势,且相对误差较小,除去系统误差及测量误差的影响,本文建立的有限元模型是比较准确的。最后,根据切削温度的模拟结果及最佳切削温度守恒定律,优选了导电加切削的加电流。
     3.导电加切削尺寸误差分析。导电加切削提高了切削区温度,改善了难加工材料的切削加工性能,同时也使刀具和工件产生了变形,影响尺寸精度。本文以细长轴为实验对象,优选了实验参数,对尺寸误差进行实验研究。研究结果表明:导电加切削细长轴尺寸误差是切削力和切削耦合的结果。量使工件产生变形,影响实际切削深度;但是切削又会软化工件材料,减小切削力,从而减小工件的变形,这对于减小尺寸误差是有利的。
Electric Hot Machining (EHM) is an efficient method to improve the machinability of difficult-to-cut materials, obtain better surface quality and reduce tool wear. Researchers have studied this cutting technique for many years, however, the study on cutting force and cutting temperature which is significantly important to the mechanism of the EHM, has been paid little attention. So the context in this paper shows as follow:
     1. Heating resistance. EHM primarily relies on heating resistance to quickly heat the material in the deformation area, therefore the studies on the generating mechanism, components and empirical equation of the heating resistance are valuable for analysis on the mechanism of the EHM. Based on the electrical contact theory and the characteristics of EHM, a 3D model of heating resistance is established in this paper. And the empirical equation of cutting parameter and heating current to the heating resistance is given by the precious measurements of the heating resistance, which can accurately represent the change law of resistance under certain conditions.
     2. FEM simulation of the EHM. The simulation of EHM process is of great significance in the optimization of experimental parameters, the cost saving of prdduction and the incensement of efficiency. This paper seems the exotherm caused by the heating resistance as the initial temperature of the workpiece, uses Umbrello constitutive relation related to the hardness of material to describe the flow stress, and then simulates the EHM process using the FEM software DEFORM. According to the simulation results, this paper predicts the cutting force and cutting temperature in the EHM process. In order to verify the accuracy of the FEM model, this paper measures the cutting force when EHM GCr15 bearing steel of HRC60 with YT726 Carbide cutting tools. The comparison shows that the simulations have well agreed with the experimental results with small relative error, concerned the system error and the measurement error, FEM model built in this paper is accurate. After verifying the accuracy of the FEM model, the optimum heating current can be obtained based on the simulation results of the cutting temperature and the optimum cutting temperature conservation law.
     3. Dimensional error in EHM.EHM raises the temperature in cutting zone to improve the machinability of difficult-to-cut materials, meanwhile, high temperature causes distortion of workpiece and tool, affects the dimensional precision. This paper chooses slender shaft as workpiece, optimizes the experimental parameters, and then analyzes the dimensional error. The tests show that dimensional error is caused by both cutting force and cutting temperature. Heat distorts workpiece, affects the actual cutting depth. Meanwhile, heat softens the workpiece, reduces the cutting force, and thus reduces distortion which is beneficial for reduction of dimensional error.
引文
[1]韩荣第,于启勋.难加工材料的切削加工[M].北京:机械工业出版社,1996.
    [2]刘献礼,王艳鑫,郭凯.绿色切削技术的研究现状及发展[J].航空制造技术,2009(13):26-31.
    [3]娄岩.淬硬钢导电加切削刀具材料选择实验研究[D].大连:大连理工大学,2007.
    [4]陈涛,刘献礼,罗国涛PCBN刀具硬态切削淬硬轴承钢的数值模拟与实验研究[J].系统仿真学报,2009,9.
    [5]陈定一.难加工材料切削加工的研究与进展[J].机床,1985(10).
    [6]孙鹏.淬硬钢导电加切削技术基础研究[D].大连:大连理工大学,2005.
    [7]大越醇,上原邦雄.导电加切削[M].日本机械学会志,1963(2).
    [8]周泽华.金属切削中的鳞刺[J].机械工程学报,1960,3.
    [9]陈定一.以电接触电阻加切削低镍铬冷硬铸铁的初步实验研究[J].安徽工学院学报,1984,4(13).
    [10]叶邦彦,陈文戈.导电加切削加电源的研究与应用[J].电加工,1997(4):11-14.
    [11]汤勇,张发英,陈澄洲.断屑器导电加切削的研究[J].华南理工大学学报(自然科学版),1994,8(4).
    [12]罗翔,陈文戈,叶邦彦.微机控制导电加切削过程的研究[J].机械设计与制造,1998(6):35-36.
    [13]邹春华,赵学智,叶邦彦.导电加切削模糊控制系统的研究[J].机电工程技,2003,32(2):99-102.
    [14]陈文戈,叶邦彦,周泽华.导电加切削最佳加电流的实验研究[J].机械工业师,1999(5):8-9.
    [15]叶邦彦,周泽华.难加工材料导电加切削机理的研究[J].华南理工大学学报(自然科学版),1994,10(5).
    [16]赵学智,叶邦彦,陈统坚.导电加切削切削区加电阻模型及实验分析[J].机械工程学报,2009,1.
    [17]徐兰英.难加工材料小孔导电加钻削机理的研究[D].广州:华南理工大学,2009.
    [18]汤铭权.导电加切削技术[J].新科学新技术,1988,6.
    [19]A.J.Shih.FE simulation of orthogonal metal cutting. Transactions of the ASME[J],1995.
