变风载下变速风力发电机传动系统的可靠性评估与动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能是一种清洁无污染的新能源,合理开发利用风能可以解决日益严峻的能源短缺以及环境污染问题。变速风力发电机由于发电量大、振动噪声低等优点,已成为未来大型风力发电机的主要发展方向。大型风力发电机叶片的转速通常都很低,为了达到发电机工作所需的转速就需要在叶轮和发电机之间连接一个增速齿轮箱。齿轮箱传动系统是风力发电机的关键部件之一,其可靠性的高低以及动力学特性的优劣都直接决定着风力发电机正常工作与否。由于变速风力发电机通常工作在较为恶劣的环境条件下,受复杂随机动载荷的影响并且处于高空架设状态,这些都对变速风力发电机齿轮传动系统的可靠性和动力学特性都提出了很高的要求。因此,对变载荷下变速风力发电机齿轮传动系统的可靠性和动力学特性进行研究显得尤为必要。
     本文受国家自然科学基金项目的资助,以2MW变速风力发电机传动系统为研究对象,对其进行了可靠性评估和动力学特性分析。主要研究工作如下:
     ①建立了基于双参数威布尔分布的随机风速模型。根据实际风场风速的平均值以及方差值,求得了威布尔分布的形状参数和尺度参数,建立了随机风速模型,对自然风场中随机变化的风速进行了模拟;
     ②得到了变速风力发电机齿轮箱实际运行时的时变输入转矩和转速。将通过随机风速模型获得的风载荷作为齿轮传动系统的外部激励,分析了变速风力发电机实际运行时齿轮箱输入功率与风速之间的关系,通过推导得到了齿轮箱输入转矩与风速、输入转速与风速之间的分段函数关系,在此基础上对随机风载荷进行变换得到了齿轮箱时变输入转矩和转速;
     ③对变速风力发电机齿轮传动系统进行了可靠性评估。对齿轮失效的主要形式进行了分析,求得了齿轮传动系统的可靠度,对系统进行了可靠性评估;
     ④建立了齿轮传动系统的动力学模型。在考虑齿轮副时变啮合刚度、轴承刚度和啮合误差等内部激励的基础上,采用集中质量法建立了传动系统的动力学模型;
     ⑤分析了传动系统的动态响应特性。利用matlab求得了传动系统在时变输入转矩和内部激励共同作用下各齿轮的振动位移、振动速度和各齿轮副的动态啮合力,对变风载下变速风力发电机齿轮传动系统的动力学特性进行了分析,所得结果对变速风力发电机齿轮箱的设计和分析具有参考价值。
Wind energy is a clean and non-pollution new energy, exploiting wind energy properly can solve the increasing energy and environmental problems. Because of high power and low vibration, the variable speed wind generator has been the main developing generator type of high-power wind generator in the future. The blade rotation speed of high-power wind generator is usually very low, so we should place a increasing-speed gear box between blade and generator in order to gain the speed for generating electricity. The gear box transmission system is a key part of wind generator, its reliability and dynamics level both directly decide the correct operation of wind generator. Because of the bad working environment, complex time-varying wind load and high erection, the gear transmission system of variable speed wind generator must have a high reliability and good dynamic characteristics. So, it is necessary to study on the reliability and dynamic characteristics of variable speed generator transmission system under varying wind load.
     The thesis is supported by National Natural Science Foundation, it investigated the reliability evaluation and dynamic performance of the 2MW wind generator transmission system. This paper mainly did following works:
     ①A random wind model basing on the two parameters Weibull distribution is built. According to the average value and variance of wind speed, the shape parameter and scale parameter of Weibull distribution is estimated, the random wind model is built and the nature varying wind is simulated.
     ②Realistic time-varying input torque and speed of variable speed wind generator gear box is got. The varying wind speed which is got from the random wind model is used to be the external excitation of gear transmission system. The relation between wind speed and realistic input power of variable speed wind generator gear box is analyzed; the function of input torque and wind speed and the function of input speed and wind speed are both got according to inference. On this foundation, the wind speed is changed into the input torque and speed of variable speed wind generator gear box.
     ③Reliability evaluation of gear box transmission system is done. The main gear failure types are analyzed, the reliability of gear transmission system is got, and the reliability evaluation of gear system is done.
     ④Dynamic model of gear transmission system is built. Considering the internal excitations such as the time-varying meshing stiffness, bearing stiffness and the meshing error, a dynamic model is built by using lumped-parameter method.
     ⑤Dynamic characteristics of gear transmission system are studied. The vibration speed, displacement of gears and mesh force of each gear pair of the variable speed wind generator transmission system which is under the interaction of time-varying input torque and internal excitations are got by using Matlab, and the dynamic characteristics of gear transmission system under varying wind load are studied. The research results provide some references for design and analysis of the variable speed wind generator gear box.
