新型无污染大功率开关电源
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频开关电源技术带来的“20KHz电源技术革命”,不仅在直流稳压电源领域占据了主导地位,在许多工业电源领域如电焊机、高频感应加热、航空电源、激光电源等领域,也得到了广泛的应用和迅速的发展。开关电源的大量应用,特别是大功率开关电源的应用,给电网带来了电磁污染的问题,制造了大量的高次谐波和电磁干扰(EMI)。其原因一是由于硬开关的PWM调节方式,电子开关速度很快(ns数量级)在高电压下导通,大电流下关断,导致很高的du/dt和di/dt,产生很强的尖峰脉冲,对周围环境造成电磁干扰。原因之二是开关电源的输入端采用二极管整流,后接较大的滤波电容,导致输入电流为一很窄的脉冲波,含有丰富的谐波分量。据报道,单相谐波总畸变率(THD)可达100%以上,严重超过5%的国家标准和国际标准,如IEC 1000-10-3-2、IEEE 519、IEC 555-2、IEC 6100-3-2等。为此,许多功率因数校正变换器作为解决这一问题的最佳方法被研制出来了。
     消除开关电源对环境的电磁污染,一是要采用软开关的PWM调节方式,二是在输入端增加功率因数校正器,这是目前一般采用的办法。其主要缺点是由于增加了一级校正器,因而控制复杂、成本高、效率低。为此,出现了所谓单级功率因数校正和变换装置,采用一级变换器同时完成功率因数校正和输出电压的调节。目前,这仅在输入电源为单相的变换器中实现,而且不是软开关,仍存在EMI;对于污染问题更严重的输入电源为三相三线的较大功率的变换器,则未见报道,同时,三相大功率的电磁污染治理问题也成为国际研究的热点之一。
     本文提出的新型无污染大功率开关电源正是采用三相三线制输入电源,利用单级伪相移零电压零电流开关脉宽调制(PPS-ZVZCS-PWM)全桥变换器完,成功率因数校正(PFC)和输出电压快速调节、隔离的双重功能,并且该变换器开关管在零电压或零电流下通断,显著的减小了EMI。该新型开关电源具有结构简单、易于控制、成本较低等优点,特别适合输出功率为几十千瓦并且要求输入输出隔离的直流电源系统工业。
     本文详细分析了新型变换器的工作过程,推导了重要公式,并对主要参数进行了讨论。最后,对该新型无污染大功率开关电源进行了具体仿真和实验,验证了其可行性和有效性。
The technology of high frequency of switching power supply "20 KHz power supply technique revolution" that brings, not only in the direct current steady power supply field to play the predominant position, at the field of many industry power supply such as the electric arc machine, the high frequency inductive to heat, the aviation power supply, and the laser power supply etc., but also got the extensive application with the development. The wide application of Switching-Mode-Power- Supply (SMPS), especially high power SMPS brings "pollution" to power system. What have made a large amount of harmonic and high Electro-Magnetic Interference (EMI) has two reasons. The first reason is mainly the hard-switching PWM mode. The switch turns on at high voltage and turns off at high current in a short time (ns), which leads to a high du/dt and di/dt and EMI. The second reason is the nonlinear rectifier with a bulky capacitor in the input stage of the SMPS, which leads to a narrow pulse and rich harmonics. It is report
    
    ed that the total harmonic distortion (THD) of the single-phase power supply is 100% above which beyond the China standard and international standard such as IEC 1000-10-3-2, IEEE 519, IEC 555-2, IEC 6100-3-2 etc. by a long way. For this, the many power factor correctors to resolve the best method of this problem has been developed and manufactured out.
    To dissolve the switching power supply electro magnetism pollution towards environment, soft-switching PWM mode has been used instead of hard-switching PWM mode and a PFC stage has been added normally. The two-stage converter has some disadvantages such as the complexity, high cost and low efficiency. The other way is to use a single-stage power processor to correct power factor and regulate voltage simultaneously. However, the technology has only been applied in low power of single-phase AC input and has no use in high power of three-phase.
    So, the three-phase high power supply as the main EMI equipment is becoming one of the hot points in international research.
    A novel high-power pollution-free SMPS is presented in this paper, which accomplishes simultaneously the goal of soft-switching PWM, the input/output isolation, the output voltage regulation and three-phase PFC with a single-stage power processor and simple pseudo-phase-shift control circuit. Therefore, compared with the normal two-stage system, the single-stage power supply has simpler structure, lower cost, higher efficiency and easier to control. The proposed SMPS can be used in the three-phase power system, and can output high power over KW-order and input/output (I/O) isolation DC power supply.
    Its operation process principle and critical parameters are analyzed and discussed. At last, the computer simulation and experiment of the proposed SMPS give the excellent proof to feasibility and validity.
