光性能监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光网络向着高速、透明和动态的方向发展,未来光网络对网络的可靠性提出了更高的要求,同时也增加了网络管理的复杂度。传统的在电域内进行网络性能监测和管理已无法适应未来动态可重构光网络的需求,基于光层的性能监测技术可以实现监测损伤、为补偿和重路由提供进一步信息等功能,将成为实现动态光网络性能保障与网络管理的关键技术之一
     本文致力于光性能监测技术的研究,主要创新工作如下:
     1.本论文提出了一种新型的利用非线性光纤环镜(NOLM)双端功率之比监测光信噪比(OSNR)的技术,能够实现更大范围和更准确的OSNR监测。首先建立了理论模型,研究了最佳工作点的选取,NOLM环中高非线性光纤的非线性度、长度、衰减系数等参数对工作点的影响,仿真验证了利用NOLM环对40Gb/s的NRZ/RZ66/RZ50/RZ33-OOK和DPSK信号的监测效果。实验方面,验证了对于80Gb/s RZ-DQPSK信号,可以获得12.16dB的输出动态范围和13-39.8dB的OSNR监测范围。在新工作点下,新技术能够比单端监测提高4.97dB;在相同的设定灵敏度条件下,它可以在输出动态范围上提高7.05dB,可测的OSNR上增加13.8dB。另外,验证了微量的GVD将会影响监测的范围和灵敏度。1.7ps/nm的GVD将会使监测输出动态范围恶化至2.4dB。实验结果均与理论预测的趋势相吻合。这种技术具有成本低、响应速度快等优点,并且对不同格式信号均能够提供非常精确的监测。
     2.射频分析技术一般通过提取损伤在频谱上呈现的特征来进行监测,因此具有性能稳定的优势,并且有利于监测相位调制信号。本论文提出并研究了用射频功率法来分别和同时监测OSNR,色散(CD)和偏振模色散(PMD)等参数。具体研究工作包括以下两个方面:(1)详细研究了用低频拍噪声法来监测OSNR。建立了这种技术的理论模型,并用实验验证对80Gb/s NRZ-DQPSK信号,能够在100MHz RF频率上监测8-33.5dB范围的OSNR,功率动态范围为25.4dB,研究了滤波器带宽,接收功率,接收频率,CD, PMD对监测效果的影响。(2)提出了一种利用RF功率之比来实现PMD不灵敏的CD监测技术,验证了该技术对80Gb/s NRZ-DQPSK信号的监测效果,发现带阻滤波器偏移位置在10GHz处时,能够以22.3dB的输出动态范围监测246.7ps/nm的CD并且以42.7dB的输出动态范围监测50ps的DGD;研究了DGD、带阻滤波器不同偏移位置、不同的RF监测频率、BSF的带宽和电带通滤波器的带宽对CD监测效果的影响。这种监测技术能同时监测CD和PMD,实现简单,探测带宽低,不需要修改发射机,具有非常好的应用前景。
     3.具有可重构和多功能特性的逻辑门是全光信号处理技术的发展趋势。鉴于非线性光纤(HNLF)在响应时间等方面的优势,本论文首先提出了利用HNLF中四波混频效应来实现的可重构的逻辑门,通过调节两种信号间的相对偏振态,第一种方案能够对PolSK信号同时实现半减器、XOR、A减B和B减A,或者XNOR、AND和NOR门。关于波长特性的分析表明随波长分离度的增加,灵敏度恶化。实验结果验证了对于10Gb/s的NRZ-PolSK信号,该方案实现的所有逻辑功能功率损耗都小于3dB。另外,基于四波混频效应,提出了一种针对PolSK信号的新型双向HNLF结构,它除了可以同时实现上述提到的所有逻辑功能外,还可以实现复杂功能如半加器、半减器、比较器、解码器等。仿真验证了它可以工作于40Gb/s RZ33-PolSK信号上,有着清晰的眼图和高的Q因子,研究发现工作波长的间距为-7-6nm以内的时候能够保证背靠背传输时具有零误码的特性。
Nowadays, the optical network has evolved to be high speed, reconfigurable and transparent, which has posed challenge to performance ensurrance and also introduced greater complexity of management. The conventional monitoring technique operated in the electrical layer havenot been able to offer solutions for the future reconfigurable optical network. To cope with this, optical performance monitoring technique is investigated to monitor the physical impairments and supply the imformation for futher compensation and rerouting. Optical performance monitoring will be one of the most important techniques to ensure the signal quality and management of the reconfigurable optical network.The following original contributions to the field of optical performance monitoring are made in the course of this reseach:
     1. We propose a novel OSNR monitoring technique using nonlinear effects with wider OSNR monitoring range and higher sensitivity. The ratio between the transmission and reflection output power of NOLM is used. The theoretical model is built up and the selection of the optimum operation point is shown. The impacts of nonlinear coefficient, length, attenuator factor to the operation point, dispersion and peak power deviation to the monitoring performances are also investigated. We demonstrate the nice performances for NRZ/RZ66/RZ50/RZ33-OOKand-DPSK signals at40Gb/s by simulation and present experimentally that for80Gb/s RZ-DQPSK signal,12.16dB maximum output power variation and13-39.8dB OSNR monitoring range can be achieved. It is shown that this novel technique significantly improves the dynamic range of the output power by7.05dB and monitoring range by13.8dB through comparison experiments between with and without the reflection port. Dispersion less than1.7ps/nm can be tolerated to ensure nice performance. Higher dispersion will deteriorate the performance. The experimental results are consistent with the theoretical forecast. This technique is cost-effective. Furthermore, given the femto-second response time of the highly nonlinear fiber (HNLF), the scheme is promising in ultra-speed systems.
