新疆喀拉通克铜镍矿床矿石矿物微区分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喀拉通克铜镍矿床位于阿尔泰加里东褶皱系和准噶尔海西褶皱系结合部位的准噶尔褶皱系一侧,属萨尔布拉克-萨色克巴斯陶复向斜东部,区内发育一系列次级褶皱和断裂,由11个岩体(Y1-Y9,Y10、Y11)及矿区外围的G21、G22重力异常区和AM16航磁异常区组成,矿体主要赋存于Y1-Y3号岩体中。已探明Y1岩体为大型铜镍矿床,Y2-Y3为中型矿床,其余为4个小型矿床。在整个新疆地区,喀拉通克铜镍矿床是规模大而品位富的代表性岩浆硫化物矿床。
     本文着重从矿石矿物研究着手,通过矿物的显微结构、微区形貌与结构关系等研究,并结合电子探针成分的实际分析和其它测试研究成果,对该矿床进行研究,重点探讨了主要矿石矿物的微区成分特征、PGE赋存状态和矿石成因,取得了如下进展:
     (1)通过本文研究,丰富了喀拉通克铜镍矿床矿石矿物的研究资料。
     (2)矿石矿物微区成分分析表明喀拉通克铜镍矿床为岩浆熔离硫化物矿床,后期局部存在热液作用,矿床以富铜为特征。
     (3)各类浸染状矿石应形成于相同或相近物理化学条件下,致密块状矿石具有更复杂的形成过程,但二者均经历了少量硫化物深部熔离的早期过程,从而导致矿床亏损PGE。在致密块状矿石中,致密块状特富铜镍矿石与致密块状高铜富镍矿石同属矿浆贯入的产物,但后者是矿浆结晶演化局部热液性质更为明显的成矿溶液结晶形成的,表现出相容的稀土元素含量较高。
     (4)质量平衡计算显示喀拉通克矿床Pt、Pd在贱金属硫化物的质量分数比例均很低,且黄铜矿几乎不含Pt和Pd,Fe与Pt、Pd的相关系数分别为R2=-0.24和R2=0.45,显示了Fe与Pt、Pd十分微弱的相关性,说明硫化物可能不是Pt和Pd的主要载体矿物,Pt和Pd主要赋存在铂族元素矿物中。
Kalatongke Ni-Cu sulfide deposit, in the northern margin of the Junggar terrane, northern Xinjiang, NW China, lies in east of Saerbulake-Sasekebasitao synclinorium in Junggar fold system, which is the boundary of Altai Caledonian fold system and Junggar Hercynian fold system. This area develops a series of second-order folds and subsidiary fractures, and composes of eleven rock bodies(Y1-Y9, Y10、Y11) and G21、G22 gravity abnormal district and AM16 aeromagnetic anomaly district, where a large Cu-Ni ore deposit, two moderate ore deposits and four small ore deposits have been explored. The Kalatongke Ni-Cu sulfide deposit is the largest and most representative deposit in the whole of the Xinjiang Province.
     The paper attempts to study on the characteristic the structures, constructures, micrograpy of ores, and discuss the distribution of their trace elements; especially, probed into the ore genesiss by the PGE.Some conclusions can be drawn as following:
     (1) This paper's stduy enriches the reseaching data of the ore mineral of Kalatongke Ni-Cu sulfide deposit.
     (2) The trace element of the ore mineral indicated that Kalatongke Ni-Cu sulfide deposit is Magmatic segregation Ni-Cu sulfide deposit. Hydrothermal process was weak and occurred locally, and the deposit is more enrichment in copper than nickel.
     (3) The ores are comprised of disseminated sulfide ores and massive sulfide ores, for the former they should form in the same or the similar physical and chemical condition, but the latter has more complicated forming process,and both two experienced a few of sulfide pre-segregation, leading to the deposit depleted in platinum group elements. In the massive sulfide ores, especially the Cu-Ni-rich ore and the high-Cu and Ni-rich ore are both belong to the production of the mine plasm injected;but the latter was charactered by the hydrothermal alteration locally, and behaved the high content of the REE.
     (4) The mass balance calculation shows that the mass fraction of the Pt\Pd in the base metal sulfide minerals (BMS) of the kalatongke deposit are both very low,and there is almost no Pt or Pd in the chalcophile. The correlative coefficient between the Fe and Pt\Pd are R2=-0.24 and R2=0.45, which is weak negnative or positive interrelation, indicates that sulfide minerals maybe not the main carrier of the Pt and Pd, but the two elements mainly exists in the platinum-group element minerals.