    [20]J.Q.Xie,A.E.Bayoumi,H.M.Zbib. FEA modeling and simulation of shear localized chip formation in metal cutting. International Journal of Machine Tools & Manufacture[J],1998.
    [21]R.Komanduri,Z.B. Hou.Thermal modeling of the metal cutting process Part Ⅰ—Temperature rise distribution due to shear plane heat source[J]. International Journal of Mechanical Sciences,2000.
    [22]R.Komanduri.Z.B. Hou. Thermal modeling of the metal cutting process Part Ⅱ—temperature rise distribution due to frictional heat source at the tool chip interface[J]. International Journal of Mechanical Sciences,2001.
    [23]R.Komanduri,Z.B.Hou.Thermal modeling of the metal cutting process Part Ⅲ—temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source[J]. International Journal of Mechanical Sciences,2001.
    [24]Yung-Chang Yen, Anurag Jain,Taylan Altan. A finite element analysis of orthogonal machining using different tool edge geometries[J]. Journal of Materials Processing Technology,2004.
    [25]方刚,曾攀.金属正交切削工艺的有限元模拟[J].计算机科学与技术,2003,7(4).
    [26]于贻鹏.金属切削过程的有限元法仿真研究[D].大连:大连理工大学,2005.
    [27]梁磊.金属正交切削仿真及实验研究[D].西安:西安理工大学,2006.
    [28]李涛.淬硬模具钢正交切削的力学建模与计算机仿真研究[D].南京:南京航空航天大学,2007.
    [29]周利平,吴能章.基于FEM的三维切削力预报研究[J].工具技术,2005,9.
    [30]李子艳.高速切削机理及若干伺题研究[D].天津:天津大学,2006.
    [31]刘成文.属切削加工过程的有限元分析[D].杭州:浙江大学,2002.
    [32]程林.二维金属切削应力场和温度场的数值模拟[D].合肥:合肥工业大学,2004.
    [33]李明艳.高速切削温度场的有限元数值模拟[D].青岛:山东科技大学,2005.
    [34]姚永琪.正交金属切削温度场的计算与模拟[D].杭州:浙江大学2004.
    [35]张华.金属切削过程仿真及其在断屑槽性能研究中的应用[D].南京:南京航空航天大学,2004.
    [36]吴勃.金属切削加工过程的有限元建模与仿真[D].镇江:江苏大学,2006.
    [37]梁文杰.硬态切削过程的有限元仿真[D].哈尔滨:哈尔滨理工大学,2005.
    [38]张东进.切削加工热力耦合建模及其实验研究[D].上海:上海交通大学,2008.
    [39]叶邦彦.导电加切削的机理及其应用的研究[D].广州:华南理工大学,1'989.
    [40]太原市金属切削刀具协会编,金属切削适用刀具技术[M].北京:机械工业出版社,2002,9.
    [41]陈日曜.金属切削原理(第2版)[M].机械工业出版社,1994.
    [42]陈文戈.导电加切削关键技术研究[D].广州:华南理工大学,1997.
    [43]A.Ⅱ.马卡洛夫.切削过程最优化(M].国防工业出版社,1988.
    [44]吴拓,叶邦彦,赵学智.采用导电加切削抑制积屑瘤和鳞刺的研究[J].工具技术,1998(32):8-10.
    [45]叶邦彦,周泽华,刘磊等.导电加切削温度的检测和控制[J].湖北工学院学报.1997,9:41-44.
    [46]王辉.切削力与切削温度测量的数据采集处理系统的研制[D].哈尔滨工业大学,2006.
    [47]D.Umbrello, L.Filice, S.Rizzuti, F.Micari,L.Settineri.On the effectiveness of Finite Element simulation of orthogonal cutting with paricular reference to temperature prediction [J]. Journal of Materials Processing Technology,2007(189):284-291.
    [48.]N.A.Abukhshim, P.T.Mativenga, M.A.Sheikh. Heat generation and temperature prediction in metal cutting:A review and implications for high speed machining[J].MACHINE TOOLS & MANUFACTURE,2006(46):782-800.
    [49]郭凤仪,陈忠华.电接触理论及其应用技术[M].中国电力出版社.2008,7.
    [50]KAINTH G S, CHATURVEDI M N. Theoretical investigation of temperature in hot machining [J].International Journal of Machine Tool Design & Research,1975,15(6):241-256.
    [51]荣命哲.电接触理论及应用[M].北京:机械工业出版社,2004.
    [52]朱伯芳.有限元法原理与应用[M].北京:中国水利水电出版社,1998.
    [53]刘战强,吴继华,史振宇等.金属切削变形本构方程的研究[J].工具技术,2008(42):3-9.
    [54]Domenico Umbrello,Jiang Hua,Rajiv Shivpuri. Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel [J].Materials Science and Engineering,2004(374):90-100.
    [55]杨竹青,许家明.细长轴恒力切削的智能控制技术[J].宁波职业技术学院学报,2007,10.
    [56]张东升,周巍,王文惠.长丝杠的车削加工[J].现代制造技术,2008(6):32-34.
    [57]韩荣第,郭建亮.细长轴车削浅析[J].机械研究与应用,2004,3.
    [58]张明,庞雄邦.浅析细长轴的车削技术[J].甘肃科技,2008,1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700