     2. RF spectrum analyzing techniques which use the characteristics induced by impairments on spectrum have many advantages such as steady performances, without transmitter modification and feasibility for phase modulated signals, and so on. We propose two schemes and investigate the performances of monitoring OSNR, CD and PMD independently and simultaneously.
     First, we investigate the OSNR monitoring using beat noise at the low RF frequency band. It only uses a narrow band filter located at the carrier wavelength and low frequency detector. The theoretical model is given and the performance for80Gb/s NRZ-DQPSK signal is investigated. The impacts of filter bandwidth, power at the receiver, monitoring frequency, CD and PMD are also investigated. The8-33.5dB OSNR monitoring range with25.4dB dynamic output power variation can be achieved at100MHz RF frequency.
     Second, based on the technique of CD-insensitive PMD monitoring, we propose a novel scheme of PMD-insensitive CD monitoring based on the RF power ratio. The monitoring performance for80Gb/s NRZ-DQPSK signal is demonstrated. With the offset position of the band-stop filter set at10GHz, DGD monitoring with50ps range and42.7dB output dynamic range, and CD monitoring with246.7ps/nm range and22.3dB dynamic range can be achived. The impacts of DGD, position and bandwidth of the band-stop filter, RF frequency and bandwidth of electrical band-pass filter for the CD monitoring are also investigated. The simple scheme has the ability of monitor PMD and CD simultaneously. It can use low frequency detector and doesn't have to modificate the transmitter.
     3. All-optical logic gates are crucial elements in future to perform ultra-fast optical signal processing functions. Reconfigurable and multi-functional logic gates are highly preferred as they can provide a more flexible set of network functions.
     It is the first time that a reconfigurable logic gate for NRZ-PolSK signals based on FWM in a HNLF are proposed and experimentally demonstrated. By adjusting the PCs at the input and output, half-subtracter, XOR, AB, AB or XNOR, AND and NOR gates can be realized simultaneously. The measured Q factors for eye-diagrams are all above8dB. Among them, Q factors of AB, AB, AND and NOR gates are higher than those of XOR and XNOR gates. The input power for the HNLF is optimized to be as low as about15.2dBm, which can help to alleviate the impact of ASE noise brought by EDFAs. Error-free operation is achieved for10Gb/s27-1pseudorandom bit sequence (PRBS) data. Power penalties for the reconfigurable logic gate are less than3dB. Simulation analysis of wavelength characteristic for all logic gates predicts that the reconfigurable logic gate can realize error-free operation when the wavelength separation is less than5nm. The setup is simple and flexible.
     Based on the above experimental demonstration, we exploit a new bidirectional structure to realize the simultaneous implementation for RZ-PolSK signals at40Gb/s using bidirectional FWM in HNLF. The structure not only decreases the cost because only one spool of HNLF is used, but also implement all the logic functions simultaneously, including simple functions such as XOR, XNOR, AB, AB, AND, NOR and the complex functions such as half adder, half subtracter, decoder and comparator. To ensure error-free operation, wavelength separation should be kept less than7nm. Given the femtosecond response time of Kerr-effect in HNLF, the module is promising in ultra-speed systems.
引文
[1]P. J. Winzer and Rene-Jean Essiambre, "Advanced optical modulation formats," Proc. of IEEE,94,2006,953-985.
    [2]J. Zyskind, R. Barry, G. Pendock, M. Cahill, J. Ranka, " High-capacity, ultra-long haul networks," in Optical fiber telecommunications systems IVJB, Academic press Inc. (London), ISBN:0012039517309,2002.
    [3]D. T. Neilson, D. Stiliadis, "Ultra-high capacity IP routers for the routers of tomorrow:IRIS projects," in European Conf. Opt. Comm. (ECOC), vol.5,2005, paper. We 1.1.4.
    [4]H. C. Leligou, K. Kanonakis, J. Angelopoulos, I. Pountourakis, T. Orphanoudakis, "Efficient burst aggregation for QoS aware slotted OBS systems," European Transactions on Telecommunications,2006.
    [5]M. Duser, "Investigation of the impact of traffic growth and variability on future network architectures," in European Conf. Opt. Comm. (ECOC), vol.5,2005, Paper Tu.4.1.2.
    [6]O. Gerstel, H. Raza, "On the synergy between the electrical and photonic switching," IEEE Communications magazine, pp.98-104, April 2003.
    [7]S. Senjupta, V. Kumar, D. Saha, "Switched optical backbone for cost-effective scalable core IP networks," IEEE Communications magazine,2003, pp.60-70.
    [8]D. K. Hunter, I. Andonovic, "Approaches to optical internet packet switching," IEEE Communications magazine, pp.1160122, Sept.2000.
    [9]J. Wagener and T. Strasser, "Characterization of the economic impact of stranded bandwidth in fixed OADM relative to ROADM networks," in Conf. Optical Fiber Communication (OFC), Paper OthM6,2006.
