复杂矿井巷道中电磁波传播特性及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间受限的电磁波传播环境是矿井巷道电磁波传播的基本特征,受巷道中各种因素的严重影响,电磁波在巷道中不能很好地传播。本文旨在对巷道空间结构变化下的电磁波传播特性以及矿井环境参数对传播衰减的影响进行系统研究,建立巷道电磁波传播的一般预测模型,为矿井无线通信系统的规划设计、进一步提高通信可靠性和质量、解决抗多径衰落技术难题等提供必要的理论支持。主要思路和研究内容有以下几个方面:
     (1)空直矿井巷道电磁波传播特性
     基于宏观相似性,论文将矿井巷道看作是含有有损介质的波导,采用波导模式匹配WGMD(wave-guide mode matching)理论分析空直类矩巷道中电磁波传播的一般规律,得出矿井巷道电磁波传播有两种场型:Emn(h)模和Emn(v)模,推导出不同边界条件下各传输模的传播常数、传输截止频率的计算公式和衰减率近似解,分析了空直巷道中的电磁波能量损耗。并利用基尔霍夫近似法研究了矿井巷道不规则粗糙面的电磁散射问题,推导出水平极化和垂直极化的散射系数,数值模拟了不同极化方式的电磁散射特性。
     (2)巷道环境因素对传输特性的影响
     论文分析了矿井巷道四壁材料电参数随着地层压力、开采深度、材料结构的变化规律,推导出不同异型巷道的电磁波波模方程和传输常数,用有限元方法分析了金属单体支柱和矿井运输机车对传输截止频率的影响,并数值模拟了复杂环境下巷道截面尺寸与电磁波的传播模式、波模截止频率之间、以及变化的环境电磁参数与电磁波信噪比衰减之间的关系。
     (3)多径信道传播模型的建立
     论文综合考虑了巷道壁的介电常数等环境因素的影响,讨论了波导模式匹配方法和光波导中的射线光学方法(ray tracing)在预测巷道中电磁波场强分布的优缺点,得出波导模式匹配方法适用于远源区的场强预测,在近源区更适用射线跟踪技术进行场强预测的结论,并利用射线跟踪技术建立了矿井巷道的近源区多径信道预测模型,提出了三维空间的锯齿螺旋射线传播总路径和入射角、反射角的计算方法,讨论了巷道形状与传输频率、传输损耗的变化关系式。
     (4)基于MIMO的抗多径衰落技术
     论文对类矩矿井巷道特定频段电磁波的大尺度和小尺度传输损耗特性进行了分析,提出收发两端采用阵列结构的MIMO技术方案用于提高矿井无线通信系统抗多径衰落性能的方法,并建立了两种矿井MIMO信道模型。分析了收发天线的空间相关性对系统性能的影响,最后提出了一种在发射功率受限条件下比特功率递增分配算法。
     (5)导行电磁波的传播特性
     分析了巷道中导行电磁波的传播特性,用细导线的表面阻抗近似方法简化井下巷道复杂的电缆表面边界条件描述,采用细电缆近似方法推导了含有轴向导体的巷道导行波的传输衰减近似解,最后研究了漏泄同轴电缆的传递特性,分析了单线波模和双线波模的传播特性,推导出了两种波模的波动方程。
     论文以一般性的空直类矩矿井巷道为研究目标,通过分析复杂矿井巷道的电磁波传播特性、环境因素对传输特性的影响,揭示了复杂环境的矿井电磁波传播机理,并提出了抗多径衰落技术研究方案,为解决矿井无线通信问题提供了相应的理论基础。
The basic characteristic of electromagnetic wave propagation in mine laneway is a space-constrained environment. Electromagnetic wave propagation in mine laneway is very influenced by underground environmental factors and human factors seriously, so electromagnetic wave can not be well disseminated in the laneway.This paper researches the propagation characteristics of electromagnetic waves under changeable spatial structure in different laneway, as well as changing environmental parameters impact on propagation attenuation, establishes a common prediction model of electromagnetic wave propagation in mine laneway, which provide reliable arguments for designing of wireless communication systems, improving the reliability and quality of communication, solving technical problems of anti multipath fading. The main contents and research methods in the following areas:
     (1) Electromagnetic wave propagation characteristics of mine tunnels
     Mine roadway will be regarded as a waveguide which containing detrimental media, according to waveguide transmission theory, it is proposed to use WGMD (wave-guide mode matching) and Marcatili to analyze a general law of electromagnetic wave propagation in an empty straight roadway, gets the two field-types:those are Emn(h) model and Emn(v) model, derives the transmission constant of propagation model under different boundary conditions, the calculation formula of transmission cut-off frequency and the approximate solution of attenuation rate,据接收机的反馈信息,发射机为发送符号!!EMBED Equation.DSMT4(?)分(2)(?)wironmental factors on the transmission characteristics
     The electromagnetic field intensity distribution which got by the above method is not for the physical environment and the mine roadway with special configuration (Such as the roadway wall is a low-conductivity mine roadway, and includes power cables, rails, locomotives and hydraulic metal backbone of the road, and the curved roadway, etc.). This paper analyzes the electrical parameters of the roadway walls changed with formation pressure, mining depth and material structure, derives the electromagnetic wave mode equation and transfer constants under different conditions according to the characteristics of special-shaped roadway such as class matrix roadway, circular roadway and bended roadway, etc. analyses metal single pillar and transport locomotive made impact on transmission cut-off frequency using finite element method, and numerical simulates the relationship among the roadway cross-section size, communication model of electromagnetic waves and wave-mode cut-off frequency in complex environment of roadway, as well as the relationship between the electromagnetic parameters of changing environment and the attenuation of electromagnetic wave signal to noise ratio.
