S波段大功率固态放大器及径向波导功率合成器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文重点研制千瓦级S波段高功率微波固态功率放大器系统,工作频率2.0~2.3GHz,通过径向波导合成器合成6路200W固态功率放大器模块输出1KW功率。
     为实现该固态功率源,本论文对高功率微波固态功放的关键技术如宽带匹配技术、功率合成技术进行了讨论分析;对千瓦级微波固态放大器控制系统做出了详细的分析,给出了测量驻波、增益、温度、电流、功率等的电路图,设计了基于DSP的控制系统,为千瓦级系统成功构建打下坚实基础;利用场匹配理论推导了径向波导功率合成器的场表达式,导出了散射系数的矩阵方程,导出了导纳表达式,通过导纳转换即可获得S参数,为利用Matlab编程计算反射系数、传输系数、隔离度等奠定了基础;采用理论分析与仿真软件相结合的方法,设计出一个基于径向波导的功率合成器,CST软件仿真结果表明该合成器在驻波比小于1.1情况下,工作频率1.3~3.3GHz,合成效率达到96%,隔离度优于-6dB,功率容量1.5KW左右;调试了200W功率放大器,调试结果表明该放大器工作频率为2.0~2.3GHz,增益达到(14.2±0.5)dB,饱和输出功率达200W,最大功率附加效率达60%;加工测试了一个6路径向波导功率合成器,测试结果表明该合成器与仿真结果比较吻合,下一步改进加工工艺、减小装配误差后可以用于合成6路200W固态功率模块。
We place emphasis on KW class S-band high power SSPA design in this thesis, Thefrenquency is from 2.0 to 2.3GHz, the output power is 1KW through combining six200W PA modules by a 6-way radial-waveguide power combiner.
     The main work is following: we have studied some key issues such as wide-bandmatching and high power combining techniques to implement S-band hectowatt-levelCW SSPA; we also designed control-circuit for 200 watt PA module using DSP,provided the circuit measuring VSWR, Gain, temperature, current, power and so on; wealso place emphasis on KW S-band high power radial-waveguide power combiner, wehave analyzed the fields in the cavity with one central probe and N equispaced identicalperipheral probes; through theoretical analysis and simulation, we have designed aradial-waveguide power combiner, the CST simulation results show that this combinerachieves broad operating band, which cover 1.3-3.3GHz, with a VSWR less than 1.1across the passband, a high combining efficiency reaches 96%, and a isolation greaterthan -6dB; the tuning result shows the designed 200 Watt final-stage PA has a PldB oflarger than 52dBm, associated with a PAE of 45%in the 2.0 to 2.3GHz frequency band.In the small signal condition, PA gain is (14.2±0.5) dB, saturation output power is up to200W with a efficiency of 60%.
引文
[1] 尤肖虎,曹淑敏,李建东.第三代移动通信系统发展现状与展望.电子学报,1999,第27卷第11期:3-8
    [2] J.D.Hay, E.A.Kerstenbeck, D.G.Rahn, D.W.Halayko, Painchaud. The Exploratory Development of A High Power S-band Solid State Rader Transmitter. EEE International Radar Conference, 1990, No 13: 135-139
    [3] M.Hanczor, M.Kumar. 12-kW S-Band Solid-State Transmitter for Modern Radar. IEEE Transactions on Microwave Theory and Techniques, December1993, No 12:2237-2242
    [4] M. Kumar, M. Hanczor, H. Voigt, et al. 22-KW next generation low cost s-band solid state transmitter for surveillance and air traffic control radars. IEEE Trans on MTT-S, 1995, pp: 1601-1604
    [5] Ph.Eudeline, P.Perez, Jp.Lemette. New Generation Low Cost S Band High Power Solid State Transmitter for Air Traffic Control and Naval Applications Radars. IEEE Radar 97, 1997, pp: 512-516
    [6] Li-Jun Zhang. A New Generation of S-Band Solid State 16KW Transmitter for Atc Primary Radar. IEEE, 1993, No 449: 191-193
    [7] M.Cicolani. High Power Modular S-Band Solid State Transmitters Family for Atc and Naval Radar Applications. IEEE MTT-S Digest, 2000, Th4B-4:1723-1726
    [8] Takeshi Murae, Kohei Fujii, Tatsuo Matsuno. A Compact S-Band MMIC High Power Amplifier Module. IEEE MTT-S Digest, 2000, WE4A:943-946
    [9] Takeshi Murae, Kohei Fujii, Tatsuo Matsuno. High Power S-band Solid-state Amplifier for Surveillance and Traffic Control Radars. IEEE MTT-S Digest, 2001, WE1B-6:653-656
    [10] M.Hanczor and M.Kumar. Design considerations for solid-state hign power amplifiers used in radar systems. In Proc RF ExpoEast Tampa, FL Sept, 1992, pp:393-401
    [11] K.J. Russell. Microwave Power Combining Techniques. IEEE Trans, 1979, vol MTT-27, pp: 472-478
    [12] K. Chang and C. Sun. Millimeter-Wave Power-Combining Techniques. IEEE, 1983,vol MTT-31, pp: 91-107
    [13] J.G. Josenhans. Diamond as an Insulating Heat Sink for a Series Combination of IMPATT Diodes. Proc IEEE, 1968, vol 56: 762-763
    [14] C.T.Rucker, G.N. Hill. Symmetry Experiments with Four-Mesa IMPATr-Diodes. IEEE, 1977, Vol 25: 75-76.