    [10]J. M. Tang, K. Alan Shore, "Wavelength-routing capability of reconfigurable optical add/drop multiplexers in dynamic optical networks," IEEE Journal of Lightwave Technol., vol.24, no.11, pp.4296-4303,2006.
    [11]Pinart, C., Cugini, F., et al., "Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks," IEEE Communications Magazine, vol 44, pp:76-85
    [12]KU. Yuen Ching, "Novel techniques for optical performance monitoring in optical systems," the Chinese University of HongKong, Ph.D thesis, Aug.2007.
    [13]R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and Polina Bayvel, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-zehnder modulator," IEEE Photon. Technol. Lett., vol.17,2005, pp.714-716.
    [14]H. Takeshita and N. Henmi, "A novel data format free bit by bit quasi-error monitoring method for optical transport network" in Proc. OFC1999, paper FJ2-1.
    [15]D. C. Kilper, R. Bach, D. J. Blumenthal, et al., "Optical performance monitoring," IEEE Journal of Lightwave Technology, vol.22, no.1,2004,294-304.
    [16]Kartalopoulos SV, "Fault detectability in DWDM," New York:IEEE; 2001.
    [17]Hansryd J, Andrekson PA, and Bakhshi B, "Prescaled clock recovery based on small timing misalignment of data pulses" J. Lightwave Technol., vol.19,2001, 105-113.
    [18]Y. C. Ku, G. W. Lu, and L. K. Cheng, "Novel Technique for Modulation alignment monitoring in RZ-DPSK systems using off-center optical filtering," OFC2005, paper OWJ4.pdf.
    [19]X. Wu, L. Christen, et al., "Synchronization monitoring of I/Q data and pulse carving misalignment for a parallel-type RZ-DQPSK transmitter by measuring RF clock tone/low frequency power," IEEE Photon. Technol. Lett, Vol.20,2008, 2138-2140.
    [20]G. R. Walker, D. M. Spirit, D. L. Williams, S. T. Davey, "Noise performance of distributed fibre amplifiers," IEE Electronics Lett., vol.27,1991, pp.1390-1391.
    [21]T. B. Anderson, Ken Clarke, Sarah D. Dods, and Masuduzzaman Bakaul, "Robust, low cost, in-band optical signal to noise monitoring using polarization diversity," in Conf. Optical Fiber Communication (OFC), paper 0MM3,2007.
    [22]D. Gariepy, and G. He, "Measuring OSNR in WDM systems-effects of resolution bandwidth and optical rejection reatio," EXFO Application Note 098.
    [23]F. Audet, and D. Gariepy, "The roadm challenging and the in-band OSNR solution," EXFO Application Note 171.
    [24]G. P. Agrawal, "Nonlinear fiber optics," Academic press Inc. (London), ISBN: 0012004514303,2007.
    [25]H. Tsuda, T. Kurokawa, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, "Second and third order dispersion compensation using a high resolution arrayed waveguide grating," in European Conf. Opt. Comm. (ECOC), vol.1,1998, pp. 533-534.
    [26]A. E. Willner, B. Hoanca, "Fixed and tunable management of fibre chromatic dispersion," in Optical fiber telecommunications systems IVJB, Academic press Inc. (London), ISBN:0012039517309,2002.
    [27]F. N. Khan, Alan Pak Tao Lau, Chao Lu, and P. K. A. Wai, "Chromatic dispersion monitoring for multiple modulation formats and data rates using sideband optical filtering and asynchronous amplitude sampling technique," Optics Express, vol.19,2011,1007-1015.
    [28]H. Kogelnik, R. M. Jopson, "Polarisation mode dispersion," in Optical fiber telecommunications systems IVJB, Academic press Inc. (London), ISBN: 0012039517309,2002.
    [29]H. Kogelnik, R. M. Jopson, "Polarisation mode dispersion," in Optical fiber telecommunications systems IVJB, Academic press Inc. (London), ISBN: 0012039517309,2002.
    [30]E. Iannone, F. Matera, A. Galtarossa, G. Gianello, M. Schiano, "Effect of polarization dispersion on the performance of IM/DD communication systems," IEEE Photon. Technol. Lett., vol.5,1993, pp.1247-1249.
    [31]R. Khosravani, A. E. Willner,"Comparison of different modulation formats in terrestrial systems with high polarization mode dispersion,"in Conf. Optical Fiber Communication (OFC), vol.2,2000, paper WL502, pp.201-203.
    [32]H. Kogelnik and R. M. Jopson, "Polarisation mode dispersion," in Optical Fiber Telecommunications Systems IVJB, Academic press Inc. (London), ISBN: 0012039517309,2002.
    [33]H. Tsuda, T. Kurokawa, K. Okamoto, T. Ishii, K. Naganuma, Y. Inoue, H. Takenouchi, "Second and third order dispersion compensation using a high resolution arrayed waveguide grating," in European Conf. Opt. Comm. (ECOC), vol.1,1998, pp. 533-534.
    [34]F. Buchali, S. Lanne, J. P. Thiery, W. Baumert, and H. Bulow, "Fast eye monitor for 10 Gbit/s and its application for optical PMD compensation," in Proc.Optical Fiber Communication Conf.,2001, paper TuP5.