     (3) The establishment of Multi-path channel transmission model
     As the underground roadway is limit propagation space, multi-path propagation is the significant characteristics of mine electromagnetic wave propagation because of the rough roadway walls and obstacles which is more important.This paper takes the impact of environmental factors such as the dielectric constant of roadway wall into account, discusses the advantages and disadvantages of the electromagnetic field intensity distribution by using the waveguide mode matching method and ray tracing in predicting roadway, pointes out that the waveguide mode matching method can be applied field strength prediction of the far-field zone, ray-tracing method is more suitable in the near-field area, establishes a near-field zone with multi-path channel prediction model of mine roadway using ray-tracing method, proposes three-dimensional zigzag spiral light transmission path and the calculation method of incident angle and reflection angle, and discusses the changing relationship among the shape of the roadway, transmission frequency and transmission loss.
     (4) Anti-multi-path fading based on MIMO technology
     This paper analyzes transmission loss properties between large scale and small scale of specific band of electromagnetic waves in class matrix roadway, explores some of the advantages of MIMO technology, which has possibility to be used in wireless communications mine according to the application environment of underground mobile communication terminal, signal processing complexity and portability requirements, proposes the idea of using the array structure of sending and receiving ends of MIMO technology to enhance the anti-fading performance of mine wireless communication systems and establishes two mine MIMO channel models. This paper also analyzes spatial correlation of the transceiver antenna which has effect on system performance, proposes increasing the bit-power allocation algorithm in terms of transmission power is limited finally. The algorithm allocates the largest part of power to the sub-channels which have maximum eigenvalue by calculating the peak power of all sub-channels to meet the target bit error rate, improve the use efficiency of transmission power and the capacity of the system obviously.
     (5) The propagation characteristics of guided electromagnetic waves
     The actual roadway of the mine contains a lot of axial conductors such as cables, pipes, rails and power lines. The reliable solution is setting up one or more of guided-wave cable in order to achieve low-loss, long-distance transmission. This paper analyzes the propagation characteristics of guided electromagnetic waves in the roadway, simplifies the description of the complex cable surface boundary conditions of underground roadway with surface impedance approximate method of thin wire, derives the approximate solution of guided wave transmission attenuation in roadway which contains axial conductors using approximate method of thin cable, finally, this paper Studies the transmission characteristics of leaky coaxial cable, analyzes the propagation characteristics of single-mode and two-wave-mode, and derives the wave equation of two-wave model.
