波导裂缝阵天线以及宽带微带天线的研究和设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波导裂缝阵天线以及微带天线因各自的优点而成为当今天线领域的研究热点。波导裂缝阵列天线容易实现低或极低副瓣,因而被广泛用作导弹导引头天线、机载雷达天线等。而微带天线体积小、重量轻、低剖面,这些特点使它广泛应用于无线通信领域。
     围绕这两个主题,本文包括了四个方面的工作:研究和设计(1)波导裂缝阵天线(2)宽带微带天线(3)宽带微带天线阵(4)宽带和差网络。
     在波导裂缝阵天线的设计中,根据Elliott的缝阵理论,探讨了波导驻波线阵、面阵以及行波阵的设计流程,并给出了每种阵列的设计方程及设计实例,基于Fortran语言所搭建的计算模块具有一定的通用性,可以根据阵列的形式进行调用。此外,还充分利用仿真软件Ansoft HFSS研究了各种激励缝包括纵向缝、螺钉加载纵向缝、倾斜缝的谐振特性,研究结果对于波导裂缝阵的设计具有较好的参考价值。
     在宽带微带天线的设计中,根据天线带宽的展宽技术设计了三种新型的宽带微带天线:首先,从馈电装置入手,分别研究了四种共面波导馈电装置对于单贴片微带天线的谐振频率以及带宽的影响,分析比较了几种耦合缝的馈电特性,并运用变频思想对馈电装置进行改进,从而设计出了一阻抗带宽达28.9%的宽频带天线;接着,从贴片形状入手,结合耦合馈电技术,采用有限时域差分(FDTD)方法设计了一Ku波段宽频带U型缝贴片天线,该天线阻抗带宽达50%,增益带宽为33%。通过改变U型缝和地板上馈电缝的尺寸,天线的宽带特性被转化为了双频特性;最后,从短路技术入手,设计了一个短路贴片天线,其带宽达到了52%。
     在微带天线阵的设计中,全面地研究了阵元间的互耦规律并提出了一种新型的宽带馈电网络,在此基础上设计出了8×8和2×2的微带天线阵。
     最后研究了一类比较特别的天线馈电网络:和差网络。本文分别利用宽带相位补偿技术和0dB耦合技术设计出了宽带的波导和差网络以及微带和差网络。并根据微波网络的等效原理,利用新型的微带功分器以及反相巴伦设计出了一超宽带和差网络。
Waveguide slot array and microstrip antenna become the current research hotsbecause of their merits. Waveguide slot array can easily realize the low or very lowside-lobe and therefore it is widely used as missile-guidance head antenna, airborneradar antenna, and so on. At the same time, microstrip antenna with small volume,light weight, low cross section is used widely in wireless communication field.
     Around these two topics, this paper mainly concentrates on four facets of work:study and design (1) waveguide slot array (2) wideband microstrip antenna (3)wideband microstrip antenna array (4) wideband sum-and-difference network.
     In the design of waveguide slot array, we discussed the design procedures ofwaveguide standing-wave linear array, waveguide planar array, as well astraveling-wave array, and derived the design equation of each kind of waveguide slotarray and showed the design examples. The computation block based on the FortranLanguage has the universal property, which Can be called by different kinds of array.In addition, the simulation software Ansoft HFSS was used to study resonancecharacteristics of several excitation slots including longitudinal slot, longitudinal slotloaded by pin, and inclination slot. The research results are good reference to thedesign of waveguide slot array.
     In the design of wideband microstrip antenna, we designed three novel types ofwideband microstirp antenna based on the bandwidth broadening technology: Firstly,from the angle of feed device, the effects of four coplanar waveguide (CPW) feeddevices on the antenna resonant frequency and bandwidth were studied. The feedcharacteristics of coupling slots were analyzed and compared. The conversion ideawas combined with the feed device, fed by which a wideband microstrip antenna witha bandwidth of 28.9% was designed. Secondly, from the angle of special patch shapewith coupled feed technology, we employed the FDTD method to design a Ku-band U slot patch antenna, which had an impedance bandwidth of 50% as well as a gainbandwidth of 33%. By changing the size of U slot and feed slot, the widebandcharacteristics can be converted into dual-frequency characteristics. Finally, using theshorted circuit technology, a short patch antenna with an impedance bandwidth of52% was designed.
