微粒捕集器喷油助燃再生过程热工参数建模及控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境保护和大气治理工作的不断深入以及污染排放法规的严峻要求,柴油车尾气微粒排放控制已成为大气污染治理及其生产领域的重大课题,微粒捕集器(DPF)以其过滤效率高、可靠性好等优点成为当前汽车微粒排放控制技术的研究热点,已成为人们公认的能最有效解决柴油机微粒排放问题的手段之一,从其研究进程来看,再生技术问题一直是微粒捕集器技术的关键,且制约着微粒捕集器技术的发展。
     目前,提出的微粒捕集器再生方式很多,并分别给予了大量的研究,国外在催化再生、红外再生及微波再生等方面研究较多,而国内由于受油品硫、砷、铅等成分含量高的限制,催化再生方面研究较少,一般是采用加热等方法定期或连续将捕集的微粒烧尽,以保证微粒捕集器良好的持续工作性能。在众多热再生方式中,喷油助燃再生技术不受我国油品质量含硫量高等特点的限制,核心装置燃烧器采用与柴油机相同的燃料,装车使用时不需对发动机原结构做很大的改动,另外,不受排气温度的限制,可在所有工况下进行再生,再生窗口宽等优点,为解决柴油机微粒排放开辟了一条新途径,因此,本文基于微粒捕集器全流式喷油助燃再生技术对其热工参数模型及控制方面开展研究。
     目前,国内外对该技术的研究方兴未艾,主要集中在燃烧器的设计与优化及其燃烧工作特性与试验研究等方面,但对其再生过程热工参数控制模型等方面少有系统研究,为此,本文以国家自然科学基金项目“车用柴油机微粒捕集多孔介质的微波及铈-锰添加剂复合再生机理研究”(50876027)、国家“863”项目子项“新一代环保高效柴油机研发”(2008AA11A116)及湖南省自然科学基金重点项目“车用微粒捕集器复合再生过程气粒两相流动与燃烧数值模拟”(06JJ20018)等为课题来源,对喷油助燃再生技术开展了如下研究:
     (1)以壁流式蜂窝陶瓷过滤体为研究对象,建立微粒捕集器喷油助燃再生数学模型,通过数值耦合求解,计算分析了喷油助燃再生过程中主要热工参数如油气配比、喷油压力、喷油率与补气量及其它参数如初始微粒沉积量、排气质量流量等对微粒捕集器再生过程的影响,这些影响规律的提出,对微粒捕集器再生过程相关参数建模、优化控制及控制系统研究等提供了理论指导。
     (2)在上述模型基础上,简化其入口单孔道的再生数学模型,结合稳态Semenov理论和Adler、Enig's间歇式反应器原理,在考虑反应消耗的基础上,建立了过滤体再生的入口废气临界温度模型,并针对其影响因素进行了分析,对喷油助燃再生装置功率设计与调节等有较大的指导意义。
     (3)考虑到柴油机非稳态工况过滤体背压变化的非线性,对微粒捕集器背压信号采集系统的动态响应影响因素进行了分析与讨论,基于壁流式蜂窝陶瓷过滤体排气背压数学模型,建立了微粒捕集器测压系统的理论动态响应数学模型,为提高背压测试精度及响应性能等提供了理论依据。
     (4)提出了基于总油耗量法建立微粒捕集器排气背压阈值MAP并利用排气背压法思想来判断再生时机的方法。为获得再生背压阈值MAP,基于AVL BOOST建立装有喷油助燃再生装置微粒捕集器的发动机台架仿真模型,试验验证后利用该仿真平台将各工况模拟计算的排气背压、油耗等结果导入MATLAB中,利用其强大的数学运算功能与图形处理能力,基于多元线性回归理论,采用最小二乘法和线性插值技术来建立发动机各工况微粒捕集器的再生排气背压MAP图。
     (5)针对以往喷油助燃再生系统燃烧器喷油量最优控制模型加以改进,结合再生入口临界温度条件,对边界条件中的终止温度予以了强化,使之更具合理性,并补充了对应的补气量最优控制模型,采用内点惩罚函数法与Logistic(逻辑斯蒂)混沌变量优化算法寻优,对改进后的模型与原模型对应的优化控制值进行了对比,为喷油助燃再生智能优化控制过程奠定了基础。
     (6)提出了较系统的喷油助燃再生控制策略,并分析其特点,对其控制系统进行了硬件设计和程序调试。从随机选取的微粒捕集器再生试验来看,可保证DPF再生及时、准确、安全且高效可靠地进行
     本文为喷油助燃再生微粒捕集器在结构设计、性能分析、再生过程控制等方面提供了理论依据和技术参考,为其实用化奠定了基础,其中一些研究方法和成果对其他类型微粒捕集器的研究也具有重要的参考价值。
With the deepening of environment protection and atmosphere management and the severe requirements of pollution regulations, particulate emission control has become a grave topic of atmosphere pollution management and diesel engine production. For its high filtration efficiency and good reliability, et al, diesel particulate filter (DPF) has been the research focus of the current vehicle particulate emission control technology. It has been recognized as one of the most effective means to solve the problem of particulate emission for diesel engine. From the view of research process, regeneration technology has been the key of particulate filter technology, which restricts the development of particulate filter technology.