    [35]F. Buchali, W. Baumert, H. Bulow, and J. Poirrier, "A 40 Gb/s eye monitor and its application to adaptive PMD compensation," Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf.(OFC/NFOEC), vol.1,2002,202-203.
    [36]S. Lanne, W. Idler, J. P. Thiery, and J. P. Hamaide, "Demonstration of adaptive PMD compensation at 40 Gb/s," in Proc. Optical Fiber Communication Conf.,2001, Paper TuP3.
    [37]N. Kikuchi, "Analysis of signal degree of polarization degradation used as control signal for optical polarization mode dispersion compensation," J. Lightwave Technol.19,2001,480-486.
    [38]F. Heismann, D. A. Fishman, and D. L. Wilson, "Automatic compensation of first order polarization mode dispersion in a 10 Gb/s transmission system," in Proc. Eur. Conf. Optical Communications, vol.1,1998, pp.529-530.
    [39]R. Noe et al., "Polarization mode dispersion compensation at 10,20, and 40 Gb/s with various optical equalizers," J. Lightwave Technol., vol.17,1999, pp.1602-1616.
    [40]X. Wu, J. A. Jargon, R. A. Skoog, L. Paraschis, and Alan E. Willner, "Applications of artificial neural networks in optical performance monitoring," J. Lightwave Technol., vol.27,2009,3580-3589.
    [41]C. Dorrer, "Monitoring of optical signals from constellation diagrams measured with linear optical sampling," J. Lightw. Technol., vol.24,2006, pp.313-321.
    [42]X. Tian, Y. Su, W. Hu, L. Leng, P. Hu, H. He, Y. Dong, and L. Yi "Precise in-band OSNR and spectrum monitoring using high-resolution swept coherent detection", Photon. Technol. Lett, vol.18,2006, pp.145-147.
    [43]W. Chen, F. Buchali, X. Yi, W. Shieh, J. Evans, and R. Tucker, "Chromatic dispersion and PMD mitigation at 10 Gb/s using Viterbi equalization for DPSK and DQPSK modulation formats," Opt. Exp., vol.15,2007, pp.5271-5276.
    [44]Z. Pan, Q. Yu, et.al., "Chromatic dispersion monitoring and automated compensation for NRZ and RZ data using clock regeneration and fading without adding signaling," Opt. Fiber Commun. (OFC), vol.3,2001, paper WH5-1-3.
    [45]Q. Yu, L. S.Yan, Z. Pan, and A. E. Willer, "Chromatic dispersion monitor for WDM system using vestigial-sideband optical filtering", OFC2002, WE3.pdf.
    [46]Y. Keith Lize, L. Christen, J. Yang, P. Saghari, S. Nuccio, A. E. Willner, and Raman Kashyap, "Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission" IEEE Photonics Technoc. Lett, Vol.19,2007, pp:3-5.
    [47]Ji HC, Park KJ, et al., "Optical performance monitoring techniques based on pilot tones for WDM network applications," J Opt Network, vol.3,2004, pp:510-33.
    [48]SMRM. Nezam, Y. Wang, H. M, S. Lee, A. E. Willner, "Simultaneous PMD monitoring of several WDM channels using subcarrier tones," 2001 LEOS, paper CFE1.
    [49]N. Liu, W. Zhon, Y. Wen, and Y. Wang, "PMD insensitive chromatic dispersion monitoring", ECOC2005, We4. P.001.pdf.
    [50]Andrew Liu, Graeme J. Pendock, and Rodney S. Tucker, "Improved chromatic dispersion monitoring using single RF monitoring tone," 2006, Vol.14, No.11, Optics Express,4611-4616.
    [51]L. Meflah, B. C. Thomsen, J. E. Mitchell, and P. Bayvel, "Multi-impairment WDM optical performance monitoring for burst switched networks", J. Light.Tech., vol.28,2010, pp.3417-3426.
    [52]G. Ishikawa, H.Ooi, and Nakahara-ku, "Polarization-mode dispersion sensitivity and monitoring in 40-Gbit/s OTDM and 10-Gbit/s NRZ transmission experiments", OFC1998, WC5.pdf.
    [53]Y. C. Ku, C. K. Chan, and L. K. Chen, "A novel robust OSNR monitoring technique with 40dB dynamic range using phase modulator embedded fiber loop mirror," OFC2006, OWN6.pdf.
    [54]J. Y. Yang, L. Zhang, L. C. Christen, et al., "Chromatic dispersion insensitive PMD monitoring of 20Gb/s DQPSK and 10Gb/s DPSK using DGD generated polarization based interferometer filter," ECOC2007.
    [55]H. Y. Choi, Y. Takushima, and Y. C. Chung, "OSNR monitoring technique for DPSK/DQPSK signals based on self-heterodyne detection," IEEE Photonics Technology Lett. Vol.20,2008.
    [56]A. Amrani, G. Junyent, et al., "Performance monitor for all-optical networks based on homodyne spectroscopy," IEEE Photon. Technol. Lett., vol.12, pp. 1564-1566,2000.
    [57]J. Y. Huh, and Y. C. Chung, "Simultaneous monitoring technique for OSNR and PMD based on four-wave mixing in SOA,"2008 OFC, OThW1.pdf.
