改进型S波段相对论速调管放大器及其锁相特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对论速调管放大器(Relativistic Klystron Amplifier, RKA)具有高输出功率、高增益及频率相位可控等特性,是目前高功率微波相干功率合成研究领域中的热点器件之一。针对目前RKA研究中存在的相关问题,本文提出了具有双耦合孔输入腔、轴对称耦合孔输出腔及涂覆吸波材料漂移管的改进型S波段RKA,并对其匹配注入、输入腔和输出腔设计、杂模抑制及相位锁定等问题进行了系统深入的研究。论文的主要研究内容及结果如下:
     采用数值方法求解了RKA漂移管中薄环形强流电子束的动能因子。在此基础上,利用强流相对论条件下的小信号空间电荷波理论,求解得到了电子束特性对RKA群聚距离的影响规律。采用等效电路和粒子模拟相结合的方法,得到了满足匹配注入条件的输入腔电子束加载谐振频率及电子束加载品质因数;采用2.5维粒子模拟和3维粒子模拟均实现了输入腔匹配注入,为输入腔的设计奠定了基础。
     提出了双耦合孔输入腔。该腔耦合孔对称分布、耦合孔较小,有利于腔内场均匀分布。采用群时延法对该腔进行了冷腔分析和设计,得到了满足匹配注入条件时该输入腔的结构尺寸。对该腔进行了加工和冷测,测试结果与模拟结果符合得较好。随后的实验表明,按照设计尺寸加工的双耦合孔输入腔可以实现对注入微波的匹配吸收。
     提出了轴对称耦合孔输出腔。该腔具有轴对称的环形耦合孔,且耦合结构与支撑结构完全分离,外观品质因数低,不易激励杂模。采用高频场软件对该腔进行了冷腔分析和初步设计。利用三维粒子模拟优化了该腔的结构尺寸,采用与实际导引磁场分布一致的参数设置,得到了输出微波功率效率为25%的模拟结果。实验中采用该腔获得了功率约700MW、功率效率大于20%的高功率微波输出。
     提出了在漂移管内壁涂覆吸波材料的杂模抑制方法。采用三维粒子模拟对其进行了研究。结果表明,杂模振荡与输入腔引入的非轴对称性结构及中间腔的高阶杂模有关,其在漂移管中表现为TE11模;当漂移管内壁涂覆吸收率为30%的吸波材料时,即可抑制杂模的振荡,且不影响主模的正常工作。实验研究了吸收率为50%的涂覆吸波材料的漂移管杂模抑制效果。结果表明,在二极管电压小于500kV的范围内,采用该漂移管几乎可以完全抑制杂模。
     对S波段三腔RKA结构进行了系统深入的粒子模拟研究。采用2.5维粒子模拟,依次研究了输入腔、中间腔及输出腔参数对RKA工作特性的影响,给出了简化为二维的RKA系统设计方法。提出并研究了导引磁场控制电子束收集的方法,利用该方法可大幅提高RKA束波功率转换效率:经过优化,在二极管电压510kV、电流6.7kA、注入微波功率500kW、导引磁场1.5T的条件下,得到了输出微波功率1.15GW、功率效率33%、增益33.6dB的模拟结果。采用三维粒子模拟,研究得到了改进型输出腔结构参数及RKA腔间距离对输出微波功率稳定性的影响。在分段导引磁场1.3T、二极管电压500kV、束流7.4kA、注入微波功率600kW的条件下,得到了输出微波功率930MW、功率效率25%、增益32dB的模拟结果。此外,采用粒子模拟研究了加速器电压波形特征、RKA结构参数及导引磁场强度等因素对RKA锁相特性的影响,评估了影响RKA锁相特性的因素,为基于RKA的功率合成相位控制提供了参考。
     开展了该改进型S波段RKA的实验研究。采用大功率磁控管作为种子源,在Torch-01加速器平台上得到的典型实验结果为:当二极管电压488kV、电流5.8kA、电压脉宽50ns时,在注入微波功率720kW、频率2.84GHz的条件下,RKA辐射微波功率约300MW、频率2.84GHz,功率效率约10%、增益约26dB、脉宽约50ns,辐射微波模式为TM01模,几乎无杂模振荡,在微波脉冲前10ns内实现了锁相,锁相稳定时间大于30ns,锁定时间内相位差抖动小于±7°。当二极管电压505kV、电流6.5kA、电压脉宽50ns时,在注入微波参数不变的条件下,辐射微波功率达到700MW,主频2.84GHz,功率效率约22%,增益约30dB,脉宽约30ns,辐射主模式为TM01模,存在杂模振荡现象。分析指出了实验中杂模未被完全抑制的可能原因及其抑制措施。
Relativistic Klystron Amplifier (RKA) is a promising candidate in the field ofpower combination of High Power Microwave (HPM) due to its essential characteristicssuch as high output power, high gain, controllable frequency and phase-locking. Aimingat the correlative problem existed presently in the investigation of RKA, here proposedan improved S-band RKA which has an input cavity with dual coupling holes, an outputcavity with an axial symmetric coupling hole, and a drift tube coated with absorbingmaterial. Four significant issues, i.e., injection matching, the design of the improvedinput and output cavities, the method for depression of parasitic modes andphase-locking characteristics are studied systematically. The main content and resultsinvolved in this dissertation is depicted as following.
