高功率半导体激光器及其阵列的导数检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过电和光导数方法对高功率半导体激光器的可靠性进行了理论计算和实验研究。
     我们构建的测试系统采用PC-NIDAQ虚拟仪器技术,并通过软硬件的控制实现单管及风冷条形激光器的切换,使该系统在不影响测试精度的前提下具有测试单管及阵列的兼容性。并在此基础上针对高功率激光器及其阵列驱动电流大输出光功率高等特点,对测试系统进行了软硬件等一系列改进,进一步提高了实用性和系统的测试精度。
     基于原来的高功率半导体激光器电导数测试技术,用我们所构建的测试系统对百余支高功率单管激光器和几十支阵列进行了电导数测试和可靠性研究,针对条形线阵列的实际特点加入了光二阶导数参数Q,并对单管和阵列器件进行了光谱测试,与电导数测试进行了相互印证,证实了光二阶导数曲线及参数Q可以有效表征器件管芯的均匀性。
     另外,为了更好的了解阵列的工作情况,搭建了模拟阵列测试系统,用多个单管并联模拟组成阵列进行电导数测试,研究了阵列单元器件与整体的关系及对可靠性的影响。
     再次,通过电路模型进行了阵列模拟电导数计算和理论分析,研究了列阵单元差异与列阵电导数参数之间的关系,以及列阵单元的一致性在列阵电导数曲线及其参数上的体现,通过计算结果与一些阵列电导数测试结果的分析比较,进一步分析了电导数参数与阵列可靠性的关系。证明了可以通过导数测试技术对高功率激光器及其阵列的质量和可靠性进行评价、筛选,导数检测方法是一种无损、快速、简便的检测技术。
High power laser diode (LD) and laser diode arrays (LDA) have been used widely in many fields, such as environment monitor, manufactory, medical treatment, communications, scientific research, military affaires, etc., and the LD is a crucial component which can determine the reliability of the whole laser system. The research on the quality and the reliability of the LDA is vitally significant for fabrication and applications. The usual method of evaluating the quality and the reliability of LDs is by electrical aging. The LD works under the certain temperature and driving current, and the devices with large variation rate of output optical power at certain driving current are screened out. Since every device has to work under the aging conditions for a period in this method, the lifetime of the device will inevitably be shortened. This method has the demerits of the high equipment cost, critical aging condition, long test time. And also it’s impossible that the unreliable LDA device was screen out by aging test.
     The reliability of the LD and the bar is studied by the electrical derivative technology. A measurement system of electrical derivative based on virtual instruments technology is established. The hardware the software and their modification of the system are presented. For example, the voltage is got by the four-wire resistance method; the print and preview function is added to the test program with CFormView base class. The time for the data receiving in the program is adjusted according to the resistance test. The test chambers and the DC powers for both the single LD and the LDA are integrated in one test system and controlled by one PC program. The precision, repetition and convenience of the test system are improved remarkably.
     More than 100 LDs and several tens of LDAs are measured and analyzed by the test system. According to the characteristic of the bar, the new parameter Q which denotes the ratio of the height to width of the peak on the d2P/dI2~I curve is presented. After compared with the spectrum of device, the work condition of laser diode near the theoshold can be shown with the parameter of Q. The device with a larger value of Q parameter has the better uniformity and reliability. The result shows that the values of h parameters of no-aluminum LD are less than others’, and the affection factor is summarized and demonstrated. For better understanding of the work condition of LDA, the virtual bar composed by several LDs parallelly connected is measured by another measurement system. The optic power of every single LD of a virtual bar is tested respectively and the results are transfered to the computer, then dealt with by a program. In this way, the condition of every unit emitting in one LDA is researched. The analysis of the result indicates that the bar with good uniformity has a good reliability. The equivalent circuit of high power bar is established. The bars with different uniformity are simulated by MATLAB software. The simulation results and derivative curves show that the derivative parameters h, m, b, Ith, Q, et al. of the bars are directly interrelated to the uniformity and the reliability of the bar. The values of the parameter should be within a certain range. The device with a good reliability usually coincids the condition mentioned above. On the other hand, the result demonstrates that the derivative measurement is an effective method to evaluate the reliability of laser diode bar. This method is a nondestructive, easy and fast method. The comparison of the values of Q and the result of spectrum from device also proves the conclusion.