引文
[1]国家安全生产监督管理总局.《矿山救援“十一五”发展规划》[EB/OL]. http://www.chinasafety.gov.cn/newpage/
    [2]姚善化.煤矿井下移动通信系统简介[J].现代通信,2003(02):7-8
    [3]姚善化,朱宗玖.漏泄同轴电缆的性能分析及应用[J].煤矿机械,2003(07):29-31
    [4]孙继平,潘涛.电导率。对圆形巷道中电磁波传播的影响[J].煤炭科学技术,2006,34(10):47-49
    [5]孙继平,成凌飞,张长森.电导率对巷道中电波传播的影响[J].辽宁工程技术大学学报,2007,26(1):96-98
    [6]孙继平,石庆冬.矩形隧道中的列车对电磁波截止频率的影响[J].电波科学学报,2001,16(1):100-102
    [7]孙继平,张传雷.矩形隧道中金属锚杆对电磁波截止频率的影响[J].煤炭科学技术,2005,33(3):64-65
    [8]孙继平,张长森.列车对梯形隧道中电磁波截止频率的影响[J].微波学报,2002,18(4):76-79
    [9]孙继平,张长森.异型波导截止频率的研究[J].煤炭学报,2003,28(2):210-213
    [10]孙继平,成凌飞.梯形巷道中电磁波传播的等效分析方法[J].煤炭科学技术,2006,34(1):81-83
    [11]孙继平,冯德旺,郑召文,任锦彪.矩形巷道导波特性的等效传输线法分析[J].煤炭学报,2008,33(12):1438-1441
    [12]孙继平,成凌飞,张长森.截面尺寸对矩形巷道中电磁波传播的影响[J].中国矿业大学学报,2005,34(5):596-599
    [13]孙继平,张传雷.梯形隧道中横截面尺寸对电磁波传播特性的影响[J].电子与信息学报,2006,28(8):1504-1507
    [14]SUN Ji-ping,REN Hui,REN Lan-zhu,WANG Kun,Study on the forecast method for underground coal mine[J].JOURNAL OF COAL SCIENCE&ENGINEERING,2006,12(2) 94-96
    [15]孙继平,石庆冬.矿井隧道电磁传播的研究[J].煤矿自动化,2001,29(1):25-28
    [16]孙继平,魏占永.矿井隧道中电磁场能量的损耗[J].中国矿业大学学报,2002,31(6):575-578
    [17]石庆冬,孙继平.圆形隧道导行电磁波传播特性[J].煤炭学报,2001,26(13):313-317
    [18]张跃平,张文梅,盛剑桓,郑国莘.UHF无线电波在长壁工作面中传播特性的研究[J].煤炭学报,2000,25(4):416-419
    [19]张跃平,张文梅,郑国莘,盛剑桓.预测隧道中传播损耗的混合模型[J].电子学报,2001,29(9):1283-1286
    [20]杨维,李滢,孙继平.类矩形矿井巷道中UHF宽带电磁波统计信道建模[J].煤炭学报,2008,33(4):467-472
    [21]Yang Wei, Cheng Shi-xin, Sun Ji-ping. The Scheme Study of the Application of W- CDMA Spread Spectrum Communication in Mine Mobile Communication[J]. JOURNAL OF COAL SCIENCE & ENGINEERING,2000,6(2):64-68
    [22]张长森.复杂截面隧道中电磁波传播特性等问题的研究[D].北京:中国矿业大学(北京校区),2003
    [23]张长森,柯熙政,孙继平.半圆形隧道中导行波特征方程的近似求解[J].电波科学学报,2006,21(6):972-974
    [24]刘会丽,魏占永,孙继平.规则隧道中长列金属物体对电磁波截止频率影响的研究.[J].河北工业大学学报,2004,33(5):85-88
    [25]张传雷,孙继平,刘珺.金属支护立柱对巷道无线传输特性的影响[J].电子科技大学学报,2007,36(2):227-229
    [26]成凌飞,孙继平.矩形隧道围岩电参数对电磁波传播的影响[J].电波科学学报,2007,22(3):513-517
    [27]魏占永,陆俭国,潘振克,等.矿井隧道中罐笼对电磁波截止频率的影响[J].电波科学学报,2004,19(6):780-784
    [28]张申.隧道无线电射线传输规律的研究[J].电波科学学报,2002,17(2):114-118
    [29]张申.帐篷定律与隧道无线数字通信信道建模[.J].通信学报,2002,23(11):41-50
    [30]吴明捷,张克,张威.扩频通信在煤矿井下通信和安全中的应用[J].煤炭学报,2002,27(1):88-91
    [31]姚光圻.隧道中电波传播特性实验研究[J].铁道学报,1994,16(3):123-126
    [32]郑国莘,张文海,张跃平,等.铁道隧道中无线电波传播特性的研究[J].铁道工程学报,1999,61(1):92-97
    [33]朱若萍.基于三维射线跟踪模型的电波传播预测研究[J].现代电子技术,2007,5:23-28
    [34]Delogne P. Leaky Feeders and Subsurface Radio Communications[M]. London: Peregrinus,1982
    [35]Mahmoud S F. Electromagnetic waveguides:theory and applications [M]. New York: Wiley,1990
    [36]Mahmound S F, Wait J R. Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels [J]. Radio Science,1974,9(12):1147-1158
    [37]Mahmound S F, Wait J R. Guided electromagnetic waves in a curved rectangular mine Tunnel[J]. Radio Science,1974,9(5):567-572
    [38]Andersen J B, Berntsen S, Dalsgaard P. Propagation in rectangular Waveguides with arbitrary internal and external media[J]. IEEE Trans,1975(23):555-560
    [39]Emslie A, Lagace R, Strong P. Theory of the propagation of UHF radio waves in coal mine tunnels [J]. IEEE Transactions on Antennas and Propagation,1975 23 (2):192-205
    [40]Emslie A, Lagace R. Medium frequency radio propagation and coupling in coal mines [J]. WEGWME 1978:142-152
    [41]Mahmound S F, Wait J R. Calculated channel characteristics of a braided coaxial cable in a mine tunnels [J]. IEEE Trans,1976,24:82-87
