光伏并网发电的功率补偿控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球范围内化石能源消耗量的急剧增加,世界性的能源危机已经来临。化石能源的大规模开发和利用,也给人类赖以生存的自然环境造成了严重破坏。能源已经成为人类社会进步、经济发展与地球生态环境保护的瓶颈问题。可再生能源的开发和利用引起了全世界的广泛关注,其中太阳能具有取之不尽、用之不竭、分布广泛、清洁无污染等一系列优势,是解决世界能源危机和环境污染最可靠和行之有效的绿色能源,而光伏并网发电是利用太阳能最有效的方式。
     本文采用一种改进结构的光伏并网发电系统,实现了光伏并网逆变器的复用功能,使得供电质量改善、系统运行效率提高、系统损耗降低、设备投资变低;本文针对光伏发电有功和无功的动态补偿控制的关键问题进行了相关研究,提出了基于最小二乘支持向量机(LS-SVM)的最大功率跟踪(MPPT)控制、基于超级电容和蓄电池的复合储能系统的有功补偿控制、基于空间电压矢量脉冲调制(SVPWM)的并网发电与无功补偿的一体化控制策略,并开展了相关的仿真及实验研究。具体研究内容与成果概略如下:
     (1)在分析各类光伏并网发电系统结构的基础上,研究了其运行特性,研究提出一种两级可调度光伏并网发电系统结构,研究了其主要部件的运行机理与数学模型;
     (2)研究光伏组件的一种简化数学模型、光伏组件在不同太阳光辐射度及工作温度下电流—电压和功率—电压特性;
     (3)研究了基于最小二乘支持向量机的最大功率跟踪控制策略与方法。为克服传统MPPT算法无法协调解决稳定性和误跟踪的缺点,在分析最大功率跟踪控制机理的基础上,提出了基于LS-SVM的最大功率跟踪控制策略;构建了基于恒电压控制法、干扰观测法与LS-SVM的最大功率跟踪控制系统,并开展了相关的仿真对比研究;
     (4)为了提升储能系统的性能,研究超级电容和蓄电池的混合储能系统结构特性,提出基于超级电容与蓄电池的主动式混合能系统有功功率补偿控制策略,并构建了相关的控制系统,并进行了仿真实验;
     (5)提出了基于SVPWM的光伏并网与无功补偿一体化控制策略。为拓展光伏并网逆变器的功能,在分析并网逆变器主电路与静止同步无功补偿装置主电路结构特性的基础上,提出基于SVPWM技术的光伏并网与无功补偿一体化控制策略。研究了高速、快速的电流的检测方法;分析了双向PWM逆变器的四象限运行特性,研究了SVPWM波形产生过程,开关管导通时间的计算及分配方法。构建了基于SVPWM的光伏并网发电与无功补偿一体化控制系统,并开展了仿真验证;
     (6)构建了光伏功率控制系统的模拟实验平台,构建了基于DSP与CPLD复合结构的光伏并网发电数字控制系统,研制了系统硬、软件,进行了相关实验研究,验证了结构设计与控制策略的正确性。最后,对全文进行总结,提出有待加强研究的方面。
With the rapid increase of global fossil energy consumption, the world-wide energy crisis has already arrived. The large-scale exploitation and utilization of fossil energy also wreak havoc on the natural environment that we are living in. The energy has becoming the bottleneck problem of social progress, economic development and ecological conservation. Under this circumstance, the development and utilization of renewable energy have caught the worldwide attention. With some merits such as inexhaustible supply, wide distribution, non-pollution, the photovoltaic (PV) has becoming an important green energy to resolve the problems of energy crisis and environment pollution. When PV is utilized, the grid-connected PV system is the most efficient way to utilize solar power.