     The properties of the annular Intense Relativistic Electron Beam (IREB) fordriving RKA are studied numerically, and then the effects on the bunching distance ofthe IREB are analyzed based on the small signal space-charged theory. The beamloaded resonant frequency and quality factor which are satisfying the matchingconditions of the input cavity under IREB loading are obtained by using the equivalentcircuit method combining a2.5-dimensional (2.5D) Particle-in-Cell (PIC) code. Basedon the above results, the matching injections of the input cavity of the RKA are realizedin both2.5D and3D PIC simulations. This can support the design of the RKA inputcavity.
     The improved input cavity with dual coupling holes is proposed. The couplingholes are placed symmetrically, and the area of each hole is small, which is beneficial tothe uniform of the field distribution. The input cavity is fabricated and tested. The coldtesting results of the improved input cavity agree well with the simulation ones. Thefollowing experimental results indicate that the injected microwave can be wellabsorbed by the input cavity according to the designed parameters.
     The improved output cavity with an axially symmetric coupling hole is proposed.Possessing a big annular coupling hole and an isolated coupling structure, the outputcavity is featured by a low external quality factor and less possibility of excitingparasitic modes. The output cavity is analyzed and designed primarily with highfrequency analysis software. The parameters of the output cavity are further determinedwith the3D PIC code, and the simulated power efficiency of25%is obtained. In thehigh power experiments, an output microwave power of700MW and a powereffieciency of more than20%are obtained with this improved output cavity.
     The suppression through adopting the drift tube coated with absorbing material isproposed and the related3D PIC simulations are performed. PIC simulations show thatthe oscillation of the main parasitic mode, i.e. TE11mode in the drift tube, is strongly order modes in the middle cavity. The simulation results show that an absorbing rate of30%for the coated material is enough to suppress the oscillation of the parasitic mode.The following experimental results of the RKA with the drift tube of50%absorbingrate show that the parasitic mode oscillation is effectively suppressed in the diodevoltage regime below500kV.
     The S-band RKA with three cavities is systematically studied with PIC codes.With the2.5D PIC code, the influence of the three cavities on the RKA operation isstudied by order, and the systematic design method is given for the simplified twodimensional structure of the RKA. A novel beam collection method capable ofsignificantly improving the power efficiency of RKA is proposed and investigated.After a serial optimization, the power of the output microwave is obtained as1.15GWwhen setting the diode voltage of510kV, current of6.7kA, guiding magnetic field of1.5T and input microwave power of500kW, which indicates a high power efficiency of33%and a gain of33.6dB. With the3D PIC code, the effects of the differentparameters of the improved output cavity on the RKA output microwave properties areexplored. Through the simulation, the HPM with parameters of an output power of930MW, an efficiency of25%and a gain of32dB is obtained under the conditions of asegment guiding magnetic field of1.3T, a diode voltage of500kV, a current of7.4kAand an input power of600kW. For obtaining better understanding of the RKAphase-locking properties, the other PIC simulations are carried out. In the simulations,the effects of the factors such as the voltage waveform provided by the accelerator, thestructural parameters of the RKA and the guiding magnetic field on the characteristicsof phase-locking are studied in detail. Based on the simulation results, the evaluating ofthe influence factors on the RKA phase-locking properties is given, which can provideguidness for the phase control in power combining based on the RKA.