    [15] R.S.Harp and H.L. Stover. Power Combining of X-Band IMPATT circuit modules. IEEE, 1973, pp: 118-119
    [16] C.A. Drubin, A.L. Hieber. A 1kW peak 300W avg IMPATT Diode Injection Locked Oscillator. IEEE, 1982, pp: 126-128
    [17] B. J. Sanders. Radial Combiner Runs Circles Around Hybrids. Microwaves, 1980, pp: 55-58
    [18] P.J. Allen and J.B. Ness. A hemispherical radial power-waveguide divider/combiner for high power amplifiers. IREECON, 1987, pp: 102-104
    [19] M. Oz. Wideb and Double-Ridged. 8-Way Radial Combiner. 14th European Microwave Conference Proceedings, 1984, pp: 317-322
    [20] A.A.M. Saleh. Planar Electrically Symmetric n-Way Hybrid Power Dividers/Combiners. IEEE Trans,1980, pp:555-563
    [21] I. Stones, J. Goel and G. Oransky. An 18 GHz 8-Way Radial Combiner. IEEE, 1983, pp: 163-165
    [22] D. Staiman, M.E. Breese and W.T. Patton. New Technique for Combining Solid-State Sources. IEEE, 1968, pp: 238-243
    [23] A. W. Robinson and M.E. Bialkowski. Quasi-Optical Amplifiers for Wireless LAN. Asia-Pacific Microwave Conference Proceedings, 1995, pp: 736-739
    [24] N.Marcuvitz. Waveguide Handbook. New York: MIT Radiation Laboratory Series, 1951,vol:10
    [25] N.Marcuvitz. Radial Transmission Lines. New York: MIT Radiation Laboratory Series, 1947, pp: 240-282
    [26] L.Lewin. a contribution to the theory of cylindrical antennas-radiation between parallel plates. IRE Trans Antennas and Propag, 1959, vol AP-7, pp: 162-168
    [27] B.R.Rao. current distribution and impedance of an antenna in a parallel plate region.IEEE, 1965, Vol 112, pp: 259-268
    [28] D.V.Otto. the admittance of cylindrical antennas driven from a coaxial line. radio science, 1968, Vol 2, pp: 1031-1042
    [29] M.E.Bialkowski and P.J.Kahn. driving-point impedance of a linear cylindrical.Antenna Electron Lett, 1983, Vol 19, pp: 216-218
    [30] M.E.Bialkowski. analysis of diode mounts in millimetre-wave propagating structures. Archiv fur elektronik und ubertragungs technik, AEU, 1984, pp: 227-230
    [31] M.E.Bialkowski. analysis of disc-type rsonator mounts in parallel plate and rectangular waveguides. Archiv fur elektronik und ubertragungs technik, AEU, 1984, pp: 306-311
    [32] M.E.Bialkowski and S.T.Jellent. Investigations into a coaxial-to-waveguide transition incorporating a disc-ended probe. Asia-pacific microwave conference proceedings, 1993, vol 2, pp: 14-16
    [33] M.E.Bialkowski. analysis of a coaxial-to-waveguide adaptor incorporating a dielectricoated probe. IEEE microwave guided wave lett, 1991, vol 1, pp: 211-214
    [34] C.A.Balanis. Advanced engineering electromagnetics. New York: John Wiley &Sons, 1989,ch6
    [35] R.E.Collin. field theory of guided waves. Mcgraw Hill, 1960
    [36] F.Harrington. time harmonic electromagnetic fields. New York: Mcgraw-hill, 1961,section 5.8
    [37] A.Balanis. advanced engineering electromagnetcis. John Wiley & Sons, 1989, Sections 11.4.2 and 11.4.3
    [38] 白晓东译.微波晶体管放大器分析与设计.北京:清华大学出版社:2003,66-85,270-304,309-353
    [39] 顾墨琳.微波固态电路设计.南京:机械电子工业部第十四研究所,1992,pp:424-474.
    [40] 王子宇,徐承和等译.射频电路设计—理论及应用.北京:电子工业出版社:2002,66-85,270-304.410-416
    [41] 白义广.径向功率分配/合成器的设计[J].微波学报,1995,15(2):189-192
    [42] 高葆新.微波集成电路.北京:国防工业出版社,1995,pp:143-154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700