基于SOA的长距离无源光网络理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无源光网络(PON)通过时分复用共享光纤和中心局的设备,每个用户的成本非常低廉,因此被认为是解决“最后一公里”的最理想的解决方案。随着带宽需求的快速增长,特别是网络技术P2P (peer-to-peer)出现后,光接入网中开始利用更多的复用技术,继续保持PON网络低成本的优势。在众多的复用技术中,波分复用无源光网络(WDM-PON)以其充分利用光纤巨大的带宽资源,迎合了带宽快速增长的趋势,获得了人们的广泛认同。但是目前高成本的WDM器件限制了其在接入网中的应用。波分时分混合复用PON(HPON)结合了时分复用的成本优势和波分复用的带宽优势,是由当前TDM-PON向WDM-PON过渡的理想解决方案。
     通过扩展物理覆盖范围,长距离无源光网络(LR-PON)将光接入网和城域网整合进一个系统,简化了网络的结构,减少了设备之间的接口数目、网络设备以及节点数,从而网络的成本得到缩减。本论文在国家“十一五”“863”计划项目的基础上,围绕长距离波分时分混合复用无源光网络进行了深入的分析研究和技术创新。论文的主要内容如下:
     (1)总结并分析了基于半导体光放大器交叉增益调制效应的全光波长转换器(AOWC)的工作原理和应用范围,并提出一种利用EDFA的增益特性来对AOWC的动态输入范围进行扩展的方法,从而实现了基于全光波长转换的长距离波分时分混合复用无源光网络的原理性样机。
     (2)总结并分析了基于RSOA的无色ONU的工作原理和应用范围,对其动态输入范围、传输特性进行了理论和实验性的研究,分析了色散、后向瑞利散射、功率损耗等对其性能的影响。
     (3)提出了一种基于AOWC的长距离波分时分混合复用无源光网络结构,并分别进行了2.5Gbit/s速率的实验研究和10Gbit/s速率的仿真研究,对长距离传输后的系统性能进行了测试和分析。为适应实际应用的需求我们提出了10Gbit/s速率的全光信号均衡器,并进行了理论分析和研究。
     (4)提出了一种基于RSOA的长距离波分时分混合复用无源光网络结构,对长距离传输带来的色散控制、功率补偿等进行了研究,针对后向瑞利散射,提出本地光源的方式,来避免其对上行光信号的影响。
     (5)提出了一种分布式接入方案,解决了长距离接入网中单点接入覆盖范围小,存在盲区的问题,实现了80km传输距离内的无盲区覆盖。并可以灵活增加接入点,以提高支持的用户数量以及增加系统的带宽。
Passive optical network (PON) is regarded as one of the most promising solution for the first mile, by sharing the feed fiber and central office equipments to a large number of subscribers. However, with the rapid growth of the bandwidth demands, especially after the appearance of the peer-to-peer (P2P) networking technology, many multiplexing techniques are deployed in the access network to maintain the cost-effectiveness of PONs. In all kinds of technologies, wavelength-division-multiplexed passive optical network (WDM-PON) has been regard as a promising solution to meet the fast increasing tendency. But the expensive WDM device cost limits its applications in the optical access network in which cost is shared by a few subscribers. Hybrid TDM/WDM PON (HPON) is a promising optical access network solution taking advantages of both TDM-PON and WDM-PON. HPON is suitable for near future deployment in pragmatic migration from current TDM-PONs to future WDM-PONs.
     By providing extended coverage, LR-PON combines optical access and metro networks into an integrated system. Thus, cost savings are also achieved by simplifying the network, reducing the number of equipment interfaces, network elements and even nodes. The research in this dissertation was supported by the national "Eleventh Five-Year" " 863 " Program Project, launched a system-depth analysis and technical innovation on long reach WDM/TDM hybrid passive optical network. The main contents of this thesis are as the follo wings:
     (1) Operation principle and operation conditions for all-optical wavelength conversion module based on the cross-gain modulation (XGM) effect of the semiconductor optical amplifier (SOA) are summarized and analyzed. An efficient extension method for the dynamic input range of the AOWC is proposed and a prototype system of long reach WDM/TDM hybrid passive optical network based on the AOWC is realized.