     Experimental study of the improved S-band RKA in a high-power range is carriedout based on Torch-01accelerator by using a large-power S-band magnetron as themicrowave seeder. Two types of the experimental results are obtained. Under theconditions of diode voltage488kV, current5.6kA, pulse width50ns, input power720kW and input frequency2.84GHz, the microwave radiation is generated with theparameters: the power of about300MW, the frequency of2.84GHz, the efficiency ofgreater than10%, the gain of about26dB, the pulse width of50ns, and the radiationpattern of TM01mode. There is almost no parasitic mode oscillation within the outputmicrowave pulse. The output microwave can achieve its phase-lock in less than10nsand the phase-lock lasts for more than30ns, with a phase jitter less than±7degrees.Under the conditions of diode voltage505kV, current6.5kA, pulse width50ns, themain frequency of the microwave is2.84GHz, and the radiated power reaches700MW,which indicates a power effiency of22%and a gain of30dB. The radiation pattern of the main mode is still TM01mode,but the oscillation of the parasitic modes occurs. Thepossible reasons and suppression measures for the occuring of the parasitic modes aregiven.
引文
[1] James Benford, John A. Swegle and Edl Schamiloglu. High power microwaves(Second Edition)[M]. Norwood, Mass: Taylor&Francis,2007.
    [2]周传明,刘国治等译. Robert J. Barker and Edl Schamiloglu编著.高功率微波源与技术[M].北京:清华大学出版社,2005.
    [3]周传明,刘国治,刘永贵,李家胤,丁武等编著.高功率微波源[M].北京.原子能出版社,2007.
    [4]江伟华,张弛译. Bluhm H著.脉冲功率系统的原理与应用[M].北京:清华大学出版社,2008.
    [5] Schamiloglu E, Schoenbach K H and Vidmar R J. On the road to compact pulsedpower: adventures in materials, electromagnetic modeling, and thermalmanagement [C].14th international pulsed power conference, Dallas Texas USA,2003.
    [6]曾正中.实用脉冲功率技术[M].西安:陕西科学技术出版社,2003.
    [7]刘盛纲.相对论电子学[M].北京:科学出版社,1987.
    [8]刘锡三,张兰芝等译. R. B. Miller著.强流带电粒子束物理学导论[M].北京:原子能出版社,1990.
    [9]吴鸿适.微波电子学原理[M].北京:科学出版社,1987.
    [10]林光海译, F. F. Chen著.等离子体物理学导论[M].北京:人民教育出版社,1980.
    [11]徐家鸾,金尚宪.等离子体物理学[M].北京:原子能出版社,1981.
    [12]邵福球.等离子体粒子模拟[M].北京:科学出版社,2002.
    [13]王闽.等离子体物理及其计算机模拟[M].西安:陕西科学技术出版社,1993.
    [14] J. Benford. Space applications of High-power Microwaves [J]. IEEE Transactionson Plasma Science.2008,36(3):569-581.
    [15] Giri D V, Lackner H C, Baum E, et al. Design, fabrication and testing of aparaboloidal reflector antenna and pulse system for impulse-like waveforms [J].IEEE Trans. Plasma Sci.1997,25(2):318.
    [16] Swegle J A, Poukey J W, Leifeste G T. Backward wave oscillators with rippledwall resonators: Analytic theory and numerical simulation [J]. Physics of Fluids,1985,28(9):2882-94.
    [17] Miller S M, Antonsen T M, Levush B, et al. Theory of relativistic backward waveoscillators operating near cutoff [J]. Phys Plasmas,1994,1(3):730-740.
    [18] Levush B, Antonsen T M, Vlasov A N, et al. High-efficiency relativisticbackward wave oscillator: theory and design [J]. IEEE Trans. Plasma Sci.1996,24(3).
    [19] Yalandin M I, Mesyats G A, Rostov V V, et al. Compact Ka-Band BackwardWave Generator of Superradiative Pulses Operating at Reduced GuidingMagnetic Field [J]. IEEE Trans. Plasma Sci.2008,36(5):2604-2608.