    [42]Wait J R. Electromagnetic surface impedance for alayered earth for general excitation [J]. Radio Science,1980,15(1):129-134
    [43]Wait J R. Theory of Transmission of Electromagnetic Waves along Multi-conductor lines in the proximity of walls of mine tunnels [J]. The Radio and Electronic Engineer,1975,45(5):229-2321
    [44]Hill D A, Wait J R. Excitation of monofilar and bifilar modes on a transmission line in a Circular Tunnel [J]. Journal of Applied Physics,1974,45 (8):3402-3406
    [45]Zhang Y P.Novel model for propagation loss prediction in tunnels [J]. IEEE Transactions on Vehicular Technology,2003,52(5):1308-1314
    [46]Deryck L. Natural propagation of electromagnetic waves in tunnels [J].IEEE Transactions on Vehicular Technology,1978 (27):145-150
    [47]Zhang Y P. Novel model for propagation loss prediction in tunnels [J]. IEEE Transactions on Vehicular Technology,2003,52(5):1308-1314
    [48]Abo S, Osama M. Propagation of electromagnetic waves in a rectangular tunnel [J]. Applied Mathematics and Computation,2003,136(223):405-413
    [49]Yamaguchi Y, Abe T, Sekiguchi T.Attenuation Constants of UHF Radio Waves in Arches Tunnels [J]. IEEE Transactions on EMC,1989,31(1):87-91
    [50]Yamaguchi Y, Abe T, Sekiguchi T. Attenuation constants of UHF radio waves in arched tunnels [J]. IEEE Trans on Microwave Theory and Techniques,1985;MTT233 (8):714-718
    [51]Matsui K J, Chiba J. The propagation characteristic of the crank tunnel [J].IEEE Trans. on Vehicular Technology.1994,43 (4):1145-1147
    [52]J. Chiba, T. Inaba,Y. Kuwamoto. Radio communication in tunnels[J]. IEEE Trans. Microwave Theory Tech.1974,1(12):1147-1158
    [53]Y Yamaguchi, T Abe, T Hanazaqwa. Radio propagation Characteristics in underground streets crowded with pedestrians [J]. IEEE Trans. Electromagn Compat. 1988, EMC-30(2):130-136
    [54]Eswarappa, Costache G I, Hoefer W J. Finlines in rectangular and circular waveguide housing including substrate mounting and bending effects [J]. IEEE Trans. Microwave Theory Tech.1989,37(3):299-306
    [55]Israel M, Miniowitz R. Hermitian finite element method for in homogeneous wave guide[M]. IEEE Trans.Microwave Theory Tech.1990:1319-1327
    [56]Rahman B M, Fernandez E A. Review of finite element methods for microwave and optical wave guides [M]. Proc. IEEE,1991:1442-1448
    [57]WANG Jian-kang, LUO Tao, LIU Dan-pu. Investigation on space-time coding in confined areas [J]. Journal of Chongqing University of Posts and Telecommunications,2004,16 (1):5-9
    [58]WANG Jian-kang, YANG Yan-cong, HAO Jian-jun. Space-Time Coding in Tunnels[J]. Journal of China University of Mining&Technology,2004,33 (3):332-336
    [59]王文星,杨彦从,王文华.正交频分复用技术在煤矿通信系统的应用研究[J].煤矿机电,2005,5:70-72
    [60]张守祥,王汝琳,刘芳.基于OFDM的巷道和工作面无线移动通信研究[.J].煤矿安全,2006,3:13-16
    [61]肖海林,聂在平,杨仕文.室内MIMO无线信道:模型和性能预测[J].电波科学学报,2007,22(3):385-389
    [62]Lienard M, Degauque P. Investigation on MIMO channels in subwaytunnels [J]. IEEE Journal on Selected Areas in Communications,2003,21(3):332-339
    [63]ZHANG Hui-qing, YU Hong-zhen, WANG Pu, et al. Multipath transmission modeling and simulating of electromagnetic wave in rectangle tunnel [J]. Chinese Journal of Radio Science,2008,23(1):195-200
    [64]YANG Wei, LI Ying, SUN Ji-ping. A statistical channel model of wideband UHF radio waves along rectangular-like mine tunnel[J]. Journal of China Coal Society, 2008,33(4):467-472