     A novel grid-connected PV system is constructed in this thesis, which can realize the function multiplexing, improve the power quality, reduce the system loss, and save the equipment investment. The emphasis of his thesis is focused on some key theoretical and technical problems in the active and reactive power compensation control of the designed grid-connected PV system, such as the maximum power point tracking (MPPT) based on least squares support vector machine (LS-SVM), active power stabilization based on the hybrid energy storage system consisted of super-capacitor and battery, the integrated control of power generation and reactive power compensation based on space vector pulse width modulation (SVPWM). Based on the presented theory and technology, the simulation and experiment are carried out, whose results show the efficiency of the designed topology and control strategy. The detailed contents and achievements are as follows:
     (1) A novel two-stage schedulable grid-connected PV system is presented and designed based on the analysis of grid-connected PV topology and operation-feature comparison of different systems. The operation principle and mathematical model of main components are also studied.
     (2) A simplified mathematical model of PV component is presented. The current-voltage and power-voltage characteristics of PV component under different solar radiations and working temperatures are also studied.
     (3) A MPPT strategy and method is presented based on LSSVM. To overcome the incapability of coordinating stability, mis-tracking, multiple peak values, a novel LSSVM-based MPPT control strategy is presented. The simulation comparison among constant-voltage control, perturb&observe method, and LSSVM method is carried out, whose results shows the superiority of LSSVM tracking strategy.
     (4) A novel active power stabilization strategy based on hybrid energy storage system consisted of super-capacitor and battery is presented. To fully take the advantages of super-capacitor and battery and improve the power output capability, this stabilization strategy is presented and the corresponding stabilization system is constructed based on the analysis of model and performance characteristics. The simulation and experiments are also made, whose results show the superiority of the presented method.
     (5) An integrated control strategy is presented based on SVPWM. To expand the functions of grid-connected invertor, an integrated control strategy of power generation and reactive power compensation is presented based on the analysis of main circuits of grid-connected invertor and static synchronous compensator (STATCOM). The four-quadrant running principle is analyzed and SVPWM generation procedure is studied. The calculation and allocation method of switch-on time of switch tubes are also researched. The integrated control system of power generation and reactive power compensation is constructed and the corresponding simulation is carried out.
     (6) The simulating platform of grid-connected PV system is constructed and the grid-connected PV digital control system is designed based on DSP and CPLD. The concerned hardware and software are designed. The experiment is also carried out and the results show the correctness of the design and control strategy. The conclusion and perspective are given at the end of the dissertation.
引文
[1]BP Amoco. BP世界能源统计年鉴(2013年6月)[R].北京:BP Amoco,2013.
    [2]霍雅勤.化石能源的环境影响及其政策选择[J].中国能源,2000,(5):17-21.
    [3]董宏,张飘.通信用光伏与风力发电系统[M].北京:人民邮电出版社,2008.
    [4]王思耕.基于虚拟同步发电机的光伏并网发电控制的研究[D].北京:北京交通大学硕士学历论文,2011.
    [5]张兴,曹仁贤,等.太阳能光伏并网发电及其逆变控制[M].北京:机械工业出版社,2010.
    [6]赵争鸣,刘建政,孙晓瑛,等.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [7]付永长,蔡皓.太阳能发电的现状及发展[J].农村电气化,2009,(9):57-59.
    [8]符江升.基于超级电容储能的光伏发电系统技术研究[D].成都:西南交通大学硕士学位论文,2012.
    [9]尹璐,赵争鸣.光伏并网技术与市场——现状与发展[J].变频器世界,2008,(10):34-40.
    [10]Bettian B C, Christian J. Estimation of the energy output of a photovolatic power plant in the Austrian Alps[J]. Solar Energy,1998,62(5):319-324.
    [11]Haberlin H, Graf J. Islanding of grid-connected PV inverters:test circuits and some test results[C].2nd Word Conference and Exhibition on Phatoltaic Solar Energy Conversin,1998:2020-2023.
    [12]Oman H. Space solar power development[J]. IEEE AES Systems Magazine,2000, 152:3-8.
    [13]李俊峰,王斯成,张敏吉,等.2007年中国光伏发展报告[R].北京:中国环境科学出版社,2007.