     The parameters and curves of the derivative method correspond to the reliability of the bar. And this method can be used to evaluate the high power LD and LDA nondestructively. The result can help to analyze the mechanism how failure is caused. The prospect of the derivative method is nice according to my research work.
引文
[1] Bernard M G, Duraffourg G. Laser conditions in semiconductors[J] Physica Status Solidi. 1961, 1(7): 699-703.
    [2] Nathan M I, Dumke W P, Burns G, Jr. Dill F H, Lasher G. Stimulated Emission of Radiation from GaAs p-n Junctions[J] Applied Physics Letters. 1962, 1(3): 62-64.
    [3] Quist T M, Rediker R H, Keyes R J, Krag W E, Lax B, Mcwhorter A L, Zeigler H J. Semiconductor Maser of GaAs[J] Applied Physics Letters. 1962, 1(4): 91-92.
    [4] Hall R N, Fenner G E, Kingsley J D, Soltys T J, Carlson R O. Coherent light emission from GaAs junction[J] Physical Review. 1962, 9(9): 366-368.
    [5] Dumke W P. Interband transitions and maser action[J] Physical Review. 1962, 127(5): 1559-1563.
    [6]张月清,王立军.半导体激光器进展[M].北京:科学出版社, 2002.
    [7] High-power laser-diode bar reaches 71% wallplug efficiency[J] Laser Focus World. 2004, 40(12): 13.
    [8] Miyajima H, Kan H, Furuta S I, Uchiyama T, Oishi S, Yamanaka M, Izawa Y, Nakai S. Characteristics of laser diode bar and stack with jet-type, water-cooled heatsink[J] Japanese Journal of Applied Physics Part 1: Regular Papers Short Notes & Review Papers. 2004, 43(9A): 6074-6078.
    [9] Miyajima H, Watanabe A, Matsuura M, Kan H. High-power, high-brightness 1cm laser diode bar with V-shaped optical waveguide structure[J] Japanese Journal of Applied Physics Part 2: letters and express letters. 2004, 43(8A): L1007-L1009.
    [10] 'Funryu' allows 808-nm laser-diode bar to reach 255-W output[J] Laser Focus World. 2004, 40(3): 11.
    [11] Li H X, Towe T, Chyr I, Brown D, Nguyen T, Reinhardt F, Jin X, Srinivasan R, Berube M, Truchan T, Bullock R, Harrison J. Near 1 kW of continuous-wave power from a single high-efficiency diode-laser bar[J] IEEE Photonics Technology Letters. 2007, 19(13-16): 960-962.
    [12] Li H X, Chyr I, Jin X, Reinhardt F, Towe T, Brown D, Nguyen T, Berube M, Truchan T, Hu D, Miller R, Srinivasan R, Crum T, Wolak E, Bullock R, Mott J, Harrison J. >700W continuous-wave output power from single laser diode bar[J] Electronics Letters. 2007, 43: 27-28.
    [13]张靖,刘刚明,田坤,廖柯.大功率半导体激光器最新研究进展[J].半导体光电. 2007, 28(2): 151-155.
    [14]刘国军,薄报学,曲轶,辛德胜,姜会林.高功率半导体激光器技术发展与研究[J].红外与激光工程. 2007, 36(Z1): 4-6.
    [15]李晋闽.高平均功率全固态激光器发展现状、趋势及应用[J].激光与光电子学进展. 2008, 45(7): 16-29.
    [16] Zheng Y J, Niigaki M, Miyajima H, Hiruma T, Kan H. High-Efficiency 894-nm Laser Emission of Laser-Diode-Bar-Pumped Cesium-Vapor Laser[J] Applied Physics Express. 2009, 2(3): 32501.