     Currently, many DPF regeneration ways have been proposed and been given a lot of research respectively. The research of catalytic regeneration, infrared and microwave regeneration, etc abroad is much more than in domestic because of being restricted by domestic oil due to high component of sulfur, arsenic and plumbum, etc. In domestic, the periodic or continuous pyrogenation method is usually used to clean the captured particulate in filter in order to ensure the well continuous working performance of DPF. In many pyrogenation regeneration methods, the burner-type system technology isn't restricted by fuel quality of the high content of sulfur and so on in our country. It is adopted the same fuel in core device-burner as diesel engine, and not made great changes for the original engine structure with the DPF in vehicle. In addition, it is not restricted by the exhaust temperature and can be carried out the regeneration under all working conditions with wide regeneration window, etc., it provides a new way to reduce the diesel particulate emission. The contents for thermal parameters models and control process have been studied based on a full flow burner-type DPF.
     At present, the research on burner-type DPF is very popular whether in abroad or at home, it mainly focuses on design and optimization of the burner, and its combustion performance and experiment research, etc., but there are little systematic researches on the control model of thermal parameters in the regeneration process. Therefore, based on the projects, such as the National Natural Science Foundation of China-Compound regeneration mechanism research of microwave and cerium-manganese additive on porous medium of diesel particulate filter (ID:50876027), the sub-item of National863project-R&D of a new generation environment-pretection and efficient engine"(ID:2008AA11A116) and Hunan Provincial Natural Science Foundation of "gas-particle two phase flow and combustion numerical simulation of vehicle diesel particulate filter in the compound regeneration process"(ID:06JJ20018), etc. The burner-type regeneration technology has been studied as follows:
     (1) Taken the wall-flow honeycomb ceramic filter as the research object, the numerical regeneration model of the burner-type DPF is built. Through the numerical coupling solution, the DPF regeneration process, influenced by the main thermal parameters of burner-type regeneration such as ratio of fuel to gas, injection pressure, injection rate, air-supplied quantity and other parameters like initial particle deposition quantity, exhaust mass flow and so on, have been calculated and analyzed. The influence laws provide a theoretical guidance to modeling, optimal control and control system study in DPF regeneration.
     (2) Based on above model, the regeneration numerical model of the inlet channel has been simplified. Combined with the steady-state Semenov theory and Adler/Enig's batch reactor theory, the inlet exhaust critical temperature model for filter regeneration has been built on the base of consumption reaction, and its influence factors have been analyzed. It is greatly significant to design and adjust the burner power.