    [65]Kermoal J P, Schumacher L, Mogensen P E, et al. Experimental Investigation of Correlation Properties of MIMO Radio Channels for Indoor Picocell Scenarios[J]. IEEE Vehicular Technology Conference VTC 2000 Fall, Boston, USA,2000
    [66]Jean-Francois Pardonche, Marion Berbineau, Christophe Seguinot, et al. MIMO Propagation Channel Models in Underground Environment[J]. IEEE Accepte pour publication dans Annales des Telecommunications,2004,09,29
    [67]李滢,杨维.OFDM调制技术在矿井巷道中的通信性能仿真分析[J].北京交通大学学报,2009,(33):67-72
    [1]Delogne P. Leaky Feeders and Subsurface Radio ommunications[M].London: Peregrinus,1982
    [2]傅君眉,冯恩信.高等电磁场理论[M].西安:西安交通大学出版社,2000
    [3]谢处方,饶克谨.电磁场与电磁波[M].北京:高等教育出版社,1984.315-323
    [4]徐宏武.煤层电性参数测试及其与煤岩特性关系的研究[J].煤炭科学技术,2005,33(3):42-46
    [5]Mahmound S F, Wait J R. Guided electromagnetic waves in a curved rectangular mine Tunnel[J]. Radio Science,1974,9(5):567-572
    [6]A.W.斯奈德,J.D.洛夫著,周幼威等译.光波导理论[M].北京:清华大学出版社,1991
    [7]Delogne P. Leaky Feeders and Subsurface Radio Communications[M]. London: Peregrinus,1982
    [8]李玉权,崔敏.光波导理论与技术[M].北京:人民邮电出版社,2002
    [9]秦秉坤,孙雨男.介质光波导及其应用[M].北京:北京理工大学出版社,1991
    [10]Y. P. Zhang, G. X. Zheng, J. H. Sheng. Radio Propagation at 900MHz in Underground Coal Mines[J]. IEEE Trans.on Antennas and Propagation,2001,49(5):757-762
    [11]Martine Lienard, Pierre Degauque. Natural Wave Propagation in Mine Environments [J].IEEE Trans.on Antennas and Propagation,2000,48(9):1326-1339
    [12]Emslie A, Lagace R, Strong P. Theory of the propagation of UHF radio waves in coal mine tunnels [J]. IEEE Transactions on Antennas and Propagation,1975 23 (2):192-205
    [13]田国政.光散射呼吸性矿尘传感器的研究[D].北京:中国矿业大学北京校区,1998
    [14]宋铮,张建华,黄冶.天线与电波传播[M].西安:西安电子科技大学出版社,2003
    [15]Jin Wu Kong(吴季等译).Electromagnetic Wave Theory[M]. Beijing:Publishing House of Electronics Industry,2003
    [16]Donohue D J, Application of iterative moment method solutions to ocean surface radar scattering [J].IEEE Trans,1998, AP-46(1)
    [17]Li Qin, Monte Carlo simulations of wave scattering from loss dielectric random rough surface using t he physics-based two grid method and the canonical -grid method[J]. IEEE Trans,1999, AP-47(4)
    [18]Lu Guizhen, WANG Baofa. EM Scattering from Guass Rough Surface [J].ACTA ELECTRONICA SINICA,2002,30(6):907-909
    [19]Beckmann P, Spizzichino A. The Scattering of electromagnetic wave from rough surface[M]. New York:Pergammon in press,1983
    [20]GUO Lixin, WU Zhensen. Fractal characteristics investigation on electromagnetic scattering from two dimensional rough surface [J].Journal of electronics and information technology,2002,24(10):1405-1411
    [21]GUO Lixin, WU Zhensen. Electromagnetic Scattering from fBm Rough Surface Using Perturbation Method [J].Journal of microwaves,2001,17(2):60-66
    [1]J P Sun, L F Cheng, X Y Liu. Influence of electrical parameters on UHF radio propagation in tunnels[A]. In the Joint Conference of the 10th Asia Pacific Conference on Communications and the 5th interna-tional Symposium on multi-Dimensional Mobile Communications[C].Beijing:IEEE Press,2004:436-438
    [2]Delogne P. Leaky Feeders and Subsurface Radio Communications[M]. London: Peregrinus,1982
    [3]徐宏武.煤层电性参数测试及其与煤岩特性关系的研究[J].煤炭科学技术,2005,33(3):42-46
    [4]宋铮,张建华,黄冶.天线与电波传播[M].西安:西安电子科技大学出版社,2003
    [5]谢处方,饶克谨.电磁场与电磁波[M].北京:高等教育出版社,1984.315-323
    [6]Emslie A, Lagace R, Strong P. Theory of the propagation of UHF radio waves in coal mine tunnels [J]. IEEE Transactions on Antennas and Propagation,1975,23 (2):192-205