    [20] Rostov V, Totmeninov E, Yalandin M. High-power relativistic microwavesources based on the backward wave oscillator with a modulating resonantreflector [J]. Technical Physics,2008,53(11):1471-8.
    [21] R. Z. Xiao, X. Zhang, L. J.Zhang, et al. Efficient generation of multi-gigawattpower by a klystron-like relativistic backward wave oscillator[J]. Laser andParticle Beams.2010,28,505.
    [22] D. Shiffler, J. A. Nation, G. S. Kerslick. A high-power traveling wave tubeamplifier [J]. IEEE Trans. Plasma Sci.1990,18(3):546.
    [23] Bugaev S P, Cherepenin V A, Kanavets V I, et al. Relativistic multiwaveCherenkov generators [J]. IEEE Trans Plasma Sci,1990,18(3):525-536.
    [24]舒挺.多波切伦柯夫振荡器的研究[D].长沙:国防科技大学,1998.
    [25]张军.新型过模慢波高功率微波发生器的研究[D].长沙:国防科技大学,2004.
    [26] S.P. Bugaev, V. A. Cherepenin, V. I. Kanavets, et al. Investigation of amillimeter-wavelength range relativistic diffraction generator [J]. IEEE Trans.Plasma Sci.,1990,18:518–524.
    [27] Levine J S, Harteneck B D, Price H D. Frequency-agile relativistic magnetrons
    [C]//BRANDT H E. SPIE. San Diego, CA, USA; SPIE.1995:74-79.
    [28] M. C. Clark, B. M. Marder, and L.D. Bacon. Magnetically InsulatedTransmission Line Oscillator [J]. Appl. Phys. Lett.1988,52:78.
    [29] Haworth M D, Baca G, Benford J, et al. Significant pulse-lengthening in amultigigawatt magnetically insulated transmission line oscillator [J]. IEEE TransPlasma Sci,1998,26(3).
    [30] Fan Y W, Shu T, Liu Y G, et al. A Compact Magnetically Insulated LineOscillator with New-Type Beam Dump [J]. Chinese Physics Letters,2005,22(1).
    [31] Fan Y W, Zhong H H, Li Z Q, et al. Recent progress of the improvedmagnetically insulated transmission line oscillator [J]. Rev. Sci. Instrum.2008,79(3).
    [32] M. Friedman, J. Krall, Y.Y. Lau, et al. Efficient generation of multigigawatt rfpower by a klystron like amplifier [J].Rev. Sci. Instrum.1990.61(1).
    [33] Bugaev S P, Cherepenin V A, Kanavets V I, et al. Relativistic multiwaveCherenkov generators [J]. IEEE Trans Plasma Sci,1990,18(3).
    [34] G. Huttlin, M. Bushell, D. Conrad, et al. The Reflex-Diode Source on Aurora [J].IEEE Trans. Plasma Sci.1990,18:618.
    [35] Price, D., J. S. Levine, and J. Benford. Diode plasma effects on the MicrowavePulse length from Relativistic Magnetrons [J]. IEEE Transactions on PlasmaScience.1998,26:348.
    [36] Agee F.J. Evolution of pulse shortening research in narrow band, high powermicrowave sources [J]. IEEE Transactions on Plasma Science.1998,26(3).
    [37]汪海洋.高功率微波功率合成技术研究[D].成都:电子科技大学,2003.
    [38]张嘉焱.高功率微波空间功率合成的初步研究[D].长沙:国防科技大学,2006.
    [39]魏惠月. L波段磁控管锁相及功率合成技术研究[D].成都:电子科技大学,2008.
    [40]路通.空间功率合成中阵列天线的应用研究[D].成都:电子科技大学,2009.
    [41]金海焱.新型微波毫米波空间功率合成技术研究[D].成都:电子科技大学,2010.
    [42] Guolin Li, Ting Shu, Jun Zhang, Jianhua Yang, and Chengwei Yuan. Generationof gigawatt level beat waves [J]. Appl. Phys. Lett.2010,96(234102).
    [43] Guolin Li, Ting Shu, Chengwei Yuan, et al. Coupling output of multichannelhigh power microwaves [J]. Phys. Plasma,2010,17(123110).
    [44] Qiang Zhang, Chengwei Yuan, Lie Liu. T-junction waveguide-based combininghigh power microwave beams[j]. Phys. Plasma.2011,18(083110).