    [58]M. Westlund, P. A. Andrekson, H. Sunnerud, J. Hansryd, and J. Li, "High-performance optical-fiber-nonlinearity-based optical waveform Monitoring," Journal. Lightwave Tech., Vol.23,2005,2012-2022.
    [59]A. Fu, M. D. Pelusi, B. J. Eggleton, "Simultaneous monitoring of in-band optical noise for WDM signals using Stimulated Brillouin Scattering," 2010 OFC, OWB2.pdf.
    [60]T. B. Iredale, M. Petusi and B. J. Eggleton. "Highly sensitive all optical in band OSNR monitor using stimulated brillouin scattering,"2007 COIN.
    [61]C. Schmidt and H. G. Weber, "Optical sampling techniques," J. Opt. Fiber. Commun. Rep., Vol.2,2005, pp.86-114.
    [62]S. Ohtero and N. Takachio, "Optical signal quality monitor using direct Q-factor measurement," IEEE Photon. Technol. Lett., vol.11,1999, pp.1307-1309.
    [63]P. J. Legg, M.Tur, and I. Andonovic, "Solution paths to limit interferometric noise induced performance degradation in ASK/direct detection lightwave networks," IEEE Journal of Lightwave Technol., vol.14,1996, pp.1943-1954.
    [64]Z. Li, C. Lu, Y. Wang, and G. Li, "In-service signal quality monitoring and multi-impairment discrimination based on asynchronous amplitude histogram evaluation for NRZ-DPSK systems," IEEE Photon. Technol. Lett., vol.17,2005, pp. 1998-2000.
    [65]B. Kozicki, O. Takuya, and T. Hidehiko, "Optical performance monitoring of phase modulated signals using asynchronous amplitude histogram analysis," J. Lightw. Technol., vol.26,2008, pp.1353-1361.
    [66]I. Shake, H. Takara., S. Kawanishi, "Simple Q factor monitoring for BER estimation using opened eye diagrams captured by high-speed asynchronous electrooptical sampling," IEEE Photon. Technol. Lett., vol.15,2003, pp.620-622.
    [67 I. Shake, H. Takara, and S. Kawanishi, "Simple measurement of eye diagram and BER using high-speed asynchronous sampling," IEEE Journal of Lightwave Technol., vol.22,2004, pp.1296-1302.
    [68]I. Shake, and H. Takara, "Averaged Q-factor method using amplitude histogram evaluation for transparent monitoring of optical signal-to-noise ratio degradation in optical transmission system" Journal. Lightwave Tech., Vol.20,2002,1367-1373.
    [69]B. Kozicki, O.Takuya, and T. Hidehiko, "Optical performance monitoring of phase-modulated signals using asynchronous amplitude histogram analysis," Journal. Lightwave Tech., Vol.26,2008,1353-1361.
    [70]T. S. R. Shen, A. P. T. Lau, and G. N. Liu, "OSNR monitoring for higher order modulation formats using asynchronous amplitude histogram" Photon. Technol. Lett., vol.22,2010,1632-1634.
    [71]S. D. Dods and T. B. Anderson, "Optical performance monitoring technique using delay tap asynchronous waveform sampling," OFC2005, OThP5.pdf.
    [72]X. Wu, J. A. Jargon, C. M. Wang, L. Paraschis, and A. E. Willner, "Experimental comparison of performance monitoring using neural networks trained with parameters derived from delay-tap plots and eye diagrams," OFC 2010, JThA17.pdf
    [73]B. Kozicki, A. Maruta, and K. Kitayama, "Experimental demonstration of optical performance monitoring for RZ-DPSK signals using delay-tap sampling method," Opt. Exp., vol.16,2008, pp.3566-3576.
    [74]T. B. Anderson, A. Kowalczyk, K. Clarke, S. D. Dods, D. Hewitt, and J. C. Li, "Multi impairment monitoring for optical networks," Journal. Lightwave Tech., Vol. 27,2009,3729-3736.
    [75]F. N. Khan, A. P. T. Lau, C. Lu and P. K. A. Wai, "Wide dynamic range OSNR monitoring for RZ-DQPSK systems using delay-tap sampling technique" 2010, OMK7.pdf.
    [76]H. Y. Choi, Y. Takushima, and Y. C. Chung, "OSNR monitoring technique for PDM-QPSK signals based on asynchronous delay-tap sampling technique," 2010, JThA16.pdf.
    [77]I. Shake, E. Otani, H. Takara, K. Uchiyama, Y. Yamabayashi, and T. Morioka, "Bit rate flexible quality monitoring of 10 to 160 Gbit/s optical signals based on optical sampling technique," Electron. Lett., vol.36,2000, pp.2087-2088.
    [78]R. Luis, P. Andre, A. Teixeira, and P. Monteiro, "Performance monitoring in optical networks using asynchronously acquired samples with nonideal sampling systems and intersymbol interference," J. Lightw. Technol., vol.22,2004, pp. 2452-2459.
    [79]R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, "All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror," IEEE Photon. Technol. Lett., vol.18,2006,469-471.
    [80]J. Y. Yang, L. Zhang, X. Wu, O. F. Yilmaz, B. Zhang, and A. E. Willner, "All-optical chromatic dispersion monitoring for phase-modulated signals utilizing cross-phase modulation in a highly nonlinear fiber," IEEE Photon. Technol. Lett., vol. 20,2008,pp.1642-1644.