    [7]康建宁.煤的电导率随地应力变化关系的研究[J].河南理工大学学报,2005,24(6):430-433
    [8]王蔷,李国定,龚克.电磁场理论基础[M].北京:清华大学出版社,2003
    [9]成凌飞,孙继平.矩形隧道围岩电参数对电磁波传播的影响[J].电波科学学报,2007,22(3):513-517
    [10]谢处方,饶克谨.电磁场与电磁波[M].北京:高等教育出版社,1984:291
    [11]Stratton, J A.Electromagnetic theory[M]. New York:McGraw-Hill,1941:300-526
    [12]Delogne P. Leaky Feeders and Subsurface Radio Communications[M].London: Peregrinus,1982:114-117
    [13]Marcatili E A J. Bends in Optical Dielectric Guides[J]. B. S. T. J,69,48:2103-2131
    [14]Zhang Y P.Characterization of UHF Radio Propagation Channel in Curved Tunnels[C].PIMRC 96,1996:798-802
    [15]淮南矿业学院《井巷设计》编写组.井巷设计[M].北京:煤炭工业出版社,1983:21-23
    [16]Delogne P. Leaky Feeders and Subsurface Radio Communications [M]. London: Peregrinus,1982:117-118
    [17]林为干,符果行,邬琳若.电磁场理论[M].北京:人民邮电出版社,1996
    [18]SUN Ji-ping, WEI Zhan-yong. Effects of the metallic pit prop on the electromagnetic wave cutoff frequency in the rectangular tunnel[J]. JOURNAL OF XIDIAN UNIVEYSITY,2003,30(4):565-568
    [19]金建铭(美)著,王建国译,葛德彪校.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998
    [20]Chiba J, Inaba T, Kuwanoto Y, Banno O. Radio communication in tunnels[J]. IEEE Trans Microwave Theory Techniques.1978,26(2):4.39-443
    [21]Chiba J, Sugiyama K. Effects of trains on cutoff frequency and field in rectangular tunnels as waveguide[J]. IEEE Trans Microwave Theory and Techniques.1982,30(5):757-759
    [22]Zheng G S, Zhang W H, Zhang Y P. Theory of radio wave propagation in railway tunnel[J].Journal of railway engineering society.1999,61(15):92-97
    [23]Wait J R. Electromagnetic surface impedance for a layered earth for general excitation [J]. Radio Science,1980,15(1):129-134
    [24]Yasumoto, Shigematsu H. Analysis of propagation characteristics of radio waves in tunnels using surface impedance approximation [J]. IEEE Radio Science.1984, 19(2):597-602
    [1]郭梯云,邬国扬,李建东.移动通信[M].西安:西安电子科技大学出版社,2005
    [2]吴志忠.移动通信无线电波传播[M].北京:人民邮电出版社,2002
    [3]姚善化.煤矿井下移动通信简介[J].现代通信,2003,3:37-38
    [4]李玉权,崔敏.光波导理论与技术[M].北京:人民邮电出版社,2002
    [5]蔡履中,曹庄琪,杨傅子.光学[M].济南:山东大学出版社,1992
    [6]Mahmound S F, Wait J R. Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels [J]. Radio Science,1974,9(12):1147-1158
    [7]Schaubach K R, Davis N J, Rappaport T S. A ray tracing method for predicting path loss and delay spread in microcellular environment [J].42nd IEEE Veh. technol Con,1992:932-935
    [8]Seidel S Y, S F, Rappaport T S. A ray tracing technique to predict path loss and delay spread inside building [J]. IEEE GLOBECOM Conf,1992:649-653
    [9]Rembold B. Simulation of radio transmission in a tunnels[J]. Frequenz,1993, 47(11):270-275(in German)
    [10]Klemenschits T. Mobile Communications in Tunnels[D]. Ph. D thesis, Wien University, Austria,1993
    [11]Mariage P, Lienard M, Degauque P. Theoretical and experimental approach of the propagation of high frequency waves in road tunnels [J]. IEEE Transaction on Antenna and Propagation,1994,42(1):75-81
    [12]Emslie A, Lagace R, Strong P. Theory of the propagation of UHF radio waves in coal mine tunnels [J]. IEEE Transactions on Antennas and Propagation,1975 23(2):192-205
    [13]Zhang H Q, Yu H Z, Wang P.Multipath transmission modeling and simulating of electromagnetic wave in rectangle tunnel [J]. Chinese Journal of Radio Science, 2008,23 (1):195-200
    [14]Martine Lienard, Pierre Degauque. Natural Wave Propagation in Mine Environments[J]. IEEE Trans.on Antennas and Propagation,2000,48(9):1326-1339