引文
[1]郭新生.风能利用技术[M].北京:化学工业出版社, 2007.
    [2]刘长浥,王伟胜,赵海翔,等.风力发电用感应发电机[M].北京:中国电力出版社, 2009.
    [3]叶航治.风力发电机组的控制技术[M].北京:机械工业出版社, 2006.
    [4]世界风电网信息中心,中国风能发展目标有可能提前10年实现,http://www.86wind.com/info/detail/37-8923.html. 2009, 2.9.
    [5]刘忠明,王长路.风力发电展望[J].市场观察,2006,24-25.
    [6]周燕莉.风力发电的现状与发展趋势[J].甘肃科技,2008,24(3).
    [7]许洪华,郭金东,鄂春良.世界风电技术发展趋势和我国未来风电发展探讨[J].电力设备, 2005, 6(10): 106-108.
    [8]张勇.风电装备风头劲[J].装备制造, 2008, 21: 62-66.
    [9]戴慧珠,陈默子,王伟胜,等.中国风电发展现状及有关技术服务[J].中国电力, 2005 38(1): 80-83
    [10]易跃春.风力发电现状、发展前景及市场分析[J].国际电力, 2004, 8(5): 18-22.
    [11]刘元杰.风力发电与齿轮商机[J].风力发电, 2007,06.
    [12]古西国.兆瓦级风力发电机齿轮传动系统耦合振动分析及优化设计[D].重庆:重庆大学, 2008.
    [13] Savage, M. RELIABILITY MODEL FOR PLANETARY GEAR TRAINS. (University of Akron, Akron, Ohio, USA); Paridon, C. A.; Coy, J. J. Source: American Society of Mechanical Engineers (Paper), 1982.
    [14] Savage, Michael LIFE AND RELIABILITY MODELS FOR HELICOPTER TRANSMISSIONS (Univ of Akron, Ohio, USA); Knorr, Raymond James; Coy, John J. Source: NASA Technical Memorandum, Nov, 1982, 12p.
    [15] Sean S .Timoney,Optimisation of spur Gears In A Planetary Hub Reduction Set[J]. Jounal of Mechanical Design, 1985.
    [16] E. M. Al-Shareedah and H. Alawi. Reliability analysis of bevel gears with and without back support[J]. Mechanism and Machine Theory 1987:22(1):13-20.
    [17] S. S. Rao and Muljadi Tjandra Reliability-based design of automotive transmission systems[J]. Reliability Engineering&System Safety 1994:46(2):159-169.
    [18] Sarper, H. Reliability analysis of descent systems of planetary vehicles using bivariate exponential distribution[J]. Reliability and Maintainability Symposium, 2005. Proceedings. Annual Jan. 24-27, 2005 Page(s):165– 169.
    [19]孙全颖,周德繁.圆柱齿轮减速器可靠性优化设计[J].哈尔滨电工学院学报,1996.
    [20]王剑彬. 2K-H行星齿轮减速器的可靠性设计[J].机械传动,1997.
    [21]毛明智.圆柱齿轮减速机的概率可靠性优化设计[J]机械设计与制造工程,第28卷第3期,1999.
    [22]孙淑霞,田芳,顾宏民.齿轮传动的可靠性优化设计[J].机械设计与制造,2001 (05).
    [23]陈满意,陈定方.基于MatLab的齿轮减速器的可靠性优化设计[J].机械传动,2002.
    [24]韩翔. 2K-H行星减速器可靠性优化设计[J].重型机械,2003.
    [25]钱松荣.行星齿轮传动系统的可靠性优化设计[J].机械设计与制造,2004.
    [26]邢子坤.基于动力学的风力发电机齿轮传动系统可靠性评估及参数优化设计[D].重庆:重庆大学, 2007.
    [27] Nelson, H D, Vaugh J M. The dynamics of rotor-bearing systems using finite elements[J]. ASME Journal of Engineering for Industry, 1985, 98 (2): 593-600.
    [28] Umezawa K. Vibration of power transmission helical gear with narrow face width[J]. ASME Paper, 1984, 84-DET-159.
    [29] Ibrahim R A, faneh A, Lee B H. Structural modal multifurcation with international resonance: part 2-stochastic approach[J]. Journal of Vibration and Acoustics, ASME, 1993, (115): 193-201.
    [30] UMEZAWA K, HOUJOH H. The effect of shaft stiffness on the gear vibration [J] . Transaction of JSME, 1988, C54:699-705.
    [31] Richardson M H, Formenti D L. Parameter estimation from frequency response measurements using rational fraction polynomials[C]. Proceeding of the 1st IMSC, Orlando, Florida. 1982(11): 8-10.
    [32] KAHRAMAN A,SINGH R.Interactions between time-varying meshing stiffness and clearance non-linearities in a geared system[J]. Journal of Sound and Vibration,1991,146:135-156.