    [17] Wang J W, Yuan Z B, Zhang Y X, Zhang E T, Wu D, Liu X S. 250W QCW conduction cooled high power semiconductor laser[C]. Electronic Packaging Technology & High Density Packaging, 2009. ICEPT-HDP '09. International Conference on:, 2009: 451-455.
    [18] Lu G G, Huang Y, En Y F, Yang S H, Lei Z F. Reliability of High Power QCW-AlGaAs/GaAs 808nm cm-Bars[C]. Photonics and Optoelectronics, 2009. SOPO 2009. Symposium on:, 2009: 1-4.
    [19] Safaisini R, Joseph J R, Dang G, Lear K L. Uniform high bandwidth, high CW power VCSEL arrays[C]. Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009. Conference on:, 2009: 1-2.
    [20] Lu G G, Huang Y, En Y F, Yang S H, Lei Z F. Reliability of high power QCW cm-bar arrays[C]. Physical and Failure Analysis of Integrated Circuits, 2009. IPFA 2009. 16th IEEE International Symposium on the:, 2009: 298-301.
    [21] Lim J J, Sujecki S, Lang L, Zhang Z C, Paboeuf D, Pauliat G, Lucas-Leclin G,Georges P, Mackenzie R C I, Bream P, Bull S, Hasler K H, Sumpf B, Wensel H, Erbert G, Thestrup Nielsen B, Petersen P M, Michel N, Krakowski M, Larkins E C. Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes[J] IEEE Journal of Selected Topics in Quantum Electronics. 2009, 15(3): 993-1008.
    [22]李光耀. InGaAsPInP半导体功率放大激光器及列阵的研究[D].长春理工大学, 2006.
    [23] Zhang F, Wang C, Geng R, Tong Z, Ning T G, Jian S S. Anamorphic beam concentrator for linear laser-diode bar[J] Optics Express. 2007, 15(25): 17038-17043.
    [24]张楠.大功率半导体激光器线阵列的研究[D].北京工业大学, 2007.
    [25]王辉.连续大功率半导体激光器的研制[D].西安电子科技大学, 2007.
    [26]谢红云,安振峰,陈国鹰.大功率半导体激光器阵列[J].半导体技术. 2003, 28(4): 33-36.
    [27] Jabczyński J K, ?endzian W, Kwiatkowski J. CW mode locked Nd : YVO4 laser pumped by 20-W laser diode bar[J] Opto-Electronics Review. 2006, 14(2): 131-135.
    [28] Jechow A, Raab V, Menzel R. High cw power using an external cavity for spectral beam combining of diode laser-bar emission[J] Applied Optics. 2006, 45(15): 3545-3547.
    [29] Applegate R W, Squier J, Vestad T, Oakey J, Marr D W M, Bado P, Dugan M A, Said A A. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping[J] Lab on a Chip. 2006, 6(3): 422-426.
    [30] Zheng Y J, Kan H. Narrow-bandwidth high-brightness external-cavity laser diode bar[J] Japanese Journal of Applied Physics Part 2: letters and express letters. 2007, 46(10): L218-L220.
    [31] Bonora S, Villoresi P. Diode laser bar beam shaping by optical path equalization[J] Journal of Optics A: Pure and Applied Optics. 2007, 9(5): 441-445.
    [32] Gil Y, Umurhan O M, Riess I. Properties of solid state devices with mobile ionic defects. Part I: The effects of motion, space charge and contact potential in metalvertical bar semiconductor vertical bar metal devices[J] Solid State Ionics. 2007, 178(1-2): 1-12.
    [33]李峻灵.半导体激光器功率稳定性的研究[D].哈尔滨理工大学, 2007.
    [34]朱立岩. 850nm高亮度半导体激光器腔面膜的设计与制备[D].长春理工大学, 2007.
    [35] Bach T, Fretz M, Jazbinsek M, Guenter P. Double phase conjugate mirror using Sn2P2S6 for injection locking of a laser diode bar[J] Optics Express. 2008, 16(20): 15415-15424.