     In the design of microstrip antenna array, we roundly studied the coupling amongthe array elements and proposed a novel wideband feed network based on which an8×8 antenna array and a 2×2 antenna array were designed respectively.
     In the final part of this paper, we studied a special feed network: thesum-and-difference network. The wideband waveguide sum-and-difference networkand microstrip sum-and-difference network were designed respectively by the use ofwideband phase compensation technology and 0dB coupling technology. And basedon the microwave network principles, an ultra-wideband sum-and-difference networkwas designed by employing the novel power divider and anti-phase balun.
引文
[1] Stevenson A F. Theory of slots in rectangular waveguide. Journal of applied physics, 1948, 19(1): 24-28.
    [2] Oliner A A. The impedance properties of narrow radiating slots in the broad face of rectangular waveguide. IRE Trans. AP, 1957, 5: 4-20.
    [3] Yee H Y. Impedance of a narrow longitudinal shunt slot in a slotted waveguide array. IEEE Trans. Antennas Propagat., 1974, 22(4): 589-592.
    [4] Elliott R S. Antenna theory and design. Englewood Cilffs: Prentice-Hall, Inc., 1981.
    [5] 张钧等.微带天线理论与工程.国防工业出版社,1988.
    [6] Carver K R. Microstdp antenna technology. IEEE Trans. Antennas Propagat., 1981, 29(1): 2-24.
    [7] Pozar D M. A review of bandwidth enhancement techniques for microstrip antenna. IEEE Trans. Antennas Propagat., 1992, 40(6): 1367-1374.
    [8] Mahmoud A N. FDTD analysis of patch antenna over a multi-layer substrate. Radio Science Conference. 17th NRSC'2000. Seventeenth National, 2000: B1/1-B110.
    [9] Wang C M. Technologies of Broadband Mierostrip Antenna. Electronic Warfare Technology, 2003, 18(5): 23-26.
    [10] 钟顺时.微带天线理论与应用.西安:西安电子科技大学出版社,1991.
    [11] Pan K H. Effects of lossy dielectric materials on microstrip antennas. Prc. IEEE AP-S Conf. Antennas and Propagation for Wireless Communications, 2000: 39-42.
    [12] Deshmukh A A. Compact broadband stacked microstrip antennas. Microwave and Optical Technology Letters, 2005, 48(1): 93-96.
    [13] Rao Q J. A new aperture coupled microstrip slot antenna. IEEE Transactions on Antennas and Propagat., 2005, 53(9): 2818-2826.
    [14] Chen Z N. Design of broadband probe-fed plate antenna with a stub. IEEE Proe. Microw. Antennas Propagat., 2001, 148(4): 221-226.
    [15] Luan X J. Research on triangular microstrip patch antenna loaded with a shorting pin. Acta Electronica Sinica, 2003, 31(6): 944-946.
    [16] Huynh T. Single-layer single-patch wideband microstrip antenna. Electronic Letters, 1995, 31(16):1310-1312.
    [17] Wang Y J. Single-patch and single-layer square microstrip antenna with 67.5% bandwidth. IEEE Proc. Microw. Antennas Propagat., 2001, 148(6): 345-437.
    [18] Basilio L I. The dependence of the input impedance on feed position of probe and microstrip line-fed patch antennas. IEEE Trans. Antennas Propagat., 2001, 49(1): 45-47.
    [19] Tong K F. A broadband U-slot rectangular patch antenna on a microwave substrate. IEEE Trans. Antennas Propagat., 2000, 48(6): 954-960.
    [20] Chatterjee D. Numerical modeling of scan behavior of finite planar arrays of wideband U-slot and rectangular microstrip patch elements. Phased Array Systems and Technology, IEEE International Symposium on, 2003:323-328.
    [21] Denidni, T A. Experimental investigations of broadband microstrip antenna for PCS applications. IEEE Vehicular. Technology Conference, 1999, 3:1764-1767.
    [22] 雷昂诺夫AH.单脉冲雷达.黄虹译.北京:国防工业出版社,1974.
    [23] Josefsson L G. Analysis of longitudinal slots in rectangular waveguides. IEEE Trans on Antennas and Propagat., 1987, 35(12):1351-1357.
    [24] Rengarajan S R. Efficient and accurate evaluation of external mutual coupling between compound broad wall slots. IEEE Trans on Antennas and Propagat., 1992, 40(6): 733-737.