    [33]唐增宝,钟毅芳.多级齿轮传动系统的动态仿真[J].机械传动, 1993, 17(1):37-41.
    [34] Velex P, Maatar M. A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behavior[J]. Journal of Sound and Vibration, 1996(191): 629-660.
    [35] Paclot. J. P, Velex P. Simulation of the dynamic behaviour of Single and multistage geared systems with shape deviations and mounting errors by using a spectral method[J]. Journal of Sound and Vibration, 1998, 220 (5): 861-903.
    [36] Iwatusbo N, Arii S, Kawai R. Coupled lateral torsional vibration of rotor system trained by gears ( Part I Analysis by transfer matrix method) [J]. Bulletin of JSME, 1984(27): 271-277.
    [37] Neriya V, Bhat R B, Sanker T S. Coupled torsional flexural vibration of a geared shaft system using finite element analysis[J]. The Shock and Vibration Bulletin, 1984, 55:13-25.
    [38]李润方,林腾蛟,陶泽光.齿轮系统耦合振动响应的预估[J].机械设计与研究, 2003, 19(2): 27-29.
    [39] Lin J, Parker R G. Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration[J]. Journal of Vibration and Acoustics. 1999(121): 316-321.
    [40] J. Lin, Parker R G. Structured vibration characteristics of planetary gears with unequally spaced planets[J]. Journal of Sound and Vibration. 2000, 233(5): 921-928.
    [41] J. Lin, R.G.Parker. STRUCTURED VIBRATION CHARACTERISTICS OF PLANETARY GEARS WITH UNEQUALLY SPACED PLANETS[J].Journal of Sound and Vibration,2000, 233(5),921-928.
    [42] Kahraman. Planetary gear train dynamics[J].Journal of Mechanical Design,1994,116(3):713– 720.
    [43] Kahraman. Natural modes of Planetary gear trains[J].Journal of Sound and Vibration,1994, 173(1):125–130.
    [44] J.Lin, R.G.Parker. Planetary gear parametric instability caused by mesh stiffness variation[J]. Journal of Sound and Vibration,2002,249(1):129–145.
    [45]张建云,阮忠唐,丘大谋. 2K-H型行星齿轮减速器的动态特性分析[J].西安工业大学学报. 1997, 17(1): 83-86.
    [46] Lin J, Parker R G. Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration[J]. Journal of Vibration and Acoustics. 1999, 121: 316-321.
    [47] Vijaya Kumar Ambarisha, Robert G. Parker. Noulinear dynamics of planetary gears using analytical and finite element models[J], Journal of Sound and Vibration (2007), doi:10.1016/j.jsv.2006.11.028, p1-1.
    [48]孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究[J].机械工程学报. 2002, 38(2): 44-52.
    [49]孙涛,沈允文,孙智民,等.行星齿轮传动非线性动力学方程求解与动态特性分析[J].机械工程学报. 2002, 38(3): 11-15.
    [50]陈严,欧阳高飞,叶枝全.大型水平轴风力机传动系统的动力学研究[J].太阳能学报,2003, 24(5):729-734.
    [51]朱才朝,黄泽好,唐倩,谭勇虎.风力发电齿轮箱系统耦合非线性动态特性的研究[J].机械工程学报,2005, 41(8):203-207.
    [52]田苗苗.兆瓦级风力发电机齿轮传动系统在变风载下的动力学特性研究[D] .重庆:重庆大学, 2010.
    [53]李建林,肖志东,梁亮,等.风能——可再生能源与环境[M] .北京:人民邮电出版社, 2010.
    [54]何金波.直驱永磁同步风力发电机组功率平滑控制策略研究[D].重庆:重庆大学, 2009.
    [55]龙振宇.机械设计[M] .机械工业出版社, 2002.
    [56]黄洪钟.机械传动可靠性理论与应用[M] .北京:中国科学技术出版社, 1995.
    [57]朱文予.机械概率设计与模糊设计[M].北京:高等教育出版社,2001.
    [58]吴波,黎明发.机械零件与系统可靠性模型[M].北京:化学工业出版社,2002.
    [59]李润方,王建军.齿轮系统动力学—振动·冲击·噪声[M].北京:科学出版社,1996
    [60]李润方,陶泽光等.齿轮啮合内部动态激励数值模拟[J].机械传动,2001(2):1~3.
    [61]邵忍平.机械系统动力学[M].北京:机械工业出版社,2005.
    [62]刘家文.滚动轴承设计与应用手册[M].武汉:华中工学院出版社, 1985.
    [63]倪振华.振动力学[M].西安:西安交通大学出版社出版,1990.
    [64]刘梦军.单对齿轮系统间隙非线性动力学研究[D].西安:西北工业大学, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700