    [36] Zhang F, Liu C, Wang C C, Jian S S. Beam concentration and homogenization for high power laser diode bar[J] Optics Communications. 2008, 281(17): 4406-4410.
    [37] Gourevitch A, Venus G, Smirnov V, Hostutler D A, Glebov L. Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping[J] Optics Letters. 2008, 33(7): 702-704.
    [38]郝子强.大功率半导体激光器控制及调制技术的研究[D].长春理工大学, 2008.
    [39]刘谊元.半导体激光器改善峰值激射波长的研究[D].长春理工大学, 2008.
    [40] Liu X S, Wang J W, Wei P Y. Study of the mechanisms of spectral broadening in high power semiconductor laser arrays[C]. Electronic Components and Technology Conference, 2008. ECTC 2008. 58th:, 2008: 1005-1010.
    [41] Shi J W, Chen P Y, Chen C C, Guo S H, Sheu J K, Lai W C. High-speed and high-power GaN-based cascade green Light-Emitting-Diode arrays for in-car data communication[C]. IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008. 21st Annual Meeting of the:, 2008: 888-889.
    [42] Huang R K, Chann B, Missaggia L J, Augst S J, Swint R B, Donnelly J P, Sanchez-Rubio A, Turner G W. High-power coherent beam combination of semiconductor laser arrays[C]. Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on:, 2008: 1-2.
    [43] Vijayakumar D, Jensen O B, Thestrup B. 980 nm high brightness external cavity broad area diode laser bar[J] Optics Express. 2009, 17(7): 5684-5690.
    [44] Trivellin N, Meneghini M, Meneghesso G, Zanoni E, Orita K, Yuri M, Tanaka T, Ueda D. Reliability analysis of InGaN Blu-Ray laser diode[J] Microelectronics Reliability. 2009, 49(9-11): 1236-1239.
    [45] Paboeuf D, Braun O, Lucas-Leclin G, Michel N, Krakowski M, Georges P. Efficient coherent combining and wavelength stabilization of tapered lasers with a volume Bragg grating[C]. Baltimore, MD:, 2009.
    [46] Wang J W, Yuan Z B, Kang L J, Yang K, Zhang Y, Liu X S. Study of the mechanism of "smile" in high power diode laser arrays and strategies in improving near-field linearity[C]. IEEE Electronic Components and Technology Conference, 2009. ECTC 2009. 59th:, 2009: 837-842.
    [47] Shen L, Xin G F, Fang Z J, Qu R H. Study on wavelength distribution of high power laser diode array[C]. OptoElectronics and Communications Conference, 2009. OECC 2009. 14th:, 2009: 1-2.
    [48] Vijayakumar D, Jensen O B, Ostendorf R, Westphalen T, Thestrup B. Spectral beam combining of a 980 nm tapered diode laser bar[J] Optics Express. 2010, 18(2): 893-898.
    [49] Kroemer H. A proposed class of heterojunction injection lasers[J] Proceedings of the IEEE. 1963, 51(12): 1782-1783.
    [50] Alferov Z I, Andreev V M, Portnor E L, Trukan M K. AlAs-GaAs Heterojunction Injection Lasers with A Low Room-Temperature Threshold[J] Fizika i Tekhnika Poluprovodnikov. 1969, 3(9): 1328-1332.
    [51] Hayashi I, Panish M B, Foy P W, Sumski S. Junction lasers which operate continuously at room temperature[J] Applied Physics Letters. 1970, 17(3): 109-111.
    [52] Hayashi I, Panish M B, Reinhart F K. GaAs-AlxGa1-xAs double heterostructure injection lasers[J] Applied Physics Letters. 1971, 42(5): 1929-1941.
    [53] Kazarinov R F, Suris R A. Possibility of amplification of electromagnetic wavesin a semiconductor with a superlattice[J] Fizika i Tekhnika Poluprovodnikov. 1971, 5(4): 797-800.
