天然气管道不停输带压改线焊接研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地下燃气管道的广泛使用,实际工程中不可避免地应用到在役燃气管道带压改线技术。目前我国带压管道改线技术只是基于过去积累的经验,缺乏对整个改造工程科学、量化的数据支持。因此,本课题将对天津市某带压燃气管道改线工程进行系统的研究与校验,主要考察焊接过程中燃气管道内壁的温度和焊接力学行为。
     本课题首先针对带压管道改线中的环焊缝制定合理的焊接工艺参数,包括:焊接方法,焊接材料的选择、焊接接头的尺寸及处理方法等。主要用到的试验方法为拉伸试验、刻槽试验、宏微观金相试验和硬度测试。
     焊接工艺确定后,应用有限元软件ANSYS对这种方式下的带压管道改线焊接过程进行模拟。焊接过程包含了学和力学两种问题,所以选择有限元数值模拟方法的-应力耦合法对改线问题进行模拟。同时,又由于焊接过程是一个不均匀的瞬态非线性输入问题,为了得到精确模拟结果,本文选择了间接耦合方法分别对3MPa,4MPa和5MPa管道内压情况下的模型进行学数值计算,对3MPa和4MPa内压下的模型进行了力学数值计算,其中对焊接过程应用了“生死单元”这个功能。在学与力学耦合部分,为了协调二者网格疏密程度不一致问题,本文应用了ANSYS的BFINT功能对体载荷进行插值运算。
     最终发现三种内压下进行的带压改线焊接,对于所采用的手工电弧焊接工艺,燃气管道内壁的最高温度为755℃,低于Battelle的982℃,即施工过程中不会发生烧穿现象。同时,由于管道的对流系数会随着管道压力的升高而升高,因此燃气管道的内壁温度随之降低。
     通过分别对3MPa管道内压进行模拟发现,焊接过程中的最大等效应力为327MPa,小于母材的屈服强度360MPa。改线焊接结束后,管道恢复供压时的4MPa时,管道的最大等效应力提高到337MPa,依然符合安全要求。另一方面,两种内压下,管道发生的最大位移均小于1mm界限,也符合安全经验标准。因此,针对本文研究的管道结构,在3MPa下进行带压燃气管道的改线施工是一种安全合理的选择。
With the wide usage of the buried gas pipeline,people have paid more and more attention on in-service welding of gas pipelines. At present, China's such technology is only based on previous experience which lacks scientific and quantitative data. Therefore, this paper will do research on modification welding of gas pipelines whose topic is supplied from Tianjin Gas Group CO.LTD. It is mainly about the temperature of pipe inside wall and the strength of the welding joint.
     Firstly, the paper found proper technics parameters for the modification welding of gas pipelines, which includes: welding method, the choice for base metal and welding filler, the size of welding joint the heat treatment method and so on. In order to get these parameters, it needs a few experiments: tensile test, groove test and so on. After confirming the welding technics, the paper used the finite element software, ANSYS, to simulate the modification welding process of gas pipelines. Since the welding process contains two parts, thermal issue and stress issue, the paper chose the thermal-stress coupling method of finite element numerical simulation. Meanwhile, because the welding process is a quite unstable and asymmetric issue for inputting heat, the paper choice indirect coupling method to get the accurate solution. There are three kinds of internal press (3MPa, 4MPa and 5MPa) condition for simulation. In the simulation, the paper utilized the important function of "birth-death element". In the thermal-stress coupling section, in order to coordinate the different element density between thermal part and stress part, the paper harnessed the BFINT function to activate the body force interpolation operation which is the highlight of this research.
     At last, it is found that under three internal press condition, the temperature of the gas pipeline's inside wall is all less than 982℃. It means it would not burn through during the welding process. At the same, with the increased internal press, the coefficient of thermal transfer is also raised, so the temperature of the gas pipeline's inside wall is reduced. However, raising the internal press leads to the increase of stress and displacement. Therefore, the 3MPa is a proper and safe press for the modification welding of gas pipelines.
引文
[1] M D Chapetti, J L Otegui, C Manfredi. Full scale experimental analysis of stress states in sleeve of gas pipelines[J]. Pressure Vessels and Piping, 2001, 78: 379~397.
    [2] D Rosenthal. Mathematical Theory of Heat Distribution during Welding and Cutting[J]. Welding Journal, 1941, 20(5): 220.