    [25] Elliott R S. The design of waveguide-fed slot arrays. Antenna Handbook, New York Van Nostrand Reinhold, 1988.
    [26] 金林.平板裂缝天线阻抗匹配设计的研究.微波学报,2000,16(4):373-377.
    [27] Stegen R J. Longitudinal shunt slot characteristics. Hughes Tech. Memo.261, Hughes Aircraft Co., Culver City, CA, Nov. 1951.
    [28] 康行健.天线原理与设计.北京:国防工业出版社,1995:58-113.
    [29] 马振华等.计算与数值分析卷.北京:清华大学出版社,2005:512-513.
    [30] 张文.矩形波导缝隙天线阵分析.空军工程大学学报,2001,2(4):37-39.
    [31] Elliott R S. On the design of Traveling-Wave-Fed Longitudinal Shunt Slot Army. IEEE Trans. on Antennas and Propagat., 1979, 27(5): 217-256.
    [32] Mazem Hamadalla. Frequency limitations on broad-band performance of shunt slot arrays. IEEE Trans. On Antennas and Propagat., 1989, 37(7): 817-823.
    [33] Harrington R F. Field computation by moment methods. New York: IEEE Press, 1993.
    [34] Silvester P P. Finite elements for electrical engineering. Cambridge: Cambridge University Press, 1983.
    [35] Sullivan D M. Electromagnetic simulation using the FDTD method. New York: IEEE Press, 2000.
    [36] Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat., 1966, 14(3): 302-307.
    [37] Taylor C D. EM pulse scattering in time varying inhomogeneous media. IEEE Trans. Antennas Propagat., 1969, 17(5): 585-589.
    [38] Berenger J P. A perfectly matched layer for the absorption of electromagnetics waves. J. comput. Phys., 1994, 114(2): 185-200.
    [39] SZE J Y. Bandwidth enhancement of a mierostdp-line-fed printed wide slot antenna. IEEE Trans on Antennas and Propagat., 2001, 49(7): 1020-1024.
    [40] Chen H D. Probe-fed compact circular microstrip antenna for circular polarization. Microwave Opt. Technol. Lett., 2001, 29(1): 52-54.
    [41] Sulivan P L. Analysis of an aperture coupled microstrip antenna. IEEE Trans on antennas and propagat., 1986, 34(8): 977-984.
    [42] Targonski S D. Design of wideband circularly polarized aperture coupled microstrip antennas. IEEE Trans on Antennas and Propagat., 1993, 41(2): 214-220.
    [43] Au T M. Performance of aperture-coupled dual-patch microstrip phased arrays. IEEE Trans on Antennas and Propagat., 1996, 44(9): 1290-1295.
    [44] Croq, E, Papiemik, A., and Brachat, P., Wideband aperture coupled microstrip subarray, IEEE Antennas and Propagation Syrup.Dig., 1990:1226—1131
    [45] P. L. Sullivan and D. H. Schaubert, Analysis of an aperture coupled microstdp antenna, IEEE Trans Antennas Propagat., 1986, 34: 977—984.
    [46] Sheng-Ming Deng, Ming-Dong Wu, Impedance Characteristics of Microstrip Antennas Excited by Coplanar Waveguides with Inductive or Capacitive Coupling Slots, IEEE Microwave and Guide Wave Letters, 1995, 5(11): 391-393.
    [47] Lee, R. Q., and Simons, R. N., Coplanar waveguide aperture-coupled microstrip patch antennas, IEEE Microwave and Guide Wave Letters, 1992, 2(4): 138-139.
    [48] Deng, S. M., and Wu, M. D., Analysis of coplanar waveguide-fed microstrip antennas, IEEE Trans Antennas Propagat., 1995, 43: 734-737.
    [49] Giauffret, L., and Laheurte, J. M., Theoretical and Experimental characterization of CPW-fed microstrip antennas, IEE Proc. H, Microw. Antennas Propag., 1996, 143(1): 13-17.
    [50] Giauffret, L., Laheurte, J. M., and Papiernik, A., Study of various shapes of the coupling aperture in CPW-fed microstrip antennas, IEEE Trans Antennas Propagat., 1997, 45: 642-647.
    [51] Pozar, D. M., A microstrip antenna aperture coupled to a microstrip line, Electron. Lett., 1985, 21: 49-50.