    [81]T. D. Vo, J. Schroder, M. D. Pelusi, S. J. Madden, D.Yong Choi, D. A. P. Bulla, B. L. Davies, and B. J. Eggleton, "Photonic chip-based simultaneous multi-impairment monitoring for phase-modulated optical signals," Journal. Lightwave Tech., Vol.28,2010,3176-3183.
    [82]T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenl(?)we, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schroder, B. Luther-Davies, and B. J. Eggleton, "Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/sOTDM signal," Opt. Exp., vol.18,2010, pp.17252-17261.
    [83]D. K. Jung, C. H. Kim, and Y. C. Chung, "OSNR monitoring technique using polarization-nulling method", OFC2000, WK4-l.pdf.
    [84]T. Moench, "Measuring the optical signal to noise ratio in agile optical networks," Proc. OFC,2007, pp:1-6.
    [85]F. Roy, C. Francia, F. Bruyere, et al. "Simple dynamic polarization mode dispersion compensator," Proceedings of OFC,1999, vol 1, pp:275-278.
    [86]S. Lanne, W. Idler, J. P. Thiery, et al., "Fully automatic PMD compensation at 40 Gb/s," IEEE Electronics Letters,2002, vol 38, pp:40-41.
    [87]B. Fu, R. Hui, "Fiber chromatic dispersion and polarization-mode dispersion monitoring using coherent detection," IEEE Photon. Technol. Lett.,2005, vol:7, pp: 1561-1563.
    [88]B. M. Lamia, B. Thomsen, J. Mitchell, et al., "Simultaneous chromatic dispersion, polarization mode-disp ersion and OSNR monitoring at 40Gb/s," Opt. Express,2008, vol 16, pp.15999-16004.
    [89]F. N. Hauske, M. Kuschnerov, B. Spinnler, et al., " Optical Performance monitoring in digital coherent receivers," J. Lightw. Technol.,2009, vol.27, pp. 3623-3631.
    [90]S. L. Woodward, L. E. Nelson, P. D. Magill, et al., "A shared PMD and chromatic dispersion monitor based on a coherent receiver," IEEE Photon. Technol. Lett.,2010, vol.22, pp.706-708.
    [91]C. Dorrer, X. Liu, "Noise monitoring of optical signals using RF spectrum analysis and its application to phase-shift-keyed signals," IEEE Photonics Tech. Lett., vol.16,2004,1781-1783.
    [1]P. J. Winzer, R. J. Essiambre, "Advanced optical modulation formats," Proc. of IEEE, vol.94,2006,953-985.
    [2]P. Winzer, G. Raybon, et al., "100-Gb/s DQPSK transmission:from laboratory experiments to field trials," J. Lightw. Technol. vol.26,2008,3388-3402.
    [3]J. Lee, H. Choi, S. Shin, and Y. Chung, "A review of the polarization-nulling technique for monitoring optical signal-to-noise ratio in dynamic WDM network," J. Lightw. Technol. vol.24,2006,4162-4171.
    [4]B. Kozicki, O. Takuya, and T. Hidehiko, "Optical performance monitoring of phase-modulated signals using asynchronous amplitude histogram analysis," J. Lightw. Technol.26,2008,1353-1361.
    [5]T. Shen, K. Meng, A. Lau, and Z. Dong, "Optical performance monitoring using artificial neural network trained with asynchronous amplitude histograms," IEEE Photon. Technol. Lett. Vol.22,2010,1665-1667.
    [6]F. Khan, A. Lau, Z. Li, C. Lu, and P. Wai, "OSNR monitoring for RZ-DQPSK systems using half-symbol delay-tap sampling technique," IEEE Photon. Technol. Lett. Vol.22.2010,823-825.
    [7]T. Anderson, A. Kowalczyk, K. Clarke, S. Dods, D. Hewitt, and J. Li, "Multi impairment monitoring for optical networks," J. Lightw. Technol., vol.27,2009, 3729-3726.
    [8]H. Choi, Y. Takushima, and Y. Chung, "OSNR monitoring technique for DPSK/DQPSK signals based on self-heterodyne detection," IEEE Photon. Technol. Lett. Vol.20,2008,1124-1126.
    [9]C. Youn, K. Park, J. Lee, and Y. Chung, "OSNR monitoring technique based on orthogonal delayed homodyne method," in Conf. Optical Fiber Communications (OFC),2002, paper TuE3.
    [10]J. Yang, L. Zhang, et al., "Chromatic dispersion monitoring of 40-Gb/s RZ-DPSK and 80-Gb/s RZ-DQPSK data using cross-phase modulation in highly-nonlinear fiber and a simple power monitor," in Conf. Optical Fiber Communications (OFC),2008, paper OTuG5.
    [11]C. Courvoisier, J. Fatome, and C. Finot, "Measurement of residual chromatic dispersion or OSNR via nonlinear spectral evolution," IEEE Photon. Technol. Lett.23, 2011,537-539.
    [12]R. Adams, M. Rochette, T. Ng, and B. Eggleton, "All-optical in-band OSNR monitoring at 40Gb/s using a nonlinear optical loop mirror," IEEE Photon. Technol. Lett. Vol.18,2006,469-471.
    [13]T. Vo, M. Pelusi, et al., "Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RFspectrum analyzer," Opt. Express, vol.18,2010, 3938-3945.