    [54] Hayashi I, Panish M B, Reinhart F K. GaAs-AlxGa1-xAs double heterostructure injection lasers[J] Journal of Applied Physics. 1971, 42(5): 1929-1941.
    [55] Kogelnik H W. Optics at Bell Laboratories—Lasers in Technology[J] Applied Optics. 1972, 11(11): 2426-2434.
    [56] Tenchio G. Low-frequency intensity fluctuations of c.w. d.h. GaAlAs-diode lasers[J] Electronics Letters. 1976, 12(21): 562-563.
    [57]江剑平.半导体激光器[M].北京:电子工业出版社, 2000.
    [58]杜国同.半导体激光器件物理[M].长春:吉林大学出版社, 2002.
    [59]余金中.半导体光电子技术[M].北京:化学工业出版社, 2003.
    [60]杜宝勋.半导体激光器原理[M].北京:兵器工业出版社, 2004.
    [61] Alferov Z I. The history and future of semiconductor heterostructures[J] Review. 1998, 32(1): 1-14.
    [62]程东明.无铝半导体激光器列阵及其组装技术的研究[D].中国科学院研究生院(长春光学精密机械与物理研究所), 2003.
    [63]李明亮,王祖朝,王广祥,朱月红.提高半导体激光器可靠性的研究[J].科学技术与工程. 2006, 6(16).
    [64]袁振邦,王警卫,吴迪,陈旭,刘兴胜.大功率半导体激光器阵列的稳态和瞬态热行为[J].中国激光. 2009, 36(8): 1957-1962.
    [65]唐裕霞.大功率半导体激光器列阵散热技术的研究[D]. 2003.
    [66] Harnagel G L, Cross P S, Scifres D R, Welch D F, Lennon C R, Worland D P, Burnham R D. High-power quasi-cw monolithic laser diode linear arrays[J] Applied Physics Letters. 1986, 49(21): 1418-1420.
    [67] Single 1-cm diode-laser bar emits 267 watts[J] Laser Focus World. 2000, 36(3): 9.
    [68] Wetter N U. Three-fold effective brightness increase of laser diode bar emission by assessment and correction of diode array curvature[J] Optics & Laser Technology.2001, 33(3): 181-187.
    [69]辛国锋,瞿荣辉,陈高庭,方祖捷.大功率半导体激光器阵列的封装技术[J].激光与光电子学进展. 2005, 42(8): 54-57.
    [70]徐小红.半导体激光器寿命测试系统研制[D].中国地质大学(北京), 2005.
    [71] Johnson L A. Laser diode burn-in and reliability testing[J] IEEE Communications Magazine. 2006, 44(2): S7-S10.
    [72] Zheng Y J, Niigaki M, Kan H. Efficient operation of a cesium-vapor laser longitudinally pumped by a fine-tunable bandwidth-narrowed laser-diode bar[J] Japanese Journal of Applied Physics Part 1: Regular Papers, Brief Communications & Review Papers. 2007, 46(12): 7768-7770.
    [73] Hellstrom J E, Pasiskevicius V, Laurell F, Denker B, Galagan B, Ivleva L, Sverchkov S, Voronina I, Horvath V. Laser performance of Yb: GdCa4O(BO3)(3) compared to Yb: KGd(WO4)(2) under diode-bar pumping[J] Laser Physics. 2007, 17(10): 1204-1208.
    [74] Mudge D, Veitch P J, Munch J, Ottaway D, Hamilton M W. High-power diode-laser-pumped CW solid-state lasers using stable-unstable resonators[J] IEEE Journal of Selected Topics in Quantum Electronics. 1997, 3(1): 19-25.
    [75] Moore N, Clarkson W A, Hanna D C, Lehmann S, Bosenberg J. Efficient operation of a diode-bar-pumped Nd : YAG laser on the low-gain 1123-nm line[J] Applied Optics. 1999, 38(27): 5761-5764.
    [76] Graf T, Bente E, Burns D, Dawson M D, Ferguson A I. Multi-Watt Nd : YVO4 laser, mode locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar[J] Optics Communications. 1999, 159(1-3): 84-87.