     (3) Considered the nonlinear changes of DPF back pressure under engine's non-steady state working conditions, the influenced factors of dynamic response of the DPF backpressure signal acquisition system have analyzed and discussed. Based on the numerical model of the exhaust back pressure of the wall-flow honeycomb ceramic filter, the theoretic dynamic response numerical model of DPF pressure measurement system has been built, it provides theoretical basis for improving the measurement accuracy and response performance for the backpressure.
     (4) The exhaust backpressure threshold MAP of DPF has been built based on the total fuel consumption and the regeneration time has been determined by the exhaust back pressure method. To obtain the regeneration backpressure threshold MAP, the engine simulation model equipped with the DPF of the burner-type system has been built in AVL BOOST software. After the experimental validation, the model can be used to simulate the exhaust backpressure, fuel consumption and other results. The results have been put into MATLAB, with its powerful function of mathematic calculation and capabilities of graph disposal, and then the regeneration exhaust backpressure MAP of DPF under all engine's working conditions has been built with the least square method and linear interpolation technology based on the theory of multiple linear regression.
     (5) The burner injection optimal control model has been improved. Combined with the inlet channel regeneration critical temperature, the terminate temperature in the boundary condition has been strengthened reasonably. The corresponding optimal control model of air-supplied quantity has been added. With the inner point penalty function method and logistic chaos optimization algorithm, the corresponding optimal control values of the improved model have been compared with the original model. It makes the foundation for the intelligent optimal control process for burner-type DPF.
     (6) A more systematic control strategy for a burner-type DPF has been proposed and analyzed its characteristics. And the hardware design and program debugging for the control system has been made. From the randomly selected DPF regeneration experiments, it shows that DPF can be regenerated timely, accurately, securely, efficiently and reliably.
     The research provides the theoretical basis and technical reference for burner-type DPF in structural design, performance analysis and regeneration control etc. and lays the foundation for its practical. Some methods of the research and results have important reference value to other type DPF too.
引文
[1]周龙保.内燃机学.第2版.北京:机械工业出版社,2005,1-32
    [2]郝志明,傅立新,贺克斌,等.城市机动车排放污染控制.北京:中国环境科学出版社.2001,1-78
    [3]龚金科.汽车排放及控制技术.北京:人民交通出版社,2007,1-192
    [4]资新运.柴油机排放控制对策及排气后处理技术.清华大学博士后研究报告,2001
    [5]白宪夫.机动车排放污染控制.北京:国家科委/国家环保局,1997,1-57
    [6]苏万华.先进柴油机技术的进步与未来展望.见:国际车用柴油机技术研讨会论文集,北京:中国汽车工程学会,2000,10-15
    [7]Asmus T. A Manufacturer's Perspective on IC Engine Technology at Century's End. In:Proceedings of the 1999 ICE Fall Technical Conference, ICE33-1,1-7
    [8]Schindler K. Advances in Diesel Engine Technologies for European Passenger Vehicles.In:8thDiesel Engine Emissions Reduction Conference, California,2002,1153-1167