    [45] J. Benford, H. Sze, W. Woo, et al. Phase locking of relativistic magnetrons [J].Phys. Rev. Lett.1989,62(8).
    [46] J.S. Levine, J. Benford, H. Sze, W. Woo, et al, Strongly coupled relativisticmagnetrons for phase-locked arrays, SPIE Vol.1061Microwave and ParticleBeam Sources and Directed Energy Concepts(1989).
    [47] J.S. Levine, N.Aiello, and J. Benford, Design of a compact phase-locked moduleof relativistic magnetrons, SPIE Vol.1226Intense Microwave and ParticleBeams(1990).
    [48] J.S. Levine, N.Aiello, J. Benford, and B. Harteneck, Design and operation of amodule of phase-locked relativistic magnetrons, J. Appl. Phys.1991,70(5).
    [49] Jennifer M. Butler, and Charles B. Wharton, Twin Traveling-Wave TubeAmplifiers Driven by a Relativistic Backward-Wave Oscillator, IEEETransactions on Plasma Science,1996,24(3).
    [50] D. Price, H. Sze, et al, High-Power Vicator phase-Locking Demonstrations atPhysics International, SPIE Vol.1061Microwave and Particle Beam Sources andDirected Energy Concepts(1989).
    [51] D. Price, H. Sze, Phase-Stability Analysis of the Magnetron-Driven VircatorExperiment, IEEE Transactions on Plasma Science,1990,18(3).
    [52] T.A. Treado, P. D. Brown, T. A. Hansen, D. J. Aiguier. Phase locking of twolong-pulse high-power magnetrons [J]. IEEE transactions on plasma science.1994,22(5).
    [53] B. M. Marder, M. C. Clark, L. D. Bacon, J. M. Hoffman, R. W. Lemke, and P. D.Coleman. The splite-cavity oscillator: A high-power E-beam modulator andmicrowave source [J]. IEEE transactions on plasma science.1992,22(3).
    [54] R. Z. Xiao, C. H. Chen, X. W. Zhang, J. Sun. J. Appl. Phys.2009,105(053306).
    [55] R. Z. Xiao, C. H. Chen, J. Sun, X. W. Zhang, and L. J. Zhang. Appl. Phys. Lett.2011,98(101502).
    [56] J. Zhang, Z. Jin, J. Yang, et al. Recent Advance in Long-Pulse HPM SourcesWith Repetitive Operation in S-, C-, and X-Bands [J]. IEEE transactions onplasma science.2011,39(6).
    [57] R. Z. Xiao, X. W. Zhang, L. G. Zhang, et al. Factors influencing the microwavepulse duration in a klystron-like relativistic backward wave oscillator [J]. Phys.Plasma.2012,19(073106).
    [58] R. Z. Xiao, C. H. Chen, W. Song, et al. RF phase control in a high-powerhigh-efficiency klystron-like relativistic backward wave oscillator [J]. J. Appl.Phys.2011,110(013301).
    [59] W. Song, J. Sun, H. Shao, et al. Inducing phase locking of multiple oscillatorsbeyond the Adler’s condition [J]. J. Appl. Phys.2012,111(023302).
    [60] W. Song, Y. Teng, Z. Q. Zhang, et al. Rapid startup in relativistic backward waveoscillator by injecting external backward signal [J]. Phys. Plasma.2012,19(0831050).
    [61] Y. Teng, W. Song, J. Sun, et al. Phase locking of high power relativisticbackward wave oscillator using priming effect [J]. J. Appl. Phys.2012,111(043303).
    [62] M. Friedman, J. Krall, Y.Y. Lau, et al. Externally modulated intense relativisticelectron beams [J]. J. Appl. Phys.1988,64(7).
    [63]常安碧.影响微波功率合成效率的相关因素及对电子束源的基本要求[C]//首届全国脉冲功率会议.2009,安徽,芜湖.
    [64]郭焱华,黄华,罗雄,等. S波段相对论速调管放大器的相位测量[J].强激光与粒子束.2009,21(5).
    [65]黄华,郭焱华,金晓,等.相对论速调管放大器的相位特性研究[J].物理学报.2011,60(3):035201.