    [77] Li C, Mackenzie J I, Wang J, Shepherd D P. A diode-bar side-pumped waveguide laser with an extended stable cavity for spatial mode control[J] Optics Communications. 2003, 226(1-6): 317-321.
    [78] Cerutti L, Garnache A, Genty F, Ouvrard A, Alibert C. Low threshold, room temperature laser diode pumped Sb-based V(E)under-bar-CSEL emitting around 2.1mu m[J] Electronics Letters. 2003, 39(3): 290-292.
    [79] Druon F, Chenais S, Balembois F, Georges P, Gaume R, Viana B. Diode-pumped continuous-wave and femtosecond laser operations of a heterocomposite crystal Yb3+: SrY4(SiO4)(3)O vertical bar vertical bar Y2Al5O12[J] Optics Express. 2005, 30(8): 857-859.
    [80] Jeffries B, Coutts D W. Asymmetric beam shaping of a diode-bar laser for multipass pumping of a thin-crystal laser[J] Journal of the Optical Society of America B: Optical Physics. 2005, 22(10): 2121-2128.
    [81] Jeffries B, Coutts D W. Three-level operation of a diode-bar-pumped Yb : S-FAP laser[J] Optics Communications. 2006, 264(1): 55-62.
    [82]张小民,贾伟,丁磊,李明中,赵润昌. NIF注入激光系统最新进展[J].激光与光电子学进展. 2004, 42(4): 2-6.
    [83]高欣,曲轶,薄报学,王晓华,张兴德. 808nm无铝材料激光器可靠性筛选的实验探讨[J].光电子激光. 1999, 10(6): 580-581.
    [84]王乐,刘云,吴东江,王立军.高功率激光二极管的可靠性研究[J].吉林大学学报(信息科学版). 2003, 21(3): 212-215.
    [85]亢俊健,张世英,苏美开,王大成.半导体激光器加速寿命测试系统研制.激光技术[J].激光技术. 2004, 28(3): 228-231.
    [86] Hu G J, Shi J W, Zhang S M, Li Y J. The low-frequency electrical noise as reliability estimation for high power semiconductor lasers[J] Optical and Quantum Electronics. 2002, 34(10): 987-992.
    [87] Hu G J, Shi J W, Zhang S M. The correlation between the low-frequency electrical noise of high-power quantum well lasers and devices surface non-radiative current[J] Microelectronics Reliability. 2001, 42(1): 153-156.
    [88]姜帅.半导体激光器1/f噪声虚拟测试及处理系统[D].吉林大学, 2006.
    [89]李文畅.半导体激光器噪声虚拟测试系统[D].吉林大学, 2006.
    [90] Li H Y, Qi L Y, Shi J W, Jin E S, Li Z T, Gao D S, Yu J Z, Guo L. Effective method for evaluation of semiconductor laser quality[J] Microelectronics Reliability.2000, 40(2): 333-337.
    [91] Shi J W, Jin E S, Gao D S. The junction voltage saturation and reliability of semiconductor laser[J] Optical and Quantum Electronics. 1992, 24(7): 775-781.
    [92] Shi J W, Jin E S, Li H Y, Ma J, Qi L Y, Gao D S. The characteristic junction parameter of a semiconductor laser and its relation with reliability[J] Optical and Quantum Electronics. 1996, 28(6): 647-651.
    [93] Shi J W, Jin E S, Ma J, Gao D S. b and its Temperature Dependence are the Important Criteria of the Reliability of Semiconductor Lasers[J] Microelectronics and Reliability. 1994, 34(7): 1405-1408.
    [94] Shi J W, Jin E S, Ma J, Dai Y S, Zhang X F. An improved approach and experimental results of a low-frequency noise measurement technique used for reliability estimation of diode lasers[J] Microelectronics Reliability. 1994, 34(7): 1261-1264.