    [9]白先宏.中国机动车排放控制对策研究.见:97中国国际汽车排放控制技术研讨会.北京:中国汽车工程学会,2000,10-15
    [10]刘巽俊.内燃机的排放与控制.北京:机械工业出版社,2003,18-19
    [11]Heywood J B.Internal Combustion Engine Fundamentals, New York,McGraw-Hill,1988,25-136
    [12]Magdi K. Khair. A Review of Diesel Particulate Filter Technologies. SAE Paper 2003-01-2303
    [13]资新运,宁智,张春润,等.柴油机排气微粒物理特性及生成机理研究.燃烧科学与技术,2000,6(4):300-303
    [14]彭美春,季雨,刘巽俊.柴油机排气微粒物理特性的研究.内燃机学报1987,5(1):5-9
    [15]Yujiro Tsukamoto, Matsuo Odaka, Matsuo Odaka. Continuous measurement of diesel particulate emissions by an electrical low-pressure impactor. SAE Paper 2000-01-1138
    [16]Dipankar Dwivedia, Avinash Kumar Agarwal, Mukesh Sharma et al. Particulate emission characterization of a biodiesel vs diesel-fuelled compression ignition transport engine. Atmospheric Environment, 2006(40):5586-5595
    [17]裴毅强,董素荣,宋崇林,等.现代柴油机排气微粒生成历程及理化特性.天津大学学报.2006,39(增刊):47-50
    [18]Kittelson D, Arnold M and Watts W. Review of Diesel Particulate Matter Sampling Method. University of Minnesota,Minneapolis, MN. January 14,1999,1-6
    [19]Johnson T V.Diesel Emission Control in Review.SAE Paper 2001-01-0184
    [20]M. K. Abbass, et al. the Survivability of Diesel Fuel Components in the Organic Fraction of Particulate Emissions from an IDI Diesel. SAE 910487
    [21]Begum Z.N. Scattering of solar radiation by aerosol particulate in the atmosphere:a theoretical approach validated with pre-INDOEX. Journal of Atmosphere and Solar-Terrestrial physics,1998, (60):1751-1754
    [22]EPA. Health Assessment Document for Diesel Emissions. EPA,1998, 1(1)1-5
    [23]王莹,陈冬青,李小平,等.汽车尾气污染对人体健康的危害.中国卫生工程学,2002,1(4):204-205
    [24]李约上.内燃机排放与净化.大连:大连理工大学出版社,1990,83-88
    [25]Peter J.E.Ahlvik, Ake R.L.Brandberg. Relative impact on environment and health from the introduction of low emission city buses in Sweden. SAE Paper 2000-01-1882
    [26]张民.汽车尾气对人体健康的危害及其防治.职业与健康,2008,24(24):2728-2729
    [27]Cao J.J., Leel S.C., Kochy Fung, et al. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol and Air Quality Research.2006,6(2):106-122
    [28]刘明.现代车用柴油机微粒化学成分的分析及生物毒性的研究:[天津大学硕士学位论文].天津:天津大学,2004,1-12
    [29]Elias Vouitsis, Leonidas Ntziachristos, Zissis Samaras. Theoretical investigation of the nucleation mode formation downstream of diesel after-treatment devices. Aerosol and Air Quality Research.2008, 8(1):37-63
    [30]林岫柏.交通环境污染对司机健康的调查分析.调查分析与研究,2003(2):183
    [31]高松,曲金玉,路传国,等.国外柴油机排放法规与排放控制技术发展现状.山东工程学院学报,2001.9,15(3):38-42
    [32]Michael P.W. Worldwide Development in Motor Vehicle Diesel Particulate Control. SAE Paper 890168
    [33]Michael P.W., Ron B. Diesel Particulate Control around the Wold. SAE Paper 910130
    [34]Michael P.W. Global Trends in Diesel Particulate Control-A 1993 update. SAE Paper 930126
    [35]陈光敏.满足欧Ⅲ法规的车用柴油机工作过程模拟计算与试验研究:[南昌大学硕士学位论文].南昌:南昌大学,2007,1-11
    [36]傅立新.欧洲及其他国家机动车排放法规手册.北京:中国标准出版社,2000
    [37]中国汽车工程学会(北京).我国柴油车、车用柴油机发展面临的形势及对策.科技导报,2001,(10):52-53
    [38]中华人民共和国环境保护部.中华人民共和国环境保护法(试行).http://www.zhb.gov.cn/.1979
    [39]黄飞,肖福明.车用柴油机微粒排放控制综述.山东交通学院学报,2006,(4):1-5
    [40]徐元强,唐小牙,曲晓峰.燃油添加剂在汽车内燃机排气净化中的应用研究.小型内燃机,2000,29(2):25-28
    [41]Howard J B, Kausch W J. Soot Control by Fuel Additives-A Review Prog Energy Combus SCI.1980,6:263-276.