    [14]中国可再生能源发展项目办公室.中国光伏产业发展研究报告(2006-2007)[R].北京:中国可再生能源发展项目办公室,2008.
    [15]查晓明,刘飞.光伏发电系统并网控制技术现状与发展(上)[J].变频器世界,2010,(2):37-42.
    [16]Mcmurray W. Inverter Circuits [P]. US Patent:3207974,1965.
    [17]Remus T, Marco L, Pedro R.光伏与风力发电系统并网变换器[M].北京:机械工业出版社,2012.
    [18]Meinhardt M, Cramer G, Burger B, et al.Multi-string-converter with reduced specific costs and enhanced functionality [J]. Solar Energy,2000,69:217-227.
    [19]Macdonald D, Cuevas A. Understanding carrier tapping in multicrystalline silicon[J]. Solar Energy Materials and Solar Cells, vol.65:509-516,2001.
    [20]胡学浩.分布式发电(电源)技术及其并网问题[J].电工技术杂志,2004,(10):1-5.
    [21]杨卫东,薛峰,徐泰山,等.光伏并网发电系统对电网的影响及相关需求分析[J].水电自动化与大坝监测,2009,33(4):35-43.
    [22]赵平,严玉廷.并网光伏发电系统对电网影响的研究[J].电气技术,2009,(3):41-44.
    [23]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [24]Mayer E. Competitive Power Solutions[C]. Proceedings of 2000 IEEE Power Engineering Society Summer Meeting,2000,3:1668-1669.
    [25]黄克亚,尤凤翔,李文石.模糊神经网络在光伏发电MPPT中的应用[J].计算机仿真,2012,29(8):300-304.
    [26]黄明玖,罗皓泽,苏建徽.光伏发电系统最大功率跟踪的稳定性研究[J].高压电器,2012,48(8):71-75.
    [27]刘飞,段善旭,殷进军,等.单级式光伏发电系统MPPT的实现与稳定性研究[J].电工技术学报,2008,42(3):28-30.
    [28]项丽,王冰,李笑宇,等.光伏系统多峰值MPPT控制方法研究[J].电网与清洁能源,2012,28(8):68-76.
    [29]颜永光.光伏发电系统新型最大功率点跟踪方法的研究[J].广东电力,2008,(25)3:65-67.
    [30]周婷,谭理华.光伏发电系统MPPT误判现象及振荡分析[J].安徽电气工程职业技术学院学报,2012,17(3):9-14.
    [31]邱培春.光伏并网发电的功率平抑控制[D].北京:北京交通大学硕士学历论文,2010.
    [32]邓元实.带储能的太阳能光伏发电系统研究[D].成都:西南交通大学硕士学历论文,2012.
    [33]王兆安,杨君,刘进军,等.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2005.
    [34]陈健.光伏并网功率调节系统的研究[D].武汉:武汉理工大学硕士学历论文,2012.
    [35]余世杰,何慧若,曹仁贤.光伏水泵系统中CVT及MPPT的控制比较[J].太阳能学报,1998,19(4):34-37.
    [36]陈进美,陈峦.光伏发电最大功率跟踪方法的研究[J].科学技术与工程,2009,9(17):4940-4944.
    [37]TSC K K, et al. A comparative study of maximum power point tracker for photovoltaic panel using switching frequency modulation scheme[J]. IEEE Trans Ind Election,2004,51(2):410-418.
    [38]林期远,杨启岳.分布式光伏发电系统最大功率点跟踪技术比较研究[J].能源工程,2012,23(2):23-27.
    [39]杨钦超,符江升,王秉旭.分布式太阳能最大功率跟踪系统的研究[J].电子元器件应用,2011,32(11):42-46.
    [40]陈桂兰,孙晓,李然.光伏发电系统最大功率点跟踪控制[J].电子技术应用,2001,12(8):223-227.
    [41]陈兴峰,曹志峰,许洪华等.光伏发电的最大功率跟踪算法研究[J].可再生能源,2005,22(1):33-37.