    [3] H H雷卡林.焊接过程计算(徐碧宇,庄鸿寿)[M].北京:机械工业出版社,1958.
    [4] Paley Z, Hibbert P D, Computation of Temperation in Actual Weld Designs[J]. Welding Journal 1975, 54(11): 385~392.
    [5]陈楚.数值分析在焊接中的应用[M].第一版,上海:上海交通大学出版社, 1985.
    [6] Gareth A, Taylor, Michel Hughes, Nadia Strusevich et al. Finite Volume Methods Applied to the Computational Modeling of Welding Phenomena[J]. Applied Mathematical Modeling, 2002, 26(2): 309~320.
    [7] S.W.Wen, P.Hilton, D.C.J.Farrugia. Finite Element Modeling of a Submerged Arc Welding Process[J]. Journal of Materials Processing Technology, 2001, 119(1~3): 203~209.
    [8]陈楚,汪建华,杨洪庆.非线性焊接传导的有限元分析和计算[J].海洋工程, 1983,3: 139~148.
    [9]陈楚,汪建华,杨洪庆.水下焊接冷却特征的有限元分析[J].海洋工程, 1983,4:34~38.
    [10]蔡洪能,唐慕尧. TIG焊接温度场的有限元分析[J].机械工程学报, 1996,32 (2): 34~39.
    [11]段权,张新国,李志军,等.焊接循环非线性温度场分析及模拟研究[J].西安交通大学学报, 2001,35(4): 411~415.
    [12] Murakawa H. Computational Welding Mechanics and its Interface with Industrial Application[J]. International Symposium on Theoretical Predication in Joining and Welding, 1996, 11: 231~245.
    [13] Murakawa H. Theoretical Prediction of Residual Stress in Welded Structures[J], Welding Research, 1998, 44(6~7): 2~7.
    [14] Inoue T. Metallo-Thermo-mechanics Application to Phase Transformation Incorporated Processes, Proc[J]. Theoretical Prediction in Joining and Welding, 1996, 11: 89~112.
    [15] Bachorski A, Painter M J, Smalles A J. Finite Element Prediction of Distortion During Gas Metal Arc Welding Using the Shrinkage Volume Approach[J]. Journal of Materials Processing Technology, 1999, 60(8): 405~409.
    [16]唐慕尧.单面焊接时终端裂纹的研究[J].焊接学报, 1987,7(3): 123~132.
    [17]陈楚.轴对称弹塑性应力有限元分析在焊接中的应用[J].焊接学报,1987, 8(4): 196~203.
    [18]汪建华,戚新海,钟小敏,等.考虑相变的焊接动态和残余应力的研究[J].第六届全国焊接学术会议论文集,第5册, 1990: 209~212.
    [19]汪建华,戚新海,钟小敏等,焊接结构三维变形的有限元模拟[J].上海交通大学学报,1994,28(6): 59~65.
    [20] Wang J. Improvement in Numerical Accuracy of Welded Steel Structures[J]. Welding Journal, 1998, 77(8): 49~52.
    [21] Puchaicela J. Control of Distortion of Welded Steel Structures[J]. Welding Journal, 1998, 77(8): 49~52.
    [22]侯学涛.铝合金筒形筋板加强结构间断角焊缝残余应力场分析[D].硕士学位论文,天津大学,2006.
    [23] National Energy Board. In the mater of an Accident on 19 February 1985 near Camrose, Alberta, on the pipeline System of interprovincial Pipe Line Limited[R]. National Energy Board Report, MH-2-85, June 1986.
    [24] Kniefner JF, Bruce W A, Stephens DR. Pipeline Repair Mannual[M]. AGA Cat. No. L51716, 1994.
    [25] American Welding Association. AWS welding handbook[S]. 8th ed, vol.4. Miami, USA: AWA, 1998 part2.
    [26] Otegui JL, Rivas A, Manfredi C, Martins C. Weld failures in sleeve reinforcements of pipelines[J]. Engng Failure Anal 2001, 8~11: 57~74.
    [27]康渊,陈信吉, ANSYS入门(王超辉)[M].北京:中国电力出版社, 2007,2~6.
    [28]王福耻,张朝晖.有限元分析理论与工程应用[M].北京:电子工业出版社, 2006,1~2.
    [29]张朝晖. ANSYS 8.0学分析教程与实例解析(范群波)[M].北京:中国铁道出版社,2005,1~16.