     (2) Operation principle and operation conditions for the colorless optical network unit (ONU) based on the reflective SOA (RSOA) are summarized and analyzed. The dynamic input range of the colorless ONU and the performance of the system transmission are experimental studied. The effections of chromatic dispersion, Rayleigh Backscattering (RB) and power losses are also analyzed.
     (3) An AOWC-based long reach WDM/TDM hybrid passive optical network is presented. An experimental system at 2.5Gbit/s and a simulation system are setup to help us to analyze the performance after the long reach transmission. An all-optical signal equalization module at 10Gbit/s is proposed for the practical applications.
     (4) An RSOA-based long reach WDM/TDM hybrid passive optical network is presented. The chromatic dispersion control and the loss compensation introduced by the long reach fiber transmission are analyzed. For avoiding the effection of the RB, the local seed light source is suggested.
     (5) A distributed access scheme is presented. Compared with the traditional long reach access schemes which usually have one access point, it can cover the area along the 80km feed fiber without blind zone. The access points can be flexibly inserted for supporting more users and providing more bandwidth.
引文
[1]N. Nadarajah, C. Chang Joon, T. An Vu, et al. Video Service Delivery Over a Repeater-Based Optical Access Network. Photonics Technology Letters, IEEE, 2007,19(20):1637-1639
    [2]M. Maier, M. Herzog. Online gaming and P2P file sharing in next-generation EPONs. Communications Magazine, IEEE,2010,48(2):48-55
    [3]R. Davey, D. Grossman, M. Rasztovits-Wiech, et al. Long-Reach Passive Optical Networks. Journal of Lightwave Technol,2009,27:273-291
    [4]G. Talli, P. D. Townsend. Hybrid DWDM-TDM long-reach PON for next-generation optical access. Journal of Lightwave Technology,2006,24(7):2827-2834
    [5]I. Cale, A. Salihovic, M. Ivekovic. Gigabit Passive Optical Network-GPON.29th International Conference,2007.679-684
    [6]A. D. Hossain, R. Dorsinville, M. Ali, et al. Supporting Private Networking Capability in EPON. IEEE International Conference,2006.2655-2660
    [7]K. Iwatsuki, K. Jun-ichi, H. Suzuki, et al. Access and metro networks based on WDM technologies. Journal of Lightwave Technology,2004,22(11):2623-2630
    [8]C. W. Chow, C. H. Yeh, C. H. Wang, et al. Signal remodulation high split-ratio hybrid WDM-TDM PONs using RSOA-based ONUs. Electronics Letters,2009, 45(17):903-905
    [9]B. Hu, D. Liu, G. Zhu, et al. Study on WDM-based 10 Gigabit EPON. SPIE,2006, 6354:63542S
    [10]X. Zhaowen, W. Yang Jing, Z. Wen De, et al. WDM-PON Architectures With a Single Shared Interferometric Filter for Carrier-Reuse Upstream Transmission. Journal of Lightwave Technology,2007,25(12):3669-3677
    [11]C.-H. Lee, S.-M. Lee, K.-M. Choi, et al. WDM-PON experiences in Korea [Invited]. J. Opt. Netw.,2007,6(5):451-464
    [12]R. Davey, D. Nesset, A. Rafel, et al. Designing long reach optical access networks. BT Technology Journal,2006,24(2):13-19
    [13]E. K. MacHale, G. Talli, P. D. Townsend.10 Gb/s Hybrid DWDM-TDM PON for Long-Reach Optical Access. The 2nd Institution of Engineering and Technology International Conference,2006.37-40
    [14]G. Talli, C. W. Chow, E. K. MacHale, et al. High Split Ratio 116km Reach Hybrid DWDM-TDM 10Gb/s PON Employing R-ONUs. ECOC European Conference, 2006.1-3
    [15]K. Dong Churl, C. Byung-Seok, K. Hyun-Soo, et al.2.5 Gbps operation of RSOA for low cost WDM-PON sources. ECOC 35th European Conference,2009.1-2
