直驱永磁同步风力发电系统并网运行控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全世界范围内的能源危机日益严重,人们逐渐将目光转向了新能源发电。风能作为一种清洁、环保、利用方便并且储存量巨大的可再生能源,受到了广泛关注,风力发电技术在世界各国得到了迅速发展。在各种变速恒频(VSCF)风力发电系统中,直驱永磁同步风力发电机组具有结构简单、不需要升速齿轮箱、不存在电刷和滑环、机组运行的稳定性和可靠性较高等优点,成为了当前最主要的发电方式。
     本文在了解了风力发电的研究意义和国内外研究现状以及直驱永磁同步风力发电机的结构特点的基础上,以直驱永磁同步风力发电机为研究对象,对其三种并网电路的优缺点进行了比较,选择采用双PWM变流器作为它的并网电路。推导出了永磁同步发电机(PMSG)在dq坐标系下的非线性数学模型。采用逆系统方法、变结构控制理论以及转子磁链定向矢量控制相结合的方法设计了发电机侧变流器的变结构控制器;采用电网电压定向矢量控制方法设计了电网侧变流器的PI控制器。搭建了仿真模型,并通过仿真验证了该控制策略可实现发电机输出有功功率的准确控制、并网有功功率和无功功率独立调节、变速恒频发电运行以及双PWM变流器直流侧电压稳定控制。变结构控制与PI控制相比,动态响应速度更快、鲁棒性更好。
     考虑到风电场输出功率的波动性、间隙性严重影响了电网的稳定运行,为平抑其输出功率波动,提高其并网运行稳定性,选择了在风电场并网母线位置集中配置了钒电池(VRB)储能系统。采用双向AC/DC变流器作为VRB储能系统的功率调节器,并采用非线性控制方法、变结构控制理论以及电网电压定向矢量控制相结合的方法设计了VRB储能系统的闭环控制器。搭建了仿真模型,仿真验证了风速变化时,利用该控制策略,VRB储能系统能够通过快速充放电,平抑风电场输出的功率波动,并且变结构控制的效果优于PI控制;VRB储能系统输出的有功和无功功率可进行独立调节,系统动态性能良好。
With the growing worldwide energy crisis, people are gradually turning to new energy generation. Wind energy has attracted widespread attention as a clean、、 environmentally friendly、using convenient and huge storage capacity of renewable energy. Wind power technology has been the rapid development in the countries all over the world. A direct-drive permanent magnet synchronous wind turbine has become the main way of power generation in various VSCF wind power generation systems and it has a simple structure、does not need the liter-speed gearbox、does not exist the brush and slip ring unit、has high operation stability and reliability.
     In this paper, the significance of research and research status of the wind power generation as well as the structural features of direct-drive permanent magnet synchronous wind turbine have been understood, direct-drive permanent magnet synchronous wind turbine is used as the research object and comparing the advantages and disadvantages of its three kinds grid-connected circuit as well as the dual PWM converter is used as the main grid-connected circuit for it. The nonlinear mathematical model of permanent magnet synchronous generator in dq coordinate system is deduced. A control strategy is proposed to design the variable structure controller of the generator-side converter, which combines the inverse system method, the variable structure control theory and the rotor flux oriented vector control method, using grid voltage oriented vector control method to design the PI controller of the grid side converter. A simulation model is built. The simulation results indicate that using the proposed control strategy, the accurate control of active power output of PMSG, independent adjust of grid-connected active and reactive power, variable speed constant frequency (VSCF) power generation as well as stability control of dual PWM converter DC side voltage can be achieved. Compared with PI control, variable structure control shows quick dynamic performances and good robustness.
     Considering the fluctuation and intermission of wind farm output power seriously affect the stable operation of a grid. A vanadium redox flow battery (VRB) energy storage system is equipped at the grid bus of wind farm in order to smooth the output power and improve the stability of grid-connected wind farm. A bi-directional AC/DC converter is used as the power regulator of VRB energy storage system. A control strategy is proposed to design the closed-loop controller of energy storage system, which combines the nonlinear control method、the variable structure control theory and the grid voltage oriented vector control method. A simulation model is built. Simulation results show that using the proposed control strategy, the vanadium battery energy storage system can fast charge and discharge to smooth the fluctuation of wind farm output power when the wind speed rapidly changes, variable structure controller shows better dynamic performances when compared it with PI controller; the independent adjusting of the active and reactive power of VRB energy storage system output can be achieved, and the dynamic performance of system is good.
引文
[1]周志强.中国能源现状、发展趋势及对策[J].能源与环境,2008,(6):9-10
    [2]胡雪松.直驱永磁同步风力发电系统功率平滑策略的研究与控制系统设计[D].重庆:重庆大学,2010.
    [3]刘宝兰,文华单.世界风力发电现状与前景[J].能源工程,2000,(4):12-14.