    [42]Golothan D W. Diesel Engine Exhaust Smoke:The Influence of Fuel Properties and Effects of Using Barium-Containing Fuel Additives. SAE Paper 670092,1967
    [43]Apostolescu N D, Matthew R D, Sawyer R F. Effects of a Barium-Based Fuel Additive on Particulate Emission from Diesel Engines. SAE Paper 770828,1977
    [44]Hayhurst A N, Kittelson D B. Ionization of Alkanline Earth Addivies in Hydrogen Ⅱ:Kinetics of Production and Recombination of Ions. In: Proc Roy soc Lond A,1974,388
    [45]吕九琢.柴油添加剂的研究-有机钡盐的消烟助燃作用.环境科学学报.1987,7(3):377-383
    [46]堀尾忠正.谈汽车燃油添加剂.商用汽车.2003,(3):66-67
    [47]兴泉.车用燃油含硫对排放的影响.交通与环保.2001,(11):41-44
    [48]贾继德,姜斯平.柴油机燃用乳化油研究评述.小型内燃机.1997,26(2):5-7.
    [49]曾建谋,陈鹏,孔钧良,等.乳化柴油在柴油车上的应用研究.车用发动机.2005,(4):64-66
    [50]周萍,孙跃东,李春.柴油掺水乳化对柴油机经济性和排放的影响.重庆工学院学报.2007,21(4):33-36
    [51]Grzyway C. Investization on the Influence of Emulsified Fuel on Diesel Engine Wear. In:The 4th International Symposium on Marine Engineering Kobe,1990(10)
    [52]Tsao K C. Puffing and Micro-Explosion Phenomena of Water Emulsion Fuel. SAE Paper 860304.
    [53]Mitsuharu Oguma, Shinichi Goto, Kazuya Oyama. The Possibility of Gas to Liquid (GTL) as a Fuel of Direct Injection Diesel Engine, SAE Paper,2002-01-1706
    [54]申章庆.杨青.车用发动机代用燃料的研究现状及发展趋势.柴油机.2006,28(2):43-48
    [55]王丹,朱向荣.车用代用燃料研究及发展趋势.汽车工艺与材料.2003,(10):1-5
    [56]辛木.国内外代用燃料汽车的应用发展现状.商用车&发动机.2007,(7):46-49.
    [57]王欲进.汽车代用燃料研究及发展趋势.矿山机械.2007,35(8):18-22
    [58]Mitsuharu Oguma, Gisoo Hyun. Spectuoscopic Investigation of the Combustion Process in DME Compression Ignition Engine. SAE Paper 2002-01-1707
    [59]Cheng huading. Experimental Investigation on Emulsion In Single Cylinder Diesel of Model 280. In:19th International Congress on Combustion Engines,1991(4)
    [60]Jun Yu, Jookwang Lee, Choongsik Bae. Dimethyl Ether (DME) Spray Characteristics Compared to Diesel in a Common-Rail Fuel Injection System. SAE Paper 2002-01-2898
    [61]罗福强,李小华,汤东,等.生物制气-柴油双燃料发动机燃烧特性研究.工程热物理学报,2004,(5):879-882
    [62]M. K. Abbass, et al. the Survivability of Diesel Fuel Components in the Organic Fraction of Particulate Emissions from an IDI Diesel.SAE 910487
    [63]P.Moriaty, D.Honnery. Alternative Transport Fuels:the Long-tem Futere. International Journal of Vehicle Design,2003, (1):43-46
    [64]Manufacturers of Emission Controls Association. Demonstration of advanced emission control technologies enabling diesel-powered heavy- duty engines to achieve low emission levels. http//www.energy.wsu.edu/ftp-ep/pubs/renewables/fuels.pdf,2004-07-20