    [95] Barnes P A, Paoli T L. Derivative measurements of the current—voltage characteristics of double—heterostructure injection lasers[J] IEEE Journal of Quantum Electronics. 1976, QE-12(10): 633-639.
    [96] Paoli T L, Barnes P A. Saturation of the junction voltage in stripe-geometry (AlGa)As double-heterostructure junction lasers[J] Applied Physics Letters. 1976, 23(6): 714-717.
    [97] Joyce W B, Dixon R W. Electrical characterization of heterostructure lasers[J] Journal of Applied Physics. 1978, 49(7): 3719-3728.
    [98] Paoli T L. Theoretical Derivatives of the Electrical Characteristic of a Junction Laser Operated in the Vicinity of Threshold[J] IEEE Journal of Quantum Electronics. 1978, 14(1): 62-68.
    [99]刘君华.虚拟仪器编程语言LabWindows/CVI教程[M].北京:电子工业出版社, 2001 1-3.
    [100] Cao J S, Guo S X, Shi J W, Liang Q C, Liu K X, Li H Y. Design of testing system for high power semiconductor lasers and laser arrays[C].广州:, 2006.
    [101]曹军胜,郭树旭,石家纬,解澎,梁庆成,刘奎学.基于虚拟仪器技术的半导体激光器质量检测系统[C]. 2005.
    [102]邓军,单江东,张娜,田小建.大功率半导体激光器驱动器的研究与设计[J].半导体光电. 2003, 25(5): 319-321.
    [103]郜峰利,曹军胜,张爽,郭树旭.基于PCI-6014的程控半导体激光器驱动电源设计[J].应用激光. 2006, 26(6): 449-451.
    [104]石家纬,金恩顺,郭建新,马靖,高鼎三.半导体激光器的可靠性[J].半导体光电. 1991, 12(1): 1-5.
    [105]石家纬,金恩顺,李红岩,李正庭,郭树旭,高鼎三.一个检测半导体激光器质量的有效方法[J].半导体学报. 1996, 17(8): 596-600.
    [106]梁庆成,石家纬,曹军胜,刘奎学,郭树旭,李红岩,胡贵军.高功率半导体激光器的m值与器件质量的相关性[J].半导体光电. 2008, 29(6): 847-850.
    [107] Anthony P J, Schumaber N E. Ambipolar transport in double heterostructure injection lasers[J] IEEE. Electron Device Letters. 1980, 4(1): 58-60.
    [108] Ishikawa H, Hanamitsu K, Takusagawa M. Lasing-induced change in the differential resistance of stripe geometry Ga1-xAlxAs DH laser[J] Japanese Journal of Applied Physics. 1979, 18(2): 331-341.
    [109] Diaz J, Eliashevich I, Yi H, He X, Stanton M, Erdtmann M, Wang L, Razeghi M. Theoretical investigation of minority carrier leakages of high-power 0.8μm InGaAsP/InGaP/GaAs laser diodes[J] Applied Physics Letters. 1994, 65(18): 2260-2262.
    [110] Botez D, Scifres D R. Diode Laser Arrays[M]. Cambridge: Cambridge University Press, 1994: 414-443.
    [111] Dhamdhere A R, Malshe A P, Schmidt W F, Brown W D. Investigation of reliability issues in high power laser diode bar packages[J] Microelectronics Reliability. 2003, 43(2): 287-295.
    [112] Liang Q C, Shi J W, Guo S X, Liu K X, Cao J S. Dependence of Junction Voltage Saturation on Uniformity and Quality of Laser Diode Bars[J] Chinese PhysicsLetters. 2009, 26(12): 127504.
    [113]石家纬,梁庆成,曹军胜,刘奎学,郭树旭,李红岩,胡贵军.高功率半导体激光器电压饱和特性与器件质量[J].中国激光. 2008, 35(9): 1346-1349.
    [114] Deshayes Y, Bechou L, Mendizabal L, Danto Y. Early failure signatures of 1310 nm laser modules using electrical. Optical and spectral measurements[J] Measurement. 2003, 34(2): 157-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700