    [42]朱铭炼,李臣松,陈新,等.一种应用于光伏系统MPPT的变步长扰动观察法[J].电力电子技术,2010,44(1):20-25.
    [43]黄瑶,黄洪全.电导增量法光伏系统的最大功率点跟踪控制[J].现代电子技术,2008,31(22):18-22.
    [44]Esram T, Chapman P L. Comparison of photovoltaic array maximum power point tracking techniques[J]. IEEE Trans.on Energy Conversion,2007,22(3):439-449.
    [45]Nobuyoshi M, Masahiro O, Takayoshi I. A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation system[J]. IEEE Trans Ind Electron,2006,53(4):1055-1065.
    [46]Sheraz M, Abido M A. An efficient MPPT controller using differential evolution and neural network[C].2012 IEEE International Conference on Power and Energy,2012:378-383.
    [47]何俊强.基于滑模变结构的光伏并网发电系统MPPT算法研究[D].济南:山东大学硕士学历论文,2012.
    [48]邓元实.带储能的太阳能光伏发电系统研究[D].成都:西南交通大学硕士学历论文,2012.
    [49]刘伟,彭冬,卜广全,等.光伏发电接入智能配电网后的系统问题综述[J].电网技术,2009,33(19):1-6.
    [50]Jaralikar S M, Aruna M. Performance analysis of hybrid (WIND&SOLAR) power plant-A case study [C]. Proceedings of the 4th IASTED Asian Conference on Power and Energy Systems,2010:117-123.
    [51]Kiyoshi T, Naotaka O, Nobuaki K, et al. A development of smart power conditioner for value added PV applicatin [J]. Solar Energy Materials and Solar Cells,2003,75(3-4):547-555.
    [52]Tsukaqoshi I, Takano I, Sawada Y. Transient performance of PV/SMES hybrid dispersed power Source [C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference,2001,1579-1584.
    [53]Kong F, Rodriguez C, Amartunga G, et al. Series connected photovoltaic power inverter[C].2008 IEEE International Conference on Sustainable Energy Technologies,2008:595-600.
    [54]Cheng Y H. Impace of large scale integration of photovoltaic energy source and optimization in smart grid with minimal energy storge[J]. IEEE International Symposium on Industrial Electronics,2010:3329-3334.
    [55]Li B, Tian X H, Zeng H Y. A grid-connection control scheme of PV systemwith fluctuant reactive load[C]. DRPT 2011-2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies,2011: 786-790.
    [56]Rahmani S, Hamadi A, Al-haddad K, et al. A multifunctional power flow controller for photovoltaic generation systems with compliance to power quality standards[C]. IECON Proceedings,2012:894-903.
    [57]赵为.太阳能光伏并网发电系统的研究[D].合肥:合肥工业大学博士学位论文,2003.
    [58]汪海宁,苏建徽,张国荣,等.光伏并网发电及无功补偿的统一控制[J].电工技术学报,2005,20(9):114-118.
    [59]汪海宁,苏建徽,丁明,等.光伏并网功率调节系统[J].中国电机工程学报,2007,27(2):75-79.
    [60]汪海宁,苏建徽,张国荣,等.具有无功功率补偿和谐波抑制的光伏并网功率调节器控制研究[J].太阳能学报,2006,27(6):540-544.
    [61]孙广生,孔里,李安定.西藏安多光伏电站电气设备绝缘特性的研究[J].电工电能新技术,2003,22(3):21-23.
    [62]陈兴峰,曹志峰,许洪华,等.光伏发电的最大功率跟踪算法研究[J].可再生能源,2005,1:8-11.
    [63]钟国锋.只为那姹紫嫣红填亮彩——深圳国际园林花卉博览园1MWp并网太阳能光伏电站[J].建设科技,2005,5:22-23.
    [64]吴理博,赵争鸣,刘建政,等.具有无功补偿功能的单级式三相光伏并网系统[J].电工技术学报,2006,21(1):28-32.
    [65]吴理博.光伏并网逆变系统综合控制策略研究及实现[D].北京:清华大学博士学位论文,2006.