    [66]黄华.高功率微波功率合成的初步试验[C]//第八届全国高功率微波学术研讨会.宁夏,银川,2011.07.
    [67] Varian R, U.S., Patent224275[P].1937-10-11.
    [68] R. H. Varian, S. F. Varian. A high frequency oscillator and amplifier [J]. J. Appl.Phys.1939,10(321).
    [69] Arsenjewa-Heil A, Heil O. On a new method for producing short, undampedelectromagnetic waves of high intensiy [J]. Zeit.fur Physik,1935,95:752-773.
    [70] Hansen W W, A scheme for producing high-voltage electrons [J]. Journal ofApplied Physics,1938:654.
    [71] Y.Y. LAU, M. Friedman, J. Krall, et al. Relativistic Klystron Amplifier Drivenby Modulated Intense Relativistic Electron Beams [J]. IEEE Transactions onPlasma Science.1990,18(3).
    [72] M. Friedman. Present and future development of high power RKA. SPIE.1992,1629:2.
    [73] M. Friedman, V. Serlin, D. Colombant, et al. The influence of beam loading onthe operation of the relativistic klystron amplifier [C]. SPIE Vol.1226IntenseMicrowave and Particle Beams,1990.2-11.
    [74] D. Colombant, Y.Y. Lau, M. Friedman, et al. Relativistic klystron amplifiers III:dynamical limiting currents, nonlinear beam loading and conversion efficiency[J]. SPIE Vol.1407Intense Microwave and Particle Beams,1991.13-22.
    [75] J. Krall, M. Friedman, Y.Y. Lau, and V. Serlin. Relativistic klystron amplifiersIV: simulation studies of a coaxial-geometry RKA [J]. SPIE Vol.1407IntenseMicrowave and Particle Beams,1991.23-31.
    [76] M.Friedman, M.Ury. Production and Focusing of a High Power RelativisticAnnular Electron Beam [J]. Rev. Sci. Instrum.1970,41(9).
    [77] M. Friedman, M. Herndon. Generation of intense infrared radiation from anelectron beam propagating through a rippled magnetic field [J]. Appl.Phys.Lett.1973,22(12).
    [78] M.Friedman. Autoacceleration of an Intense Relativistic Electron Beam [J]. Phys.Rev. Lett.1973,31(18).
    [79] M.Friedman. Emission of intense microwave radiation from an automodulatedrelativistic electron beam [J]. Appl.Phys.Lett.1975,26(7).
    [80] M. Friedman and V. Serlin. Conversion of the energy of intense relativisticelectron beams into high-power electrical pulses [J]. Rev. Sci. Instrum.1983,54(12).
    [81] M. Friedman and V. Serlin. Interaction of a modulated intense relativisticelectron beam with a cavity [J]. Appl.Phys.Lett.1984,44(4).
    [82] V. Serlin, M. Friedman, M. Lampe, et al. RF Extraction Issues in the RelativisticKlystron Amplifiers[C]//SPIE,1994,21(54):11-17.
    [83] M. Lampe, R.F. Hubbard, M. Friedman, et al. Inductively-loaded wide-gapdesigns for Relativistic Klystrons[C]. SPIE Vol.2154Intense microwave pulsesII (1994)/49-60.
    [84] R.F. Hubbard, M. Lampe, M. Friedman, et al. simulation of beam-gapinteractions and microwave extraction in the NRL relativistic klystron amplifier
    [C]. SPIE Vol.2154Intense microwave pulses II (1994)/61-72.
    [85] M. Friedman, V. Serlin, M. Lampe, et al. Intense Electron Beam Modulation byInductively Loaded Wide Gaps for Relativistic Klystron Amplifiers [J]. Phy. Rev.Lett.1995,74(2).
    [86] M. Friedman, R. Fernsler, S. Slinker, et al. Efficient Conversion of the Energy ofIntense Relativistic Electron Beams into rf Waves [J]. Phy. Rev. Lett.1995,75(6).
    [87] M. Friedman and V. Serlin. Generation of a large diameter intense relativisticelectron beam for the triaxial relativistic klystron amplifier [J]. Rev. Sci. Instrum.1995,66(6).
    [88] M. Friedman,Propagation of an intense relativistic electron beam in an annularchannel [J]. J. Appl. Phys.1996,80(3).