    [15]张中.煤矿井‘下综合业务数字网网络结构及其无线接入关键技术研究[D].北京:徐州中国矿业大学,2001
    [16]张会清,于洪珍,王普,等.矩形隧道中电波多径传播模型的建立及仿真[J].电波科学学报,2008,23(1):195-200
    [17]李晶.井下巷道超高频无线电波传播及定位算法的研究[D].天津:天津大学,2006
    [18]Bulitude R J C. "Measurement.Characterization and Modelling of Indoor 800/900MHz Radio Channels for Digital Communications" [J]. IEEE Communication Vol.25, pp.5-12. June,1987
    [1]郭梯云,邬国扬,李建东.移动通信[M].西安:西安电子科技大学山版社,2005
    [2]吴志忠.移动通信无线电波传播[M].北京:人民邮电出版社,2002
    [3]黄韬,袁超伟,杨睿哲,等.MIMO相关技术与应用[M].机械工业山版社,2006
    [4]YANG Wei, LI Ying, SUN Ji-ping. A statistical channel model of wide band UHF radio waves along rectangular-like mine tunnel[J].JOURNAL OF CHINA COAL SOCIETY,2008,33 (4):467-472
    [5]Lienard M, Degauque P. Investigation on MIMO channels in subwaytunnels [J]. IEEE Journal on Selected Areas in Communications,2003,21(3):332-339
    [6]Kermoal J P, Schumacher L, Mogensen P E, et al. Experimental Investigation of Correlation Properties of MIMO Radio Channels for Indoor Picocell Scenarios[D]. IEEE Vehicular Technology Conference VTC 2000 Fall, Boston, USA, 2000.
    [7]Jean-Francois Pardonche, Marion Berbineau, Christophe Seguinot, et al. MIMO Propagation Channel Models in Underground Environment[J]. IEEE Accepte pour publication dans Annales des Telecommunications,2004,09,29
    [8]Golub G. H, Van Loan C. F. Matrix Computations[M]. Third Edition, The John Hopskins University Press,1996.
    [9]Foschini G J, Gans M J. On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas [J]. Wireless Personal Communications, 1998,6(3):311-335.
    [10]Lienard M, Baudet J, Degardin D, et al. Capacity of Multi-Antenna Array Systems In Tunnel Environment [J]. IEEE Int Conf on Vehic Tech. Birmingham, Alabama,4-9 May 2002.
    [11]D S Shiu, GJ Foschini, M J Gans, et al. Fading correlation and it s effect on capacity of multielement antenna systems [J]. IEEE Trans. Commun,2000,48(3): 502-513
    [12]宋高峻.无线MIMO信道的分集接收研究[D].成都:电子科技大学,2005:87-90
    [13]Kong N, Mil stein L B. Average SNR of a generalized diversity selection combining scheme[J]. IEEE Communication Letters.1999,3:57-59
    [14]Golden G D, Foschini G J, Valenzuela R A, Wolniansky P W, et al. Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture[J]. Electronics Letters.1999,35 (1):14-16
    [15]Mathini Sellathurai, Simon Haykin. Turbo-BLAST for wireless communications: Theory and experiments [J]. IEEE Trans. Signal Processing.2002,50(10):2538-2456
    [16]Goldsmith A J, Varaiya P. Capacity of fading channels with channel side information[J]. IEEE Trans. Inform Theory.1997,43(11):1986-1992
    [17]Chung S T, Goldsmith A J. degrees of freedom in adaptive modulation:a unified View[J].IEEE Trans on Commun,2001,49 (9):1561-1571
    [18]Nam S H, Shin 0 S, Lee K B. Transmit Power Allocation for a Modified V-BLAST System[J]. IEEE Trans on Commun..2004,52(8):1074-1079
    [19]Chung S, Howard H C, Lozano A. Low complexity algorithm for rate and power quantization in extended V-BLAST A[J]. Proc of IEEE Vehic Technlo conf C. Jersey City,NJ:IEEE,2001:910-914
    [20]Wyglinski A M, Labeau F, Kabal P. An efficient bit allocation algorithm for multicarrier modulation[C]//WCNC 2004. Atlanta:GA,2004:1194-1199
    [21]Krongold B S, Ramchandran K, Jones D L. Computationally efficient optimal power allocation algorithms for multicarrier communication systems[J]. IEEE Trans on Commun,2000,48:23-27.