    [65]S.Yoshikawa, et al. Optimizing Spray Behavior to Improve Engine Performance and to Reduce Exhaust Emissions in a Small DI Diesel Engine.SAE Paper 890463
    [66]Bauder, R.柴油机技术的未来.国外内燃机,1999,(2):3-10
    [67]霍宏熠,刘巽俊,李骏.国外车用柴油机电控技术的现状与发展.汽车技术,1998,(1):1-9
    [68]Johnson T V.Diesel Emission Control in Review.SAE Paper 2001-01-0184
    [69]周玉明.内燃机废气排放及控制技术.北京:人民交通出版社,2001,19-21
    [70]Marcin Frackowiak, Hongming Xu, Miroslaw L,et. Wyszynski. The Effect of Exhaust Throttling on HCCI-Alternative Way to Control EGR and In-Cylinder Flow. SAE Paper 2008-01-1739
    [71]Yongqiang Han, Zhongchang Liu, Jiajia Zhao,et.EGR Response in a Turbo-charged and After-cooled DI Diesel Engine and Its Effects on Smoke Opacity. SAE Paper 2008-01-1677
    [72]Kathi E., Salvador A., Richard B., et al. The potential of HCCI combustion for high efficiency and low emissions. In:SAE World Congress. Detriot,2002,37-49
    [73]汪映,周龙宝,蒋德明,等.均质充量压缩燃烧方式的研究进展及存在问题.车用发动机,2002,(5):6-9
    [74]Shi Xiao Xin. Recent progress in combustion technologies for automotive engines. Journal of Combustion Science and Technology, 2001,(1):1-15
    [75]将德明.高等内燃机原理.西安:西安交通大学出版社,2002,167-195
    [76]赵新顺,曹会智,温茂禄,等.HCCI技术的研究现状与展望.内燃机工程,2004,(4):73-77
    [77]罗伟欢,熊锐,张宗法,等.柴油机HCCI压缩过程缸内工质状态的模拟研究.车用发动机,2007,(6):34-38
    [78]Wu Zhang, Keiya Nishida and Jian Gao. An Experimental Study on Mixture Formation Process of Flat Wall Impinging Spray Injected by Micro-Hole Nozzle under Ultra-High Injection Pressures. SAE Paper 2008-01-1601
    [79]Xiaoliang Ding. A Study of Calibration of Electronic-controlled Injector Employed in High Pressure Common Rail System. SAE Paper 2008-01-1742
    [80]P.K. Wong and K.W. Mok. Design and Modeling of a Novel Electromechanical Fully Variable Valve System. SAE Paper 2008-01-1733
    [81]Shinichi Takemura, Shunichi Aoyama. A Study of a Multiple-link Continuously Variable Valve Event and Lift (VVEL) System.SAE Paper 2008-01-1719
    [82]Hajime Miura, Tatsuya Matsuura, Tetsuro Murata, et al. Development of a New Generation V8 Engine with Variable Valve Event and Lift. SAE Paper 2008-01-1526
    [83]Kazuhiro Fujiwara, Masashi Yamamoto,Yuuzou Ishikawa. Development of a New Generation V6 Engine Corresponding to CVT.SAE Paper 2008-01-1518
    [84]C. Menzel, C. Torresan, J. Knight, C.et. Electronic Continuous Variable Valve Timing for Small SI Engine. SAE Paper 2008-01-1778
    [85]Sasa Trajkovic, Per Tunestal, Bengt Johansson,et. Investigation of Different Valve Geometries and Valve Timing Strategies and their Effect on Regenerative Efficiency for a Pneumatic Hybrid with Variable Valve Actuation. SAE Paper 2008-01-1715