    [16]M. Nakamura, Y. Imai, Y. Umeda, et al.1.25-Gb/s burst-mode receiver ICs with quick response for PON systems. IEEE Journal of Solid-State Circuits,2005,40(12): 2680-2688
    [17]M. Daisuke, S. Jun, I. Hiroki, et al.10-Gb/s Burst-Mode Receiver for Fast Settling Time. Optical Society of America,2009. FT2
    [18]C. Melange, B. Baekelandt, J. Bauwelinck, et al. Burst-Mode CDR Performance in Long-Reach High Split Passive Optical Networks. Journal of Lightwave Technology, 2009,27(17):3837-3844
    [19]Y.-b. Qian, D.-m. Liu, M.-m. Zhang, et al. An efficient method for extension of the dynamic input range of burst-mode all-optical wavelength conversion module. SPIE, 2009,7514:751408
    [20]L. Deng, D.-m. Liu, M.-m. Zhang, et al. A high sensitivity and large dynamic input range O-E-O optical wavelength converter for hybrid PONs. SPIE,2009,7514: 751403-751407
    [21]T. K. George, K. Dimitris, P. Nikos, et al. Cascaded Operation of a 2R Burst-Mode Regenerator with Data Exhibiting 6 dB Power Variation. Optical Society of America, 2007. OWP4
    [22]M. Nakamura, Y. Imai, Y. Umeda, et al. A burst-mode optical receiver with high sensitivity using a PIN-PD for a 1.25 Gbit/s PON system. Optical Fiber Communication Conference,2005,6:2-3
    [23]X. Z. Qiu, C. Melange, T. De Ridder, et al. Evolution of burst mode receivers. ECOC 35th European Conference,2009.1-4
    [24]L. Day-Uei, T. Chia-Ming. A 10Gb/s burst-mode/continuous-mode laser driver with current-mode extinction-ratio compensation circuit. Solid-State Circuits Conference, 2006.912-921
    [25]N. Makoto, I. Yuhki, U. Yohtaro, et al. A Burst-Mode Optical Receiver with High Sensitivity Using a PIN-PD for a 1.25 Gbit/s PON System. Optical Society of America,2005. OFM6
    [26]S. Kimura. High-speed burst-mode transmission technologies for 10-Gbit/s-class PON systems. Australian Conference on Optical Fibre Technology,2008.1-2
    [27]P. J. Urban, E. J. Klein, L. Xu, et al.1.25-10 Gbit/s Reconfigurable Access Network Architecture.9th International Conference,2007.293-296
    [28]K. Iwatsuki, J. i. Kani. Applications and Technical Issues of Wavelength-Division Multiplexing Passive Optical Networks With Colorless Optical Network Units [Invited]. IEEE/OS A Journal of Optical Communications and Networking,2009, 1(4):C17-C24
    [29]G. de Valicourt, D. Make, J. Landreau, et al. High Gain (30 dB) and High Saturation Power (11 dBm) RSOA Devices as Colorless ONU Sources in Long-Reach Hybrid WDM/TDM-PON Architecture. Photonics Technology Letters, IEEE,2010,22(3): 191-193
    [30]G. Berrettini, G. Meloni, L. Giorgi, et al. Colorless WDM-PON Architecture for Rayleigh Backscattering and Path-Loss Degradation Mitigation. Photonics Technology Letters, IEEE,2009,21(7):453-455
    [31]P. J. Urban, A. M. J. Koonen, G. D. Khoe, et al. Interferometric Crosstalk Reduction in an RSOA-Based WDM Passive Optical Network. Journal of Lightwave Technology,2009,27(22):4943-4953
    [32]A. Chowdhury, C. Hung-Chang, H. Ming-Fang, et al. Rayleigh Backscattering Noise-Eliminated 115-km Long-Reach Bidirectional Centralized WDM-PON With 10-Gb/s DPSK Downstream and Remodulated 2.5-Gb/s OCS-SCM Upstream Signal. Photonics Technology Letters, IEEE,2008,20(24):2081-2083
    [33]G. Talli, C. W. Chow, E. K. MacHale, et al. Rayleigh noise mitigation in long-reach hybrid DWDM-TDM PONs. J. Opt. Netw.,2007,6(6):765-776
    [34]K. Y. Cho, A. Agata, Y. Takushima, et al. Chromatic dispersion tolerance of 10-Gb/s WDM PON implemented by using bandwidth-limited RSOAs. OptoElectronics and Communications Conference,2009.1-2