    [66]吴春华.光伏发电系统逆变技术研究[D].上海:上海大学博士学位论文,2008.
    [67]李琦.可调度式光伏并网发电系统的研究[D].青岛:山东科技大学硕士学位 论文,2011.
    [68]Soeren B K, John K. Pedersen, et al. A review of single-phase grid-connected inverters for photovoltaic modules[J]. IEEE Transactions on Industry Applications,2005,41(5):1292-1306.
    [69]Myrzik J, Calais M. String and modle integrated inverters of signlephase grid connected photovoltaic systems-a review[J].2004 IEEE Bologna Power Tech Confrence Proceedings,2003(2):23-26.
    [70]孙龙林.单相非隔离型光伏并网逆变器的研究[D].合肥:合肥工业大学硕士学位论文,2009.
    [71]Herrmann U, Langer H G Low cost DC to AC converter for photovoltaic power conversion in residential applications[C]. IEEE Annual Power Electronics Specialists Conference,1993:588-594.
    [72]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [73]Wu R, Dewan S B, Slemon G R. Analysis of an AC to DC voltage source converter using PWM with phase and ampltiude control [J]. IEEE Trans Ind Appl, 1991,27:355-364.
    [74]Luigi M, Paolo T, Vanni T. Space vector control and current harmonics in quasi-resonant soft-switching PWM conversion [J]. IEEE Transactions on Industry Applications,1996,32(2):269-277.
    [75]Chaouachi A, Nakamachi K, Kamel R M, et al. Microgrid efficiency enhancement based on neuro-fuzzy MPPT control for photovoltaic generator[J].Conference Record of the IEEE Photovoltaic Specialists Conference, 2010:2889-2894.
    [76]Syafaruddin, Karatepe E, Hiyama T. Performance enhancement of photovoltaic array through string and central based MPPT system under non-uniform irradiance conditions[J]. Energy Conversion and Management,2012,62:131-140
    [77]Yusof Y, Sayuti S H, Abdul L M, et al. Modeling and simulation of maximum power point tracker for Photovoltaic system[C]. National Power and Energy Conference,2004:88-93.
    [78]Nobuyoshi M, Masahiro O, Takayoshi I. A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation system[J]. IEEE Trans Ind Electron,2006,53(4):1055-1065.
    [79]Luque A, Hegedus S. Handbook of photovoltaic science and engineering [Z]. Hoboken, NJ:Wiley,2002:87-111.
    [80]Walker G Evaluating MPPT converter topologies using a MATLAB PV model[J]. Electr. Electron. Eng.,2001,21(1):49-56.
    [81]蔡纪鹤,孙玉坤,黄永红.基于PSIM的光伏组件仿真模型的研究[J].现代科学仪器,2013,(6):65-69.
    [82]苏建徽,余世杰,赵为,等.硅太阳电池工程用数学模型[J].太阳能学报,2001,22(4):309-402.
    [83]廖志凌,阮新波.任意光强和温度下硅太阳电池非线性工程简化数学模型[J].太阳能学报.2009,30(4):430-434.
    [84]Powersim Inc. PSIM User's Guide Veron6.0 [Z]. Powersim Inc.,2003.
    [85]Luque A, Hegedus S. Handbook of Photovoltaic Science and Engineering [Z]. Hoboken, NJ:Wiley,2002:87-111.
    [86]蔡纪鹤,孙玉坤,黄永红.基于占空比干扰观测法的MPPT控制研究.江苏大学学报:自然科学版,2014,35(1):75-79.
    [87]林飞,杜欣.电力电子应用技术的MATLAB仿真[M].北京:电力工业出版社,2008.
    [88]王兆安,黄俊.电力电子技术(第4版)[M].北京:机械工业出版社,2000.
    [89]周文源,袁越,傅质馨,等.恒电压结合牛顿法的光伏系统MPPT控制[J].电力系统及其自动化学报,2012,24(6):6-13.