    [89] M. Friedman,John Pasour and David Smithe. Modulating electron beams for anX band relativistic klystron amplifier [J]. Appl. Phys. Lett.1997,71(25).
    [90] J. Krall, M. Friedman, Y.Y. Lau, and V. Serlin. Simulation studies of a TKAoperating in the10-100GW regime [J]. IEEE Transactions on Electromagneticcompatibility.1992,34(3).
    [91] John Pasour and David Smithe, Larry Ludeking, and M. Friedman. High-Power,Annular-Beam Klystron Amplifiers [J]. CP625, High Energy Density and HighPower RF:5th Workshop. AIP2002.
    [92] Pasour John, Smithe David, and Luderking Larry. X-Band TriaxialKlystron[C].//AIP Conf. Proc.,2003,691:141-150.
    [93] B. E. Carlsten, R. J. Faehl, M. V. Fazio, W. B.Haynes, and R. M. Stringfield.Beam-cavity interaction physics for mildly relativistic intense-bean klystronamplifiers [J]. IEEE Trans. Plasma Sci.1994,22(5).
    [94] B. E. Carlsten, Faehl R.J., Fazio M.V. et al. Intense Space-Charge Beam PhysicsRelevant to Relativistic Klystron Amplifiers [J]. IEEE Transactions on PlasmaScience.1994,22(5).
    [95] Hendricks Kyle J, Coleman P D, Lemke R W, et al. Extraction of1GW of RFPower from an Injection Locked Relativistic Klystron Oscillator [J]. Phys. Rev.Lett.,1996,76(1).
    [96] Luginsland John W, Lau Y Y, Hendricks Kyle J. et al. A Model ofInjection-Locked Relativistic Klystron Oscillator [J]. IEEE Transactions onPlasma Science,1996,24(3).
    [97] Hendricks K J, Haworth M D, Englert T, et al. Increasing the RF Energy perPulse of an RKO [J]. IEEE Transactions on Plasma Science,1998,26(3).
    [98]王平山,黄华,夏连胜,等. X波段三腔相对论速调管放大器实验[C]//第一届高功率微波学术研讨会论文集.1994.
    [99]黄华,王平山,夏连胜,等. X波段四腔相对论速调管放大器实验[C]//第四届高能电子学学术交流会论文集.1995:216-219.
    [100]黄华,王平山,甘延青,等.L波段相对论速调管放大器研究[J].强激光与粒子束.1998,10(1):135-139
    [101]黄华. L波段相对论速调管放大器设计的理论分析与实验研究[D].绵阳,中国工程物理研究院,2001.
    [102]黄华,范植开,马乔生,等.长脉冲相对论速调管放大器的初步实验研究[J].强激光与粒子束.2002,14(6).
    [103]黄华,孟凡宝,常安碧,等.强流短脉冲相对论速调管放大器实验研究[J].强激光与粒子束.2004,16(10).
    [104]黄华,范植开,孟凡宝,等.S波段长脉冲相对论速调管放大器的实验研究[J].强激光与粒子束.2006,18(6).
    [105]雷禄容,范植开,黄华,等. S波段相对论速调管放大器同轴输出腔的数值模拟[J].强激光与粒子束.2006,18(10).
    [106]黄华,孟凡宝,范植开,等.相对论速调管三轴提取腔的分析与设计[J].物理学报.2006,55(10).
    [107]李正红,金晓,孟凡宝,常安碧,黄华.高增益S波段相对论速调管的3D研究[J].中国科学:物理学力学天文学,2010,40(6).
    [108]刘振帮. X波段同轴多注相对论速调管放大器的初步研究[C]//第一届HPM重点实验室年会.四川,绵阳,2012.06.
    [109]黄华. S波段长脉冲相对论速调管放大器的理论与实验研究[D].绵阳:中国工程物理研究院,2006.
    [110] Y. Wu, Z. Xu, X. Jin, Z. H. Li and C. X. Tang. Suppression of higher modeexcitation in a high gain relativistic klystron amplifier. Phys. Plasma.2012,19(023102).
    [111]王文祥.微波工程技术[M].北京:国防工业出版社,2009.
    [112]谢家麟,赵永翔著.速调管群聚理论[M].北京:科学出版社,1966.