引文
[1]Anthony J.Naldrett. Magmatic sulfide deposits:geology, geochemistry, and exploration[M]. Springer,2004:8
    [2]Brill B A. Trace-element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn Deposit, Australia[J]. Canadian Mineralogist,1989,27:263-274
    [3]Barnes S J, Lightfoot P C.2005.Formation of magmatic nickel sulfide ore deposits and processses affecting their copper and platinum-group element contents.In:Hedenquist JW, Thompson JFH, Goldfarb R J, Richards JP (eds) Economic geology,100th anniversary volume:179-213
    [4]Barriere M. Flowage differentiation:Limitation of the "Bagnold Effect" to the narrow intrusions[J]. Contributions to Mineralogy and Petrology,1976,55:139-145
    [5]Butler B.S., Burbank W.S., The copper deposits of Michigan[R]. U.S. Geological Survey Professional Paper,1929, V144:1-238
    [6]Brugmann G E, Naldrett A J, Asif M, et al. Siderophile and Chalcophile Metals as Tracers of the Evolution of the Siberian Trap in the Noril'sk Region, Russia[J]. Geochimica et Cosmochimica Acta,1993,57:2001-2018
    [7]Campell I.H., Griffiths R.W., The evolution of the mantle's chemical structure[J]. Lithos,1993, V30:389-399
    [8]Chai G, Naldrett A J. Petrology and Geochemistry of Jinchuan Ultramafic Intrusion:Cumulate of a High-Mg Basaltic Magma[J]. Journal of Petrology,1992,33:277-303
    [9]Duncan R.A., Richard M.A., Hotspots, mantle plumes, flood basalts, and true polar wander[J]. Rev Geophys,1991, V29:31-50
    [10]Francis R D. Sulfide Globules in Mid-Ocean Ridge Basalts (MORB) and the Effect of Oxygen Abundance in Fe-S-O on the Ability of those Liquids to Partition Metals from MORB and Komatiitic Magmas[J].Chemical Geology,1990,185:199-213
    [11]Francis R D. Sulfide Globules in Mid-Ocean Ridge Basalts (MORB) and the Effect of Oxygen Abundance in Fe-S-O on the Ability of those Liquids to Partition Metals from MORB and Komatiitic Magmas[J].Chemical Geology,1990,185:199-213
    [12]Fleet M E, Crocket J H, Stone W E.1996. Partition of Platinum Group Elements (Os, Ir, Ru, Pt, Pd) and Gold between Sulfide Liquid and Basalt Melt[J]. Geochimica et Cosmochimca Acta,60(13):2397-2412
    [13]Fleet M E, Chryssoulis S L, Stone W E, et al. Partition of platinum-group elements and Au in the Fe-Ni-Cu-S system:experiments on the fractional crystallization of sulfide melt. Contributions to Mineralogy and Petrology,1993,115:36-44
    [14]Fleet M E, Crocket J H, Stone W E.1996. Partition of Platinum Group Elements (Os, Ir, Ru, Pt, Pd) and Gold between Sulfide Liquid and Basalt Melt[J]. Geochimica et Cosmochimca Acta,60(13):2397-2412
    [15]Fryer BJ, Greenough JD. Evidence for mantle heterogeneity from platinum- group element abundances in Indian Ocean basalts[J]. Can J Earth Sci,1995,29:2329~2339
    [16]Foster J G, Hutchinson D. Melts, Magma, Metals and Magmatic Sulfides:Source Variability and Multi-Stage Sulfide Saturation[J]. Northwestern Geology(Sup),2009,42:14-27
    [17]Griffiths R.W., Campbell I.H., Sfirring and structure in mantle plumes[J]. Earth Planet Sci Lett,1990, V99:66-78
    [18]Isley A.E., Abbott D.H., Plume-related mafic volcanism and deposition of banded iron formation[J]. Geophys Res,1999, V104:15461-15477
    [19]Le Bas M J. IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks[J]. Journal of Petrology,2000,41:1467-1470
    [20]Li C, Barnes S-J, Makovicky E,et al. Partitioning of nickel, copper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid:effects of composition and temperature. Geochimica et Cosmochimica Acta,1996,60(7):1231-1238
    [21]Li X H, Su L, Chung S L, et al. Formation of the Jinchuan Ultramafic Intrusion and the World's Third Largest Ni-Cu Sulfide Deposit:Associated with the 825 Ma South China Mantle Plume? [J] Geochemistry Geophysics Geosystems,2005,6:1-16
    [22]McDonough W F, Sun S-S. The Composition of the Earth[J]. Chemical Geology,1995,120: 223-253
    [23]Monteiro L V S, Xavier R P, Hitzman M W, et al. Mineral chemistry of ore and hydrothermal alteration an the sossego oirn oxide-copper-gold deposit, Carajas Mineral Province, Brazil[J]. Ore Geology Reviews,2008,34:317-336.