    [4]易跃春.风力发电现状、发展前景及市场分析[J].国际电力,2004:(10):18-22.
    [5]瞿兴鸿.直驱永磁同步风力发电控制系统的研究与设计[D].重庆:重庆大学,2008.
    [6]刘其辉,贺益康,张建华.并网型交流励磁变速恒频风力发电系统控制研究[J].中国电机工程学报,2006,26(23):109-114.
    [7]刘其辉,王志明.双馈式变速恒频风力发电机的无功功率机制及特性研究[J].中国电机工程学报,2011,31(3):82-89.
    [8]XUL, WANGY. Dynamic modeling and control of DFIG based wind turbines under unbalanced network conditions. IEEE Trans on Power Systems,2007,22(1):314-323.
    [9]黄守道,王耀南,王毅等.无刷双馈电机有功和无功功率控制研究[J].中国电机工程学报,2005,25(4):87-93.
    [10]WANG Qi, CHENH Xiao-hu, FEI Wan-min,et al. Study of brushless doubly-fed control for VSCF wind power generation system connected to grid[C].//DRPT.2008:2453-2458.
    [11]Tan K, Islam S. Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors[J]. IEEE Trans on Energy Conversion,2004,19(2):392-399.
    [12]Chen Z. Compensation schemes for SCR converter in variable speed wind power systems[J]. IEEE Trans on Power Delivery,2004,19(2):813-821.
    [13]徐科.变速永磁同步风力发电机交直流并网系统运行控制研究[D]南京:东南大学,2007.
    [14]Wang Q, Chang L. An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems[J]. IEEE Trans on Power Electronics,2004,19(5): 1242-1249.
    [15]徐科,胡敏强,郑建勇,等.风力发电机无速度传感器网侧功率直接控制[J].电力系统自动化2006,30(23):43-47.
    [16]Chen Yiguang, Wang Zhiqiang, Shen Yonghuan, et al. A control strategy of direct driven permanent magnet synchronous generator for maximum power point tracking in wind turbine application[C]//Electrical Machines and Systems. Wuhan:IEEE,2008:3921-3926.
    [17]姜燕,陈顺,黄守道,等.直驱型永磁风力发电系统的电网同步化方法研究[J].电网技术,2010,34(11):182-187.
    [18]瞿兴鸿,廖勇,姚骏,等.永磁同步直驱风力发电系统的并网变流器设计[J].电力电子技术,2008,42(5):22-24.
    [19]Chinchilla M, Arnaltes S, Burgos J C. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J]. IEEE Trans on Energy Conversion, 2006,21(1):130-135.
    [20]Mei Li, Smedley K. One-cycle control of PMSG for wind power generation[C]//Power Electronics and Machines in Wind Applications (PEMWA 2009). Lincoln, NE, USA:IEEE, 2009:1-6.
    [21]姚骏,廖勇,瞿兴鸿,等.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008,32(10):11-15,27.
    [22]俞世华,陈小校.直驱风力发电永磁同步电机矢量控制[J].变频器世界,2011,9:71-74.
    [23]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996:328-330.
    [24]Zhang Lei, Chunliang E, Li Haidong, et al. A New Pitch Control Strategy for Wind Turbines Base on Quasi-Sliding Mode Control[C]//The UK-China Network of Clean Energy Research.1st International Conference on Sustainable Power Generation and Supply, SUPERGEN'09. Piscataway:IEEE Computer Society,2009:1-4
    [25]赵宇.变速恒频双馈风力发电机励磁电源控制策略研究[D].成都:西南交通大学,2010
    [26]Feng Honggui, li Yan, Luan Juli, et al. A Position Sensorless Control System of Low Speed and High Torque PMSM Based on Sliding Mode Observer[C]//Industry Applications Society. International Conference on Electrical Machines and Systems, ICEMS 2007. Piscataway: Inst. of Elec.and Elec. Eng. Computer Society,2007:974-978.
    [27]王伟胜,陈默子.浅论我国风电接入系统的有关问题[J].中国电力,2004,4:49-53.
    [28]孙涛,王伟胜,戴慧珠,等.风力发电引起的电压波动和闪变[J].电网技术,2003,27(12):62-66.
    [29]刘燕华,王伟胜,等.风电接入对电力系统的影响[J].电网技术,2007,31(3):76-81.
    [30]防强,范伟.由风力发电引起的电力系统强迫功率振荡[J].华东电力,2009,37(1):98-102.
    [31]迟永宁,王伟胜,刘燕华,等.大型风电场对电力系统暂态稳定性的影响[J].电力系统自动化.2006,30(15):10-10.
    [32]BIALASIEWICZJ T, MULJADI E. The wind farm aggregation impact on power quality// Proceedings of the 32th Annual Conference of IEEE Industrial Electronics Society, November 6-10, 2006, Paris, France:4195-4200.