    [35]L. Sang-Mook, K. Min-Hwan, L. Chang-Hee. Demonstration of a Bidirectional 80-km-Reach DWDM-PON With 8-Gb/s Capacity. Photonics Technology Letters, IEEE,2007,19(6):405-407
    [36]T. Seigo, S. Kazuhiro, M. Emiko, et al. Over 25-dB Dynamic Range 10-/1-Gbps Optical Burst-Mode Receiver Using High-Power-Tolerant APD. Optical Society of America,2009. NME2
    [37]P. D. Townsend, G. Talli, E. K. MacHale, et al. Long reach PONs.7th International Conference,2008.1-2
    [38]A. Fu-Tai, D. Gutierrez, K. Kyeong Soo, et al. SUCCESS-HPON:A next-generation optical access architecture for smooth migration from TDM-PON to WDM-PON. Communications Magazine, IEEE,2005,43(11):S40-S47
    [39]L. Rujian. Next Generation PON in Emerging Networks. Optical Fiber communication/ National Fiber Optic Engineers Conference,2008.1-3
    [40]C. Ning, Y. She-Hwa, C. Jinwoo, et al. Long Reach Passive Optical Networks with Adaptive Power Equalization Using Semiconductor Optical Amplifiers. Optical Society of America,2009. FS4
    [41]S. Huan, K. Byoung-Whi, B. Mukherjee. Long-reach optical access networks:A survey of research challenges, demonstrations, and bandwidth assignment mechanisms. Communications Surveys & Tutorials, IEEE,2010,12(1):112-123
    [42]H. Song, B. Kim, B. Mukherjee. Long-Reach Optical Access Networks:A Survey of Research Challenges, Demonstrations, and Bandwidth Assignment Mechanisms. IEEE Communications Survey and Tutorials, accepted,2009,
    [43]L. Sang-Mook, L. Chang-Hee. Long-Reach Wavelength Division Multiplexing-Passive Optical Networks (WDM-PONs).The 32nd Australian Conference on Optical Fibre Technology. COIN-ACOFT,2007.1-3
    [44]C. A. Chan, M. Attygalle, A. Nirmalathas. Remote Repeater-Based EPON With MAC Forwarding for Long-Reach and High-Split-Ratio Passive Optical Networks. IEEE/OSA Journal of Optical Communications and Networking,2009, (99):28-37
    [45]A. Cleitus, T. Giuseppe, D. T. Paul. SOA Based Upstream Packet Equalizer in 1OGb/s Extended-Reach PONs. Optical Society of America,2009. OThA5
    [46]N. Junichi. Key Technologies of GE-PON Burst-Mode Receivers and Future PON Systems. Optical Society of America,2007. OWS3
    [47]O. Peter, R. Tine De, B. Johan, et al. A 10 Gb/s Burst-Mode Receiver with Automatic Reset Generation and Burst Detection for Extended Reach PONs. Optical Society of America,2009.OWH3
    [48]Z. Belfqih, G. Girault, S. Lobo, et al. lOGbit/s TDM Passive Optical Network in Burst Mode Configuration using a Continuous Block Receiver. Optical Fiber communication/National Fiber Optic Engineers Conference,2008.1-3
    [49]P. Soo-Jin, L. Chang-Hee, J. Ki-Tae, et al. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. Journal of Lightwave Technology,2004,22(11):2582-2591
    [50]J. Kani, M. Teshima, K. Akimoto, et al. A WDM-based optical access network for wide-area gigabit access services. Communications Magazine, IEEE,2003,41(2): S43-S48
    [51]J. J. Koponen, M. J. Soderlund. A duplex WDM passive optical network with 1:16 power split using reflective SOA remodulator at ONU. Optical Fiber Communication Conference,2004.1-3
    [52]B. Schrenk, G. de Valicourt, M. Omella, et al. Direct 10-Gb/s Modulation of a Single-Section RSOA in PONs With High Optical Budget. Photonics Technology Letters, IEEE,2010,22(6):392-394
    [53]D. P. Shea, J. E. Mitchell. Architecture to integrate multiple PONs with long reach DWDM backhaul. Selected Areas in Communications,2009,27(2):126-133
    [54]K. Y. Cho, Y. Takushima, Y. C. Chung.10-Gb/s Operation of RSOA for WDM PON. Photonics Technology Letters, IEEE,2008,20(18):1533-1535