    [86]吴健.柴油机共轨式电控喷射系统喷射过程的模拟计算和研究:[湖南大学博士论文].长沙:湖南大学,2002,35-78
    [87]王站成.柴油机高压共轨燃油喷射特性的研究:[河南科技大学硕士学位论文].洛阳:河南科技大学,2006,24-49
    [88]Natansong C. Depositons of aerosol particles by electrostatic attraction upon a cylinder around which they are flowing.Akad Nauk USSR,112 (4):693-699
    [89]宁智,路勇.柴油机排气微粒静电捕集的理论分析.北方交通大学学 报,2000,24(4):66-82
    [90]Kittelson D.B.. Electrostatic cololection of diesel particles. In:SAE world congress. Detroit,1986,10-17
    [91]张春润,王斌,资新运,等.柴油机排气低温等离子体净化技术.小型内燃机与摩托车.2003,32(6):29-31
    [92]吴彤峰,范健文,谢燊,等.等离子体柴油机尾气净化技术.广西工学院学报.2004,15(2):9-14
    [93]李新,资新运,邵玉平,等.等离子体技术在汽车领域的应用.轻型汽车技术,2004,(9):20-21
    [94]B.S.Rajanikanth, P.K.Rrinivas, V.Ravi Non-Convention Plasma Assisted Catalysts for Diesel Exhaust Treatment:A Case Study. Plasma Science & Technology.2002,4(1):1119-1126
    [95]B.S.Rajanikanth, V.Ravi Removal of Nitrogen Oxides in Diesel Engine Exhaust by Plasma Assisted Molecular Sieves.Plasma Science & Technology.2002,4(4):1399-1406
    [96]刘圣华,肖福明,周龙保,等,低温等离子技术在柴油机颗粒排放控制中的应用.内燃机学报.2001,19(4):301-304
    [97]孟淮玉,芮延年,查焱,等.低温等离子体技术在汽车尾气净化中的应用.环境保护科学.2008,34(2):1-4
    [98]李新,资新运,邵玉平,等.汽车尾气排放低温等离子体净化技术.内燃机,2005,(1):35-37
    [99]蔡忆昔,王军.低温等离子体技术在降低柴油机排放中的应用.中国机械工程,2005,16(24):2238-2241
    [100]宁智,刘双喜,资新运,等.柴油机排气微粒旋流净化技术的初步研究.内燃机学报,2000,18(2):140-144
    [101]Arcoumains C. Developments in cyclone filtration of diesel exhaust particulate.In:Third International Conference on Innovation and Reliability in Automotive Design and Testing, Florence,1992:167-170
    [102]Mukhopadhyay N., Chakrabarti R.K., Bose P.K.. A new theoretical approach of designing cyclone separator for controlling diesel soot particulate emission. SAE Paper 2006-01-1978
    [103]Barbaris L N. Evaluation of a cyclone-based particulate filtration system for high-speed diesel engine.Proc Instn Mech Engrs, 1994,20(4):43-45
    [104]刘双喜.利用具有排气先期冷却的旋风分离系统捕集柴油机微粒的 研究:[天津大学博士学位论文].天津:天津大学,2000,4-26
    [105]李明华,魏名山,马朝臣.静电旋风微粒捕集器的研究现状及其在柴油机上的应用.铁道机车车辆,2003,23(1):93-96
    [106]肖富明,刘俊,肖宗成.袋滤技术用于柴油机微粒排放控制.天津大学学报,1995,28(2):282-285
    [107]肖富明,刘瑞林.柴油机微粒袋滤器的试验研究.内燃机学报,1995,(2):132-139
    [108]资新运.柴油机微粒捕捉器的研究现状及发展趋势.车用发动机,2000,(2):1-4
    [109]赖天贵.柴油机微粒捕集器流场研究及其优化设计:[湖南大学硕士学位论文].长沙:湖南大学,2005,40-41
    [110]王劲.柴油机微粒捕集器捕集再生机理及模型研究:[湖南大学硕士学位论文].长沙:湖南大学,2005,22-43
    [111]何国本,胡顺堂,李桐.柴油机的微粒排放及处理措施,车用发动机,2002,(5):43-46
    [112]苏岭,周龙保,蒋德明,等.柴油机排气后处理技术的现代进展.内燃机,2003,(3):1-5
    [113]龚金科,赖天贵,刘孟祥,等.柴油机微粒捕集器过滤材料与再生方法分析与研究.内燃机,2004,(3):1-4
    [114]吴晓东,翁端,陈华鹏,等.柴油机微粒捕集器过滤材料验机进展,材料导报,2002,(6):18-31
    [115]Bilal Zuberi, James J. Liu, Sunilkumar C. Pillai, et. Advanced High Porosity CeramicHoneycomb Wall Flow Filters. SAE Paper 2008-01-0623