    [14]K. Smith and N. Doran, "Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror," Opt. Lett. Vol.15,1990,1294-1296.
    [15]R. Adams, M. Rochette, T. T. Ng, and B. J. Eggleton, "All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror," IEEE Photon. Technol. Lett, vol.18,2006,469-471.
    [16]H. Huang, K. Xu, et al, "UWB pulse generation and distribution using a NOLM based optical switch," J. Lightw. Technol, vol.26,2008,2635-2640.
    [17]R. J. Essiambre, G. J. Foschini, P. J. Winzer, G. Kramer and E. C. Burrows, "Capacity limits of fiber-optic communication systems," in Conf. Optical Fiber Communications (OFC),2008, paper OTuE1.
    [18]Clement Courvoisier, Julien Fatome and Christophe Finot, "All-optical measurement of residual chromatic dispersion and OSNR using self-phase modulation in optical fiber," 13th International Conference on Transparent Optical Network, Stockholm:Sweden,2011.
    [1]C. C. K. Chan, "Optical performance monitoring," Elsevier.
    [2]D. K. Jung, C. H. Kim, and Y. C. Chung, "OSNR Monitoring Technique Using Polarization-Nulling Method", OFC2000, WK4-l.pdf.
    [3]H. Y. Choi, Y. Takushima, and Y. C. Chung, "OSNR Monitoring Technique for DPSK/DQPSK Signals Based on Self-Heterodyne Detection," IEEE Photonics Technology Lett. Vol.20,2008.
    [4]C. Dorrer, X. Liu, "Noise monitoring of optical signals using RF spectrum analysis and its application to phase-shift-keyed signals," IEEE Photonics Tech. Lett., vol.16,2004,1781-1783.
    [5]J. Y. Yang, L. Zhang, and A. E. Willner, "Optical signal-to-noise ratio monitoring of an 80 Gbits/s polarization-multiplexed return-to-zero differential phase-shift keying channel," Optics Letters, Vol.34,2009,1006-1008.
    [6]C. J. Chae, and T. B. Anderson,"OSNR monitoring of 40Gb/s differential phase-shift-keyed signals using a DC detector and a very low frequency band-pass filter", LEOS 2009, TuA3.pdf.
    [7]C. D. Poole, R. W. Tkach, A. R. Chraplyvy, and D. A. Fishman, "Fading in lightwave systems due to polarization-mode dispersion," IEEE Photon. Technol. Lett. Vol.3,1991,68-70.
    [8]X. Wu, J. A. Jargon, L. Paraschis, and A. E. Willner, "ANN-Based optical performance monitoring of QPSK signals using parameters serived from balanced-detected asynchronous diagrams" IEEE Photon. Technol. Lett., vol.23, 2011,248-250.
    [9]T. B. Anderson, A. Kowalczyk, K. Clarke, S. D. Dods, D. Hewitt, and J. C. Li, "Multi impairment monitoring for optical networks," J. Lightwave Technol. vol.27, 2009,3729-3736.
    [10]G. Ishikawa and H. Ooi, "Polarization-mode dispersion sensitivity and monitoring in 40-Gbits OTDM and 10 Gbits NRZ transmission experiments," Opt. Fiber. Commum. (OFC),1998,117-119.
    [11]Z. Pan, Q. Yu, et.al., "Chromatic dispersion monitoring and automated compensation for NRZ and RZ data using clock regeneration and fading without adding signaling," Opt. Fiber Commun. (OFC), vol.3,2001, paper WH5-1-3.
    [12]S. M. R. M. Nezam, Y. W. Song, et al., "First-order PMD monitoring for NRZ data using RF clock regeneration techniques," J. Lightwave Technol. vol.22,2004, 1086-1093.
    [13]J. Yang, C. Yu, et al., "CD-insensitive PMD monitoring based on RF power measurement" Optics Express, vol.19,2011,1354-1359.
    [14]Z. Pan, Y. Wang, et al., "Monitoring chromatic dispersion and PMD impairments in optical differential phase-shift keyed (DPSK) systems," in Proc. Tech. Dig. Optical Fiber Commun. (OFC2003), vol.1, pp.402-403.
    [15]Y. Lize, L. Christen, et al., "Independent and simultaneous monitoring of chromatic and polarization mode dispersion in OOK and DPSK transmission," IEEE Photon. Technol. Lett., vol.19,2007, pp.3-5.
    [16]N. Liu, W. Zhong, Y. Wen, and Z. Li, "New transmitter configuration for subcarrier multiplexed DPSK systems and its application to chromatic dispersion monitoring," Opt. Exp., vol.15,2007, pp.839-844.
    [17]E. Desurvire, "E. doped fiber amplifiers principles and applications," John Wiley & Sons, Inc., New York,1994.
    [18]G. P. Agrawal, fiber-optic communication systems, Third Edition, John Wiley & Sons, Inc., New York,3rd edition,2002.
    [19]D. Derickson, Ed., "fiber optic test and measurement", Prentice Hall PTR, Upper Saddle River, New Jersey 07458,1998.
    [20]N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightwave Technol., vol.7,1989, pp.1071-1082.
    [21]D. M. Baney, P. Gallion, and R. S. Tucker, "Theory and measurement techniques for the noise figure of optical amplifiers," Optical Fiber Technology,6,2000, pp. 122-154.