    [24]Naldrett A.J., World-class Ni-Cu-PGE deposits:key factors in their genesis[J]. Mineralium Deposita,1999,V34:227-240
    [25]Naldrett A J, Kinnaird J, Stanley C et al. Platinum-group Elements in the chromitites of the Bushveld Complex:New evidence on how the PGE got there[J]. Northwestern Geology(Sup), 2009,42:178-179
    [26]Naldrett A J, Singh J, Krstic S et al. The mineralogy of the Voisey's Bay Ni-Cu-Co deposit, Northern Labrador, Canada:Influence of oxidation state on textures and mineral compositions[J]. Economic Geology,2000,95:889-900
    [27]Pirajno F., Ore Deposits and Mantle Plume[M]. Dordrecht Neth:Kluwer Acad,2000,556
    [28]Page P, Barnes S-J, Zientek M L, et al. IPGE(Os, Ir,Ru) are not in chromite. [J].Northwestern Geology(Sup),2009,42:20-23
    [29]Pina R, Gervilla F, Ortega L, et al. Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cudeposit (SW Spain). Mineralogy and Petrology,2008,92:259-282
    [30]Piplay E.M., Lambert D.D., Frick L.R., Re-Os, Sm-Nd, and Pb isotopic constraints on mantle and crustal contributions to magmatic sulfide mineralization in the Dulth Complex, Midcontinent Rift, Minnesota[J]. Geochim Cosmochim Acta,1998, V62:3349-3365
    [31]Qin K Z, Sun H, San J Z, et al. Tectonic Setting, Geological Features and Evaluation of Ore-Bearing Property for Magmatic Cu-Ni Deposits in Eastern Tianshan, NW China[J]. Northwestern Geology(Sup),2009,42:95-99
    [32]Ross M E. Flow differentiation, phenocryst alignment, and compositional trends within a dolerite dike at Rockport, Massachusetts[J]. Geologic Society of America Bulletin,1986,97: 232-240
    [33]Richard M.A., Duncan R.A., Courtilot V.E., Flood basalts and hotspot track:plume heads and tails[J]. Science,1989, V246:103-107
    [34]Song X Y, Keays R R, Zhou M F, et al. Siderophile and Chalcophile Elemental Constraints on the Origin of the Jinchuan Ni-Cu-(PGE) Sulfide Deposit, NW China[J]. Geochimica et Cosmochimica Acta,2009,73:404-424
    [35]Song X Y, Li X R. Geochemistry of the Kalatongke Ni-Cu-(PGE) Sulfide Deposit, NW China: Implications for the Formation of Magmatic Sulfide Mineralization in a Post-Collisional Environment[J]. Mnineralium Deposita,2008,44:1432-1866
    [36]Sun T, Qian Z Z, Liu M W, et al.Characters of main metallic minerals in Kalatongke Cu- Ni deposit of China and its geological significance[J].Northwestern Geology(Sup),2009, 42:107-111
    [37]White R.S., Mckenzie D., Mantle plume and flood basalts[J]. Geophys Res,1995, V100:543-585
    [38]Wang C Y, Zhou M F. Genesis of the Permian Baimazhai Magmatic Ni-Cu-(PGE) Sulfide Deposit, Yunnan, SW China[J]. Mineralium Deposita,2006,41:771-783