    [22]Nam S H, Shin 0 S, Lee K B. Transmit power allocation for a modified V-BLAST system[J]. IEEE Trans on Commun,2004,52(7):1074-1079.
    [23]佟学俭,罗涛.OFDM移动通信技术原理与应用[M].西安:西安电子科技大学出版社,2005
    [24]宋扬,常永宇,张欣,等.一种自适应调制V-BLAST系统的功率受限分配算法[J].北京邮电大学学报,2006,29(1):48-51
    [1]Delogne P. Leaky Feeders and Subsurface Radio Communications[M]. London: Peregrinus,1982:68-90
    [2]Wait J R, Hill D A. Coaxial and bifilar modes on a transmission line in a circular tunnel [J]. Journal of Applied Physics,1974,4:307-312
    [3]Deryck L. Effective use of natural modes in VHF and UHF tunnel Propagation [J]. Proc, AGARD Conf. NO.263 on "Special topics in HF propagation", Lisbon, Portugal,28 May-1, June 1979,43
    [4]Hill D A, Wait J R. Excitation of monofilar and bifilar modes on a transmission line in a Circular Tunnel [J].Journal of Applied Physics,1974,45(8):3402-3406
    [5]Delogne P. Leaky Feeders and Subsurface Radio Communications[M]. London: Peregrinus,1982:119-120
    [6]Delogne P. Leaky Feeders and Subsurface Radio Communications[M]. London: Peregrinus,1982:124-126
    [7]Wait J R, Hill D A. Guided electromagnetic waves along an axial conductor in a circular tunnel[J]. IEEE Trans,1974,4(22):627-630
    [8]Delogne P. Leaky Feeders and Subsurface Radio Communications[M]. London: Peregrinus,1982:193-195
    [9]Wait J R. Theory of Transmission of Electromagnetic Waves along Multi-conductor lines in the proximity of walls of mine tunnels [J]. The Radio and Electronic Engineer,1975,45(5):229-232
    [10]Hill D A and Wait, J R. Excitation of Monofilar and Bifilar Modes on a Transmission Line in a Circular Tunnel[J].Journal of Applied Physics 1974,45(8):3402-3406
    [11]Zhang Changsen, Ke Xizheng, SUN Jiping. Approximation solution of characteristic equation of guide wave in a semicircle tunnel [J]. Chinese Journal of Radio Science,2006,21(6):972-974.
    [[12]张长森,柯熙政,孙继平.半圆形隧道中导行波特征方程的近似求解[J].电波科学学报,2006,21(6):972-978
    [13]L M Xu, Z P Nie. Efficient evaluation of half-spaces Greens functions in angle spectrum plane [J]Chinese Journal of Radio Science,2004,19(3):263-268.
    [14]Emslie A, Lagace R, Strong P. Theory of the propagation of UHF radio waves in coal mine tunnels[J]. IEEE Transactions on Antennas Propagation,1975(23): 192-205.
    [15]Jin Wu Kong. Electromagnetic Wave Theory[M]. Beijing:Publishing House of Electronics Industry,2003
    [16]Seidel D B, Wait J R. Radio transmission in an elliptical tunnel with a contained axial conductor [J]. Journal of Applied Physics,1979,50(2):602-605.
    [17]Delogne P. Leaky Feeders and Subsurface Radio Communications[M]. London: Peregrinus,1982:46-50
    [18]Wait J R, Hill D A. Guided electromagnetic waves along an axial conductor in a circular tunnel [J]. IEEE Trans on Antennas and Propagation,1974,22 627-630.
    [19]Gillette M R, Alexander S G. Attenuation measurements in the 1 to 1000 MHz frequency range in wet granite tunnels [J]. IEEE Trans on Electromagnetic Compatibility,1975,17(4):201-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700