引文
[1] Peter Barbosa, Francisco Canales, Fred C. Lee. Interleaved Three-Phase Boost Rectifiers Operated in the Discontinuous Conduction Mode: Analysis, Design Considerations and Experimentation. IEEE Trans. On Power Electr. Vol. 16, September 2001. pp.724-733.
    [2] S.Y.R.Hui, Y.K.E.Ho, H.Chung. Modular single-stage, three-phase full-bridge converter with inherent power factor correction and isolated output, IEE Proc. Electr. Power Appl. Vol.146, July 1999. pp.407-413.
    [3] Anthony Siebert, Anders Troedson, Stephan Ebner. AC to DC Power Conversion Now and in the Future. IEEE Trans. On Industry Appl, Vol.38, July/August 2002. pp.934-940
    [4] Jose G., Pedro A.. Analysis and Simulation of A Three-Phase AC-DC Converter with High Power Factor and Phase Shifted Control. ISIE'2000. pp.337-342.
    [5] 胡晓光,蔡惟铮.一种新型ZVZCS全桥PWM变换器.电工技术杂志,2002(7),pp.4~6.
    [6] 邓卫华,胡宗波,张波.三相功率因数校正拓扑结构及软开关技术.电力电子技术,35(3),2001,pp.7~10.
    [7] 王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998.
    [8] JIANG. Y., MAO. H., LEE. F.C., et al. Simple high-performance three-phase boost rectifiers. IEEE PESC'94 Proceedings. 1994. pp. 1158-1163.
    [9] PRASAD.A.R.. ZIOGAS.P.D.. et al. An active power factor correction technique for three-phase diode rectifiers. IEEE PESC'89 Proceedings. 1989. pp. 58-66.
    [10] M. Danniele, P.Jian, and G. Joos. A single stage single switch power factor corrected ac/dc converter. IEEE Power Electronics. Spec. Conf.(PESC).Rec., June 1996,pp.216-222.
    [11] Marek, Gotfryd. Output Voltage and Power Limits in Boost Power Factor Corrector Operating in Discontinuous Inductor Current Mode. IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 15, January 2000. pp.51-57.
    [12] Y.Panov, J.G.Cho, F.C.Lee. Zero-voltage-switching three-phase single-stage power factor correction convertor, IEE Proc. Electr. Power Appl., Vol. 144, September 1997. pp.343-348.
    [13] 陈卫昀.单级功率因数校正及变换技术的发展.电工技术杂志,1998(1),pp.10-12.
    [14] 张占松,孙时生,伍言真.电路和系统的仿真实践.科学出版社,2000.
    [15] C.S.Moo, H.L.Cheng, Y.N.Chang. Single-stage high-power-factor dimmable electronic ballast with asymmetrical pulse-width-modulation for fluorescent lamps, IEE Proc. Electr. Power Appl., Vol 148, No 2, March 2001, pp. 125-132.
    [16] 付应红,李晓帆,何茂军.一种新颖带功率因数校正的AC/DC变换器的研究.电力电子技术,2001(1),pp.17-23.
    [17] 许化民,阮新波,严仰光.单级功率因数校正AC/DC变换器的综述.电力电子技术,2001(1),pp.56-60.
    
    
    [18] 徐德鸿.三相高功率因数整流器的发展与现状.江苏机械制造与自动化,2000(4),pp.6-15.
    [19] 易映萍,秦祖泽,姚为正.三相整流电路有源功率因数校正技术.电气传动自动化,VOL.20(4),1998.pp.64-67.
    [20] 陈卫昀,严仰光.一种新型单级功率因数校正和变换电路.电工技术杂志,1998(11),pp.10-12.
    [21] 钱照明,叶忠明,董伯藩.谐波抑制技术.电力系统自动化,VOL 21(10),1997.pp.48-54.
    [22] 余大武,石楚生.PFC/PWM组合控制器述评.电源技术应用,2001(6),pp.53-56.
    [23] 康劲松,郎玉峰,陶生桂.IGBT集成驱动模块的应用研究.电工技术杂志,2000(5),pp.36-38.
    [24] 朱志明,张人豪.逆变式弧焊电源的功率因数及其提高途径.电焊机,1996(4),pp.5-8.
    [25] 于相旭,侯振程,叶一麟,熊宇.三相单开关Boost型功率因数校正器的简化大信号模型.电工技术学报,2001(4),pp.61-64.
    [26] 张凯,石俊杰.基于Boost机构下不连续导电模式的PFC电路.通信电源技术,2002(2),pp.8
    [27] 于相旭,侯振程,叶一麟,熊宇.三相单开关Boost型功率因数校正器的设计.电力电子技术,2001(1),pp.8-10.