    [22]R. S. Tucker and D. M. Baney, "Optical noise figure:theory and measurements," in Optical Fiber Communication Conference and Exhibit,2001 (OFC 2001), vol.3, pp. WI1-1-WI1-3.
    [23]K. J. Park, C. J. Youn, J. H. Lee, and Y. C. Chung, "Performance comparisons of chromatic dispersion monitoring techniques using pilot tones," IEEE Photon. Technol. Lett. Vol.15,2003,873-875.
    [24]H. C. Ji, K. J. Park, J. H. Lee, H. S. Chung, E. S. Son, K. H. Han,S. B. Jun, and Y. C. Chung "Optical performance monitoring techniques based on pilot tones for WDM network Applications," J. Optical Networking, vol.3,2004,510-533
    [1]Manning R.J., Phillips I.D., Ellis A.D., et al., "10 Gbit/s all-optical regenerative memory using single SOA-based logic gate", IEE Electronics Letters, Vol.35, Jan.1999, pp.158-159.
    [2]C. Bintjas, N. Pleros, K. Yiannopoulos, et al., "All-optical packet address and payload separation", IEEE Photon. Technol. Lett., Vol.14,2002, pp.1728-1730.
    [3]P. Velanas, A. Bogris, D. Syvridis, "Operation properties of a reconfigurable photonic logic gate based on cross phase modulation in highly nonlinear fibers," Optical Fiber Technology. Vol.15,2009,65-73.
    [4]G. Berrettini, A. Simi, A. Malacarne, A. Bogoni, and L.Poti, "Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate," Photonics Technol. Lett. Vol.18,2006,917-919.
    [5]S. Ma, Z. Chen, N. K. Dutta, "All-optical logic gates based on two-photon absorption in semiconductor optical amplifiers," Optics Communications, Vol. 282,2009,4508-4512.
    [6]J. Wang, J. Sun, Q. Sun, X. Zhang, D. Huang, "All-optical dual-direction half-subtracter based on sum-frequency generation" Vol.281,2008,788-792.
    [7]Z. Li, G. Li, "Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier," IEEE Photonics Technol. Lett.18, 2006,1341-1343.
    [8]J. Dong, X. Zhang, Y. Wang, J. Xu and D. Huang, "40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier:Experimental demonstration and theoretical analysis," Optics Communications. Vol.281,2008, 1710-1715.
    [9]P. Li, and D. Huang, X. Zhang, H. Chen, "Ultrahigh-speed multifunctional all-optical logic gates based on FWM in SOAs with Po1SK modulated signals," OFC08, JWA37. pdf.
    [10]A. Bogoni, L. Poti, R. Proietti, G.Meloni, F.Ponzini and P.Ghelfi, "Regenerative and reconfigurable all-optical logic gates for ultra-fast applications," Electron. Lett, vol.41,2005,435-436.
    [11]D. M. F. Lai, C. H. Kwok, and K. K. Wong, "All-optical picoseconds logic gates based on a fiber optical parametric amplifier,"Optics Express, Vol.16,2008, 18362-18370.
    [12]K. Sun, J. Qiu, M. Rochette, L. R. Chen, "All-optical logic gates (XOR, AND, and OR) based on cross phase modulation in a highly nonlinear fiber," ECOC09, paper 3.3.7.pdf
    [13]W. Niblack and E. Wolf, "Polarization modulation and demodulation of light," Apply. Opt, vol.3,1964, pp.277-279.
    [14]S. Benedetto and P. Poggiolini, "Theory of polarization shift keying modulation," IEEE Trans. Commun., vol.40,1992, pp.708-721.
    [15]E. Ciaramella, A. D'Errico, R. Proietti, and G. Contestabile, "WDM-POLSK transmission systems by using semiconductor optical amplifiers," Journal of Lightwave Tech., Vol.24,2006,4039-4046.
    [16]C. Qiu, H. Chen, M. Chen, and S. Xie, "Carrier-reuse using Po1SK data rewriting method in PONs", OFC 2008, JWA104.pdf.
    [17]E. Ciaramella, A. D'Errico, R. Proietti, and G. Contestabile, "WDM-POLSK transmission systems by using semiconductor optical amplifiers," Journal of Lightwave Tech., Vol.24,2006,4039-4046.
    [18]C. Qiu, H. Chen, M. Chen, and S. Xie, "Carrier-reuse using Po1SK data rewriting method in PONs", OFC 2008, JWA104.pdf.
    [19]E. Hu, Y. Hsueh, K. Wong, M.Marhic, L. Kazovsky, K. Shimizu, "4-Level Direct-Detection Polarization Shift-Keying (DD-Po1SK) System with Phase Modulators" OFC2003, FD2.
    [20]N. Chi, S. Yu, L. Xu, P. Jappesen, "Generation of a polarization shift keying signal and its application in optical labeling" ECOC2005, Mo4.4.4.pdf.
    [21]S. Benedetto et al., "Multilevel polarization modulation using a specifically designed LiNbO3 device," IEEE Photonic Technology Lett., vol.6,1994, 949-951.
    [22]Kyo Inoue, "Four-wave mixing in an optical diber in the zero-dispersion wavelength region," Journal of Lightwave Tech., Vol.10,1992,1553-1561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700