    [55]Y. Takushima, K. Y. Cho, Y. C. Chung. Design Issues in RSOA-based WDM PON. Photonics Global at Singapore. IEEE,2008.1-4
    [56]Z. Belfqih, P. Chanclou, F. Saliou. Hybrid WDM-TDM Passive Optical Network in burst mode configuration with RSOA. Optical Fiber communication/National Fiber Optic Engineers Conference Conference,2008.1-3
    [57]S. Taebi, S. S. Saini. L-Band Polarization-Independent Reflective SOA for WDM-PON Applications. Photonics Technology Letters, IEEE,2009,21(5):334-336
    [58]J. Kani, K. Iwatsuki, T. Imai. Optical multiplexing technologies for access-area applications. IEEE Journal of Selected Topics in Quantum Electronics,2006,12(4): 661-668
    [59]K. Rasmus, M. Idelfonso Tafur, K.0. Leif, et al. Bi-directional 120 km Long-reach PON Link Based on Distributed Raman Amplification.19th Annual Meeting of the IEEE,2006.703-704
    [60]S.-M. Lee, S.-G. Mun, M.-H. Kim, et al. Demonstration of a Long-Reach DWDM-PON for Consolidation of Metro and Access Networks. J. Lightwave Technol.,2007,25(1):271-276
    [61]S. P. Jung, Y. Takushima, K. Y. Cho, et al. Demonstration of RSOA-based WDM PON employing self-homodyne receiver with high reflection tolerance. Optical Fiber Communication OFC Conference,2009.1-3
    [62]M. Presi, R. Proietti, K. Prince, et al. A novel line coding pair for fully passive long reach WDM-PONs.34th European Conference,2008.1-2
    [63]P. J. Urban, M. M. de Laat, E. J. Klein, et al.1.25 Gbit/s bidirectional link in an access network employing a reconfigurable optical add/drop multiplexer and a reflective semiconductor optical amplifier.10th Anniversary International Conference, 2008.166-169
    [64]J. Prat, J. Lazaro, P. Chanclou, et al. Passive OADM network element for hybrid ring-tree WDM/TDM-PON.35th European Conference,2009.1-2
    [65]H. Y. Choi, P. K. J. Park, Y. C. Chung. Chromatic Dispersion Monitoring Technique Using Pilot Tone Carried by Broadband Light Source. Photonics Technology Letters, IEEE,2009,21(9):578-580
    [66]I. Tafur Monroy, R. Kj(?)r, F. Ohman, et al. Distributed fiber Raman amplification in long reach PON bidirectional access links. Optical Fiber Technology,2008,14(1): 41-44
    [67]K. K. Acharya, M. Raja. Raman Amplified PON (RA-PON):mitigating SRS using SRS. High Capacity Optical Networks and Enabling Technologies,2008.240-244
    [68]H. Rohde, S. Smolorz, E. Gottwald, et al. Next generation optical access:1 Gbit/s for everyone.35th European Conference,2009.1-3
    [69]G. Incerti, F. Incerti, F. di Vincenzo, et al. Remote pumping and signalling in a passive optical network scenario.10th Anniversary International Conference,2008. 312-315
    [70]D. Smith, I. Lealman, X. Chen, et al. Colourless lOGb/s reflective SOA-EAM with low polarization sensitivity for long-reach DWDM-PON networks.35th European Conference,2009.1-2
    [71]L. Yi-Hung, C. Tzu-Kang, C. Yu-Chieh, et al. Bias and temperature effect of an injection locked reflective SOA upstream transmitter in WDM-PON with 200GHz channel bandwidth. Photonics in Switching, International Conference,2008.1-2
    [72]L. Han-Hyub, C. Seung-Hyun, L. Jie-Hyun, et al. First commercial service of a colorless Gigabit WDM/TDM hybrid PON system. Optical Fiber Communication Conference,2009.1-3
    [73]S.-H. Cho, W. Lee, M. Y. Park, et al. Demonstration of Burst Amplified Uplink for RSOA-based WDM/TDM Hybrid PON Systems Using SOA as a Multi-Channel Preamplifier. Optical Communications European Conference,2006.1-2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700