    [52] E. Nishiyama, M. Aikawa and S. Egashira, Stacked microstrip antenna with wide bandwidth and high gain, IEEE Trans Antennas Propagat., 2004, 151(2): 143-148.
    [53] T. Huynh and K. F. Lee, "Single-layer single-patch wide band microstrip antenna, " Electronic. Lett., 1995, 31(16): 1310-1312.
    [54] C. L. Mak, K. M. Kuk and K. F. Lee, "Proximity-coupled U-slot patch antenna, " Electronic. Lett., 1998, 34(8): 715-716.
    [55] D. M. Pozar, "A microstrip antenna aperture coupled to a microstripline, " Electronic. Lett., 1985, 21(2): 49-50.
    [56] D. M. Pozar and D. H. Schaubert, "comparison of architectures for monolithic phased array antennas, "Microwave J., 1986: 93-103.
    [57] Waterhouse R. Small microstrip patch antenna. Electron. Lett., 1995, 31: 604-605.
    [58] Wong K L. Compact triangular microstrip antenna. Electron. Lett., 1997, 33: 433-434.
    [59] Waterhouse R. Stacked shorted patch antenna. Electron Lett., 1998, 34: 612-613.
    [60] Waterhouse R. Broadband stacked shorted patch. Electron Lett., 1999, 35: 98-100.
    [61] Haupt R L. Thinned arrays using genetic algorithms. IEEE Trans. Antennas Propagat., 1999, 42(7): 993-999.
    [62] Ramirez R. A mutual coupling study of linear polarized microstrip antennas for use in blast wireless communications architecture. IEEE AP-S Int. Syrup., 2000, 2: 490-493.
    [63] Ramirez R R. A mutual coupling study of circular polarized microstrip antennas with applications to diversity combining mobile communications. IEEE AP-S Int. Syrup., 2001, 2: 490-493.
    [64] Taga T. Characteristics of space-diversity branch using parallel dipole antennas in mobile radio communications. Elect. Commun., 1993, 76(9): 55-65.
    [65] Vaughan R G. Antenna diversity in mobile communications. IEEE Trans. Veh. Technol., 1987, 36(4): 149~172.
    [66] C. M. Krowne and A. R. Sindofis, "H-Plane coupling between rectangular microstrip antennas, " Electron. Lett., Mar. 1980, vol. 16, pp. 211-213.
    [67] R. S. Carson, High-Frequency Amplifiers. New York: Wiley, 1975: 139-155.
    [68] J Varghese K. Computer aided design of planar waveguide monopulse comparator for low height airborne antennas. International conference radar97, 1997: 522-525.
    [69] 方大纲.一种结构紧凑的新型微带单脉冲天线阵.南京理工大学学报,2003,27(5):473-477.
    [70] Barker N S. An octave bandwidth monopulse processor. IEEE MTT-S Int. Microwave Syrup. Dig., 1997, 2: 405-407.
    [71] Uysal S. An X-band microstrip compact monopulse processor. IEEE Asia-Pacific Microwave Conf., 1999, 1: 21-24.
    [72] Uysal S. Nonuniform line microstrip directional couplers and filters. Norwood, MA: Artech House, 1993.
    [73] 廖承恩.微波技术基础.西安电子科技大学出版社,1994:197-204.
    [74] Tripathi V K. Asymmetric coupled transmission lines in an inihomogeneous medium. IEEE Trans Microwave Theory Tech., 1975, 23(9): 734-739.
    [75] Mitsuhiro Shimozawa. A parallel connected marchand balun using spiral shaped equal length coupled lines. IEEE MTT-S Digest, 1999: 1737-1740.
    [76] Tsai C M. A generalized model for coupled lines and its applications to two-layer planar circuit. IEEE Trans Microwave Theory Tech., 1992, 40(12): 2190-2199.
    [77] Randal Schwindt. Computer-aided analysis and design of a planar multilayer machand baltm. IEEE Trans Microwave Theory Tech., 1994, 42(7): 1429-1434.
    [78] Kian Sen Ang. Multisection impedance transforming coupled line balun. IEEE Trans Microwave Theory Tech., 2003, 5(12): 535-541.
    [79] Ang K S. Analysis and design of impedance-transforming planar Marchand baluns. IEEE Trans. Microwave Theory Tech., 2001, 49(2): 402-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700