    [33]张步涵,曾杰,毛承雄,等.电池储能系统在改善并网风电场电能质量和稳定性中的应用[J].电网技术,2006,30(15):54-58.
    [34]Luo Changling, Banakar H, Shen Baike, et al. Strategies to smooth wind power fluctuations of wind turbine generator[J]. IEEE Trans on Energy Conversion,2007,22(2):341-349.
    [35]Senjyu T, Sakamoto R, Urasaki N, et al. Output power leveling of wind turbine generator for all operating regions by pitch angle control [J]. IEEE Trans on Energy Conversion,2006, 21(2):467-475.
    [36]廖勇,何金波,姚骏,等.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J].中国电机工程学报,2009,29(18):71-77.
    [37]项真,解大,龚锦霞,等.用于风电场无功补偿的STATCOM动态特性分析[J].电力系统自动化,2008,32(9):92-95.
    [38]姚绪梁.现代交流调速技术[M].哈尔滨:哈尔滨工程大学出版社,2009.
    [39]倪受元.风力机的原理及气动力特性[J].太阳能学报,2001(1):12-16.
    [40]孙延昭.永磁直驱风电变流系统控制策略研究[D].长沙:湖南大学,2009.
    [41]王利兵,毛承雄,陆继明,等.基于反馈线性化原理的直驱风力发电机组控制系统设计[J].电工技术学报,2011,26(7):1-6,20.
    [42]张伦健刘建坤侯圣语.基于滑模变结构控制的直驱永磁风力发电系统研究[J].机电元件,2011,3:15-19.
    [43]戴先中.多变量非线性系统的神经网络逆控制方法[M].北京:科学出版社,2005.
    [44]王久和.交流电动机的非线性控制[M].北京:电子工业出版社,2009.
    [45]A. Kumar, O.P. Malik and G.S. Hope, Discrete variable structure controller for load frequency control of multiarea interconnected power systems, IEE Proc, Pt.C, Vol.134, No.2,1987.
    [46]A.Y. Sivaramakrishnan, M.V. Hariharan and M.C. Srisailan, Design of variable structure load-frequency controller using pole assignment technique, Int.J.Contr,Vol.40.No.3,1984.
    [47]刘建华.交、直流调速应用[M].上海:上海科学技术出版社,2007.
    [48]李飞.基于矢量控制的交流电机控制器的设计[D].合肥:合肥工业大学,2010.
    [49]Zhu long-ji, Wang bin. Simulation Research on Vector Control System Using MRAS Speed Identification[J]. Transations of china electro technical society,2005,20(1):60-65.
    [50]张振华,江道灼.基于模块化多电平变流器的STATCOM研究[J].电力自动化设备,2012,32(2):62-66.
    [51]沈旭珍.永磁直驱风力发电系统的并网运行控制策略研究[D].北京:华北电力大学,2010.
    [52]Rodriguez P, Pou J, Bergas J, et al. Double synchronous reference frame PLL for power converters control[C]//Power Electronics Specialists Conference. Paris:Institute of Electrical and Electronics Engineering,2005:1415-1421.
    [53]Kazmierkowski M P, Malesani L. Current control techniques for three-phase Voltage-Source PWM Converters[J]. IEEE Trans Ind Electron,1998,45:691-703.
    [54]杨勇,阮毅,任志斌,等.直驱式风力发电系统中的并网逆变器[J].电网技术,2009,33(17):157-161.
    [55]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.
    [56]贾宏新,张宇,王育飞,等.储能技术在风力发电系统中的应用[J].可再生能源,2009,(27)6:10-15.
    [57]张华民,赵平,周汉涛,等.钒氧化还原液流储能电池[J].能源技术,2005,26(1):23-26.
    [58]BAROTE L, WEISSBACH R, TEODORESCU R. Stand-alone wind system with vanadium redox battery energy storage//Proceedings of IEEE International Conference on Optimization of Electrical and Electronic Equipments, May22-24,2008, Brasov, Romania:407-412.
    [59]王文亮,葛宝明,毕大强.储能型直驱永磁同步风力发电控制系统[J].电力系统保护与控制,2010,38(14):43-48,78.
    [60]郭学英,郑建勇,梅军,等.基于超级电容储能的风电并网功率调节控制系统[J].可再生能源,2011,29(2):28-32.
    [61]李国杰,唐志伟,聂宏展,等.钒液流储能电池建模及其平抑风电波动研究[J].电力系统保护与控制,2010,38(22):115-119,125.
    [62]S. M. Muyeen, M. H. Ali, Takahashi, et al. Wind Generator Output Power Smoothing and Terminal Voltage Regulation by Using STATCOM/ESS[C]//Power Tech, IEEE Lausanne, 2007:1232-1237.
    [63]毕大强,葛宝明,王文亮,等.基于钒电池储能系统的风电场并网功率控制[J].电力系统自动化,2010,34(13):72-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700