    [90]何人望,邱万英,吴迅,等.基于PSIM的新型扰动观察法的MPPT仿真研究[J].电力系统保护与控制,2012,40(7):56-65.
    [91]Deng N, Tian Y. The new method of data mining based on support vector machine[M]. Beijing:Science Press,2004.
    [92]杨志民,刘广利.不确定支持向量机:算法及应用.北京:科学出版社,2012.
    [93]Wang X D, Zhang C J, Zhang H R. Sensor dynamic modeling using least square support vector machines[J]. Chinese Journal of Scientific Instrument,2006,27(7): 730-733.
    [94]Fang R M. Gas leakage detection based on clustering support vector machine[J]. Chinese Journal of Scientific Instrument,2007,28(11):2028-2033.
    [95]Scholkopf B, Smola A J. Learning with kernels cambridge[M]. MA:MIT Press, 2002.
    [96]Deng N Y, Tian Y J. The new method of data mining based on support vector machine[M]. Beijing:Science Press,2004.
    [97]Suykens J K, Vandewalle J. Least squares vector machines [M]. Singapore:World Scientific,2002.
    [98]Desai K, Badhe Y, Kulkarni B D, et al. Soft-sensor development for fed-batch bioreactors using support vector regression [J]. Bio-chemical Engineering Journal, 2006,27(3):225-239.
    [99]Li Y F, Yuan J Q. Prediction of key state variables using support vector machines in bioprocesses[J]. Chemical Engineering and technology,2006,29(3):313-319.
    [100]Wang J L, Yu T, Jin C Y. On-line estimation of biomass in fermentation process using support vector machine[J]. Chinese Journal of Chemical Engineer-ing, 2006,14(3):383-388.
    [101]Liu Y, Wang H Q, Li P. Adaptive local learning based least squares support vector regression with application to online modeling[J]. Journal of Chemical Industry and Engineering,2008,59(8):2052-2057.
    [102]王长江.基于MATLAB的光伏电池通用数学模型[J].电力科学与工程,2009,25(4):11-14.
    [103]Kuperman A, Aharon I. Battery and ultracapacitor hybrids for pulsed current loads:A review, Renew[J]. Sust. Energy Reviews,2011,15:981-992.
    [104]Liu H, Wang Z, Cheng J, et al. Improvement on the cold cranking capacity of commercial vehicle by using supercapacitor and lead-acid battery hybrid[J]. IEEE Trans. Veh. Technol,2009,58(3):1097-1105.
    [105]Caricchi F, Crescimbini F, Giulii Capponi F, et al. Study of bidirectional buck-boost converter Topologies for application in electrical vehicle motor drivers[M]. IEEE APEC Proceeding,1998:287-293.
    [106]Lukic S M, Wirasingha S G, Rodriguez F,et al. Power management of an ultr acapacitor/battery hybrid energy storage system in an HEV[J]. Vehicle Power and Propulsion Conference,2006:1-6.
    [107]Chaim L, Amiad H and Alon K. Capacitor semi-active battery-ultracapacitor hybrid energy source[J]. IEEE 27th convention of electrical and electronics engineers in Israel,2012:1-4.
    [108]吴鸣,苏剑,余杰,等.分布式电源的混合储能配置分析与研究[J],供用电,2013,30(1):6-11.
    [109]毛盾,郭丙君.基于模糊PID控制的Cuk变换器研究[J].自动化与仪器仪表,2010,(3):1-3.
    [110]王晓,罗安,邓才波,等.基于光伏并网的电能质量控制系统[J].电网技术,2012,36(4):68-73.
    [111]Akagi H, Kanazawa Y, Nabae A. Instantaneous reaetive power compensator comPrising switching deviees without energy storage components[J]. IEEETransIndAppl,1984,20(3):625-630.
    [112]Luigi M, Paolo T, Vanni T. Space vector control and current harmonics in quasi-resonant soft-switching PWM conversion[J]. IEEE Transactions on Industry Applications,1996,32(2):269-277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700