    [28] 刘健,刘树林,王兆安.单级功率因数校正DCM组合变换器的稳定性.电子学报,1999(10),pp.51-54.
    [29] 李剑,康勇,孟宇,陈坚.带饱和电感的移相全桥零电压开关PWM变换器.电力电子技术,2000(2),pp.13-15.
    [30] 穆新华,孟小利,刘闯.Boost功率因数校正器中输入电流波形失真分析与抑制.数据采集与处理,2001(12),pp.435-469.
    [31] 张卫平,吴兆麟等.功率因数校正器的三频分析法.电子学报,1997(11),pp.46-48.
    [32] 石文,吴忠等.功率因数校正电路大信号分析.电子学报,1997(4),pp.99-101.
    [33] 陈树君等.三相大功率焊接逆变电源的网侧电流谐波抑制.焊接学报,1999(5),pp.205-210.
    [34] 胡铭等.有源滤波技术及其应用.电力系统自动化,VOL 24(3),2000.pp.66-69.
    [35] 张卫平,吴兆麟.PFC电路的分析.北方工业大学学报,1998(3),pp.48-54.
    [36] Jung-Goo Cho et al. Novel Zero-Voltage and Zero Current-Switching Full Bridge PWM Converter Using Transformer Auxiliary Winding. IEEE Trans. PE. March 2000, 15 (2), pp. 250~257.
    [37] Byeong-Ho Choo et al. A Novel Full-Bridge ZVZCS PWM DC/DC Converter with a Secondary Clamping Circuit. IEEE APEC, 1998, pp.936~941.
    [38] 阮新波,严仰光.移相控制零电压开关PWM变换器的分析.电力电子技术.1998(2),pp.
    
    1~4.
    [39] C.Cuadros et al. Design Procedure and Modeling of High Power, High Performance, Zero-Voltage Zero-Current Switched, Full-Bridge PWM Converter. IEEE APEC. 1997. pp. 790~798.
    [40] 包伟,蔡宣三.利用PSPICE仿真研究PWM开关电源.电工电能新技术.1995.2.25~29.
    [41] 王聪.软开关功率变换器及其应用.北京:科学出版社,2000.
    [42] 阮新波,严仰光.脉宽调制DC/DC全桥变换器的软开关技术.科学出版社.1999.
    [43] 蔡宣三,龚绍文.高频功率电子学.科学出版社.1993.
    [44] 张占松,蔡宣三.开关电源的原理与设计.电子工业出版社.1998.
    [45] 张权.无源软开关功率因数校正变换器.四川大学电气信息学院硕士毕业论文,2001.
    [46] 李铭.新型宽调节范围全桥软开关变换其研究.四川大学电气信息学院硕士毕业论文,1999.
    [47] 宋婷婷.新型次级钳位FB-ZVSCS PWM变换器.四川大学电气信息学院硕士毕业论文,2002.
    [48] 刘亚梅.伪相移式全桥混合ZV-ZCS-PWM变换器.四川大学电气信息学院硕士毕业论文,1999.
    [49] 赵良炳.现代电力电子技术基础.请华大学出版社.1995.
    [50] 康华光,电子技术基础(模拟部分),高等教育出版社,1996.
    [51] 尤雷,PSPICE(V4.02)电路模拟设计软件使用手册,海洋出版社,1992.
    [52] 贾新章等,OrCAD/Pspice 9实用教程,西安电子科技大学出版社,2000.
    [53] 吕征宇,钱照明,Green T.C..软开关AC/DC变换器的电磁干扰研究.中国电机工程学报,2000(7).pp.14-18.
    [54] 钱照明,吕征宇等.电力电子系统中的电磁兼容.电工技术学报,1999(增刊).
    [55] Djordje Garabandic, William G. Dunford. Primary Saturable Inductor for High Power Zero Voltage DC-DC Converter with IGBTs. IEEE PESC, 1997. pp. 944-847.
    [56] Satoshi Hamadm and Mutsuo Nakaoka. Analysis and Design of a Saturable Reactor Assisted Soft-Switching Full-Bridge DC-DC Converter. IEEE Transaction on Power Electronics. Vol.9, May 1994. pp. 309-317.
    [57] Hangseok Choi et al. Modeling, Analysis and Design of 10kw Parallel Module Zero-Voltage Zero-Current Switched, Full-Bridge PWM Converter. IEEE APEC 2000. pp. 321~326.
    [58] 陈延明,王志强等.一种新型的移相软开关变换电路.电力电子技术,1999(1),pp.12-14.
    [59] 徐晓峰,连级三.移相控制ZVS全桥变换器滞后臂死区时间分析.电力电子技术,1999(1),pp.15-17.
    [60] 史平君.实用电源技术手册(电源元器件分册).辽宁科学技术出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700