    [113] R.J. Briggs. Space-charge waves on a relativistic unneutralized electron beam andcollective ion acceleration. Phys. of Fluids.1976,19(8).
    [114]丁耀根.大功率速调管的理论与计算模拟[M].北京:国防工业出版社,2008,P61.
    [115] Bruce E. Carlsten and Patrick Ferguson. Numerical determination of thematching conditions and drive characteristics for a klystron input cavity withbeam. IEEE Transaction on electron devices.1997,44(5).
    [116]顾继慧.微波技术[M].北京:科学出版社,2004:395.
    [117] Bruce Eric Carlsten. A self consistent numerical analysis of klystrons using largesignal beam wave interaction simulations [D]. Stanford University,1985.
    [118]丁耀根.大功率速调管的设计制造和应用[M].北京:国防工业出版社.2010.12.
    [119]朱敏,吴鸿适.速调管双重入式柱形腔的计算[J].电子学报,1981,4:8-15.
    [120]黄华,李正红,江金生.相对论速调管单重入谐振腔的解析分析[J].强激光与粒子束.2000,12(4).
    [121]张兆镗.微波管高频系统的测量[M].北京:国防工业出版,1982:29.
    [122]张泽海,舒挺,张军,等.反射电子对RKA工作稳定性的影响[C]//第十二届高功率粒子束会议.2010,内蒙古,海拉尔.
    [123]黄华,王平山,甘延青,等.L波段相对论速调管输入腔研究[J].强激光与粒子束.1997,9(4).
    [124]雷禄容,范植开,黄华,等.速调管输入腔开放腔的高频特性分析与实验研究[J].强激光与粒子束,2009,21(4).
    [125]雷禄容,黄华,罗雄,等.速调管放大器大漂移管尺寸输入腔的3维分析与模拟[J].强激光与粒子束,2011,23(1).
    [126]张泽海,舒挺,张军,等.双耦合口RKA输入腔特性的等效电路法研究[J].强激光与粒子束.2011,23(9).
    [127]张丁,曹静,缪亦珍,等.群时延时间法求解速调管输出腔的外观品质因数Qext [J].真空科学与技术学报,2007,27(5).
    [128]李德儒.群时延测量技术[M].北京;电子工业出版社,1990:15-21.
    [129]张肇仪,周乐柱,吴德明,等译. David M. Pozar.著.微波工程(第三版)Microwave Engineering (3rdedition)[M].北京:电子工业出版社.2006. p:265.
    [130]黄华,李正红,孟凡宝.大耦合孔同轴输出腔的3维解析分析[J].强激光与粒子束,2004,16(12).
    [131]袁成卫.新型高功率微波共轴模式转换器及模式转换天线研究研究[D].博士学位论文长沙:国防科技大学,2006.
    [132]张永清,丁耀根.用于大功率微波器件的新型薄膜衰减材料[J].真空电子技术.2004.03
    [133]张永清,丁耀根,阴生毅,等. FeSiAl微波衰减涂层电磁特性分析[J].真空电子技术.2006.06
    [134] Gunin A. Technical description of Torch-01[R]. Institute of High CurrentElectronics,2007.
    [135]张建德,李传胪,钟辉煌等.自由电子激光装置导引场绕组设计[J].国防科技大学学报.1993,15:113.
    [136]刘树兰.微波电子管磁路设计手册.北京:国防工业出版社,1984:275.
    [137]曹亦兵.低阻无箔渡越辐射振荡器的研究[D].长沙:国防科学技术大学,2008.10.
    [138]舒挺,王勇,李继健等.高功率微波的远场测量[J].强激光与粒子束,2003,15(5).
    [139] Yaghjian A. D. Approximate formulas for the far fields and gain of open endedrectangular waveguide. IEEE Trans. Antennas and Propagation.1984,32:378-384.
    [140]华达牌连接器.高频电连接器[Z].陕西华达科技股份有限公司,2010年9月版.
    [141]黄华,范植开,谭杰,等.长脉冲相对论速调管中束流脉冲缩短的研究[J].物理学报.2004,53(4)
    [142]黄华,罗雄,雷禄容,等.长脉冲相对论速调管放大器杂频振荡的分析与抑制[J].电子学报.2010,38(7)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700