    [30]邵蕴秋. ANSYS 8.0有限元分析实例导航[M].北京:中国铁道出版社, 2004, 281~312.
    [31]龚曙光,谢桂兰. ANSYS操作命令与参数化编程[M].北京:机械工业出版社, 2004,419~430.
    [32] Lindgren LE, Hedblom R. Modeling of addition of filler material in large deformation analysis of multipass welding[J]. Common Number Methods Eng 2001, 17: 647~657.
    [33] P N Sabapathy, M A Wahab, M.J. Painter. The prediction of burn-through during in-service welding of gas pipelines[J]. Pressure Vessels and Piping, 2000, 77: 669~677.
    [34] P N Sabapathy, M A Wahab, M J Painter, Numerical models of in-service welding of gas pipelines[J]. Journal of Materials Processing Technology 118 (2001): 14~21.
    [35] M A Wahab, P N Sabapathy, M J Painter. The onset of pipewall failure during“in-service”welding of gas pipelines[J]. Journal of Materials Processing Technology 168(2005): 414~422.
    [36] B. Chen, X.H. Peng, J.H. Fan. A viscous-elastoplastic constitutive equation incorporating phrase transformation with the application to the residual stress analysis for welding process[J]. Journal of Materials Processing Technology 205 (2008): 316~321.
    [37]陈精一. ANSYS工程分析实例教程[M].北京:中国铁道出版社, 2007, 301~339.
    [38]博弈创作室. ANSYS9.0经典产品基础教程与实例详解[M].北京:中国水利水电出版社, 2006,454~482.
    [39] Edison Welding Institute. Guidelines for weld deposition repair on pipelines[M]. EWI project no. 40545CAP. EWI. 1997.
    [40] Kiefner JF, Fischer RD. Repair and hot tap welding on pressurized pipeline[J]. Symposium during 11th Annual Energy Sources Technology Conference and Exhibition, New Orleans, LA, 10-13 January, 1988, New York, ASME PD. 1987,14: 1~10.
    [41] API 1104. Welding of pipelines and related facilities[S]. Appendix B: in-service welding, USA: American Petroleum Institute, 1999.
    [42] American Petroleum Institute. API order No. D12750[S]. Investigation and prediction of cooling rates during pipeline maintenance welding, and user’s manual for Battelle’s hot tap thermal-analysis models, USA:API,1998.
    [43] Bruce WA, Holdren RL, Mohr WC. Repair of pipelines by direct deposition of weld metal–further studies[J]. PRC/International, Project PR-185-9515, November 1996.
    [44] Cola MJ, Kiefner JF, Fischer RD, Bubenik TA. Development of simplified weld cooling rate models for in-service gas pipelines[J]. AGA Project Report No. J7134, July 1992.
    [45] Pablo G. Fazzini, Jose Luis Otegui. Self-ignition of natural gas inside pipes at a regulation station[J]. Engineering Failure Analysis 16(2009): 187~199.
    [46] J L Otegui, S Urquiza, A Rivas, A Trunzo. Local collapse of gas pipelines under sleeve repairs[J]. International Journal of Pressure Vessels and Piping 77(2000):555~566.
    [47] J L Otegui, A Cisilino, A E Rivas. Influence of multiple sleeve repairs on the structural integrity of gas pipelines[J]. International Journal of Pressure Vessels and Piping 79(2002): 759~765.
    [48] L-E Lindgren. Numerical modelling of welding[J]. Comput. Methods Appl. Mech, Engrg. 195(2006): 6710~6736.
    [49]莫春立,钱百年,国旭明,等.焊接源计算模式的研究进展[J].焊接学报, 2001,22(3):93~96.
    [50]陈家权,沈炜良,尹志新等.基于单元生死的焊接温度场模拟计算[J].加工工艺,2005,7: 64~65.
    [51]薛小龙,桑芝富,姜卫忠.带压开孔结构多道间断焊的数值模拟[J].焊接学报,2005, 26(4):25~28.
    [52] A P Cisilino, M D Chapetti, JL Otegui. Minimum thickness for circumferential sleeve repair fillet welds in corroded gas pipelines, International Journal of Pressure Vessels and Piping 79(2002): 67~76.
    [53] Petukhov BS. Heat transfer and friction in turbulent pipe flow with variable physical properties[J]. Advance in heat transfer, 1970, 6: 503.
    [54]王世斌,亢一澜.材料力学[M].北京:高等教育出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700