    [39]Zhou M F, Yang Z X, Song X Y, et al. Magmatic Ni-Cu-(PGE) Sulphide Deposits in China[C].//Cabri L J. The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum Group Elements. Ottawa:Springer-Verlag Berlin Heidlberg,2002:619-636
    [40]陈毓川.中国主要成矿区带矿产资源远景评价[M].北京:地质出版社,1999
    [41]陈殿芬.我国一些铜镍硫化物矿床主要金属矿物的特征[J].岩石矿物学杂志,1995,14(14):345-354
    [42]柴凤梅.2006.新疆北部三个与岩浆型Ni-Cu硫化物矿床有关的镁铁—超镁铁质岩的地球化学特征对比研究.北京:中国地质大学博士学位论文,1-164
    [43]顾连新.不同成因类型磁黄铁矿中镍、钴的地球化学[J].地质与勘探,1974,10(3):65-70
    [44]高振敏,张乾,陶琰,等.峨眉山地幔柱成矿作用分析[J].矿物学报,2004,24(2):99—104
    [45]韩宝福,季建清,宋彪,陈立辉,李宗怀.2004.新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报,49(22):2324-2328
    [46]姜常义,钱壮志,夏明哲,等.新疆喀拉通克镁铁质岩体群的岩石成因研究[J].岩石学报,2009,25(4):749-764
    [47]骆华宝.岩浆型铜镍矿床中紫硫镍矿的成因矿物学研究[J].地质与勘探,1994, 30(1):38-40
    [48]李荫亭.地幔柱假说及发展[J].地球科学进展,1997,12(5):484-487
    [49]李华芹,蔡红,谢才富,常海亮,周肃,朱家平.1998.新疆北部有色贵金属矿床成矿作用年代学[M].北京:地质出版社,1-264
    [50]李红阳,候增谦.初论幔柱构造成矿体系[J].矿床地质,1998,17(3):247—255
    [51]潘长云,王润民,赵昌龙.1994.新疆喀拉通克Y1含矿岩体的岩石化学特征及其与成矿的关系[J].岩石学报,10(3):261-274
    [52]钱壮志,孙涛,汤中立,等.东天山黄山东铜镍矿床铂族元素地球化学特征及其意义[J].地质论评,2009,55(6):873-884
    [53]钱壮志,王建中,姜常义等,喀拉通克铜镍矿床铂族元素地球化学特征及其成矿作用意义[J].岩石学报,2009,25(4):832-844
    [54]冉红彦,肖森宏.1994.喀拉通克含矿岩体的微量元素与成岩构造环境[J].地球化学,23(4):392-401
    [55]孙赫,秦克章,李金祥,等.地幔部分熔融程度对东天山镁铁质-超镁铁质岩铂族元素矿化的约束:以图拉尔根和香山铜镍矿为例[J].岩石学报,2008,24(5):1079-1086
    [56]孙晓明,王生伟,石贵勇,熊德信.云南白马寨Cu2Ni硫化物矿微量和铂族元素地球化学和矿床成因意义[J].矿物岩石地球化学通报,2008,27(3):239-246
    [57]汤中立.中国的小岩体岩浆矿床[J].中国工程科学,2002,4(6):9—12
    [58]汤中立.中国岩浆硫化物矿床的主要成矿机制[J].地质学报,1996,70(3):237—243
    [59]汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M].北京:地质出版社,1995
    [60]汤中立,闫海卿,焦建刚等、中国岩浆硫化物矿床新分类与小岩体成矿作用[J].矿床地质,2006,Vo.124(1):2-7
    [61]陶琰,胡瑞忠,漆亮,等.四川力马河镁铁-超镁铁质岩体的地球化学特征及成岩成矿分析[J].岩石学报,2007,23(11):2785-2800
    [62]唐冬梅,秦克章,孙赫,等.东疆天宇岩浆Cu-Ni矿床的铂族元素地球化学特征及其对岩浆演化、硫化物熔离的指示[J].地质学报,2009,83(5):680-697
    [63]王登红.地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨[J].地学前缘,2001,8(3):67-72
    [64]王有标.1990.新疆铜镍硫化物矿床的基本地质特点[J].新疆地质,8:305-320
    [65]王福同,马天林,刘光海等.1992.新疆喀拉通克Cu-Ni-Au成矿带成矿作用与找矿模式[M].北京:地质出版社
    [66]王生伟,孙晓明,石贵勇,熊德信,翟伟.2006.云南白马寨铜镍硫化物矿床铂族元素地球化学及其对矿床成因的制约[J].地质学报,80(9):1474-1486
    [67]王润民,赵昌龙.新疆喀拉通克一号铜镍岩浆硫化物矿床[M].北京:地质出版社,1991:151-170
    [68]许成,黄智龙,刘丛强,等.铂族元素地球化学研究评述[J].地学前缘,2003,10(4):520-528
    [69]徐学义,杨军录.地幔柱理论研究概述[J].西安地质学院学报,1997,19(2):46-51
    [70]杨炳滨.1994.新疆北部岩浆型铜镍硫化物矿床控矿因素的研究[J].矿产与地质,8:330-333
    [71]杨合群,汤中立,苏犁,等.金川硫化铜镍矿床成矿岩浆性质和源区特征讨论[J].甘肃地质学报,1997,6(1):44-52
    [72]张作衡,柴凤梅,杜安道,张招崇,闫升好,杨建民,屈文俊,王志良.2005.新疆喀拉通克铜镍硫化物矿床Re-Os同位素测年及成矿物质来源示踪.岩石矿物学杂志,24(4):285-294
    [73]张旗,钱青,王焰.蛇绿岩岩石组合及洋脊下岩浆作用[J].岩石矿物学杂志,2000,19(1):1-7
    [74]张招崇,闫升好,陈柏林,何立新,何永胜,周刚.2003.新疆喀拉通克基性杂岩体的地球化学特征及其对矿床成因的约束[J].岩石矿物学杂志,22(3):220-221
    [75]邹海洋.新疆喀拉通克铜镍硫化物矿床成岩成矿模式及找矿预测研究[D].长沙:中南大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700