    [116]魏雄武.柴油机微粒捕集器及其再生技术分析与研究.重型汽车,2005,(2):30-32
    [117]W. Wong. Effects of Catalytic Wire-Mesh Traps on the Level and Measurement of Heavy-Duty Diesel Particulate Emissions.SAE 840172
    [118]翁端,刘东旭.柴油机尾气颗粒物净化用过滤材料的研究与应用.环境工程学报,2007,5(1):134-138
    [119]宁智,资新运,张春润,等.汽车柴油机排气微粒后处理系统的开发及研究.内燃机工程,2000,22(1):25-29
    [120]Stommel P, Backes R., Luders H. Applications for the Regeneration of Diesel Particulate Traps by Combining Different Regeneration Systems. SAE Paper 970470
    [121]Mayer A, Lutz T, Lammle C, et al. Engine Intake Throttling for Active Regeneration of Diesel Engine. SAE Paper 2003-01-0381
    [122]Ning, Z., and Zang,GL. Regenerating Technology and its Development for Diesel Engine Exhaust Particulate Filter. Small Internal Combustion Engine of China,1995,24(1):35-41
    [123]P.J.Richards, M.W.Vincent, S.L.Cook.Operating Experience of Diesel Vehicles Equipped with Particulate Filters and Using Fuel Additive for Regeneration. SAE Paper 2000-01-0474
    [124]Seguelong T,Fournier B P.Use of Diesel Particulate Filters and Cerium-Based Fuel-Borne Catalyst for Low Tem-perature-Low Load Applications. SAE Paper 2001-01-0906
    [125]Gieshoff J,PfeiferM, Schafer S A,et al.Regeneration of Catalytic Diesel Particulate Filters.SAE Paper 2001-01-0907
    [126]Walker A P,Allansson R,Blakeman P G, et al.Optimizing the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating Diese Particulate Filter System. SAE Paper 2002-01-0428
    [127]马林才.柴油机添加剂和微粒捕集器的协同性分析与研究.柴油机,2008,(2):13-17
    [128]N.Kyriakis, Z.Samaras, E.Vouitsis, T.Manikas, P.Pistikopoulos,et al.A Novel Method for the Experimental Evaluation of Fuel-Borne Catalyst Effect on the Soot Auto-Ignition. SAE Paper 2002-01-0429
    [129]Cho.Y.Liang, Kirby J.Baumgard, Robert A.Gorse, et al. Effects of Diesel Fuel Sulfur Level on Performance of a Continuously Regenerating Diesel Particulate Filter and a Catalyzed Particulate Filter. SAE Paper 2000-01-1876
    [130]段家修,龚晓辉,许斯都,等.柴油机微粒过滤器电加热再生技术的试验研究.内燃机学报,1999,17(1):22-26
    [131]龚晓辉,吕筱萍,许斯都,等.壁流式微粒过滤器电加热再生自动控制系统的研究.内燃机学报.1999,17(1):81-85
    [132]杨德胜,高希彦,王宪成,等.柴油机微粒陶瓷过滤器电加热再生时机的研究.内燃机工程,2003,24(4):42-49
    [133]严降龙,吴锋,冯安,等.电加热柴油机再生排气微粒过滤器的研制与试验.农机化研究.2002,(4):142-145
    [134]Ohno K,Taoka N,Ninomiya T,et al.SiC Diesel Particulate Filter Application to Electric Heater System.SAE Paper 1999-01-0464
    [135]YuichiG,TsugioA,TatsujiS,et al.Study on regeneration of diesel particle trapper by electrical self-heating type filter.SAE Paper 920140,1992
    [136]卢为开等.远红外辐射加热技术.上海:上海科学技术出版社,1983,51-75
    [137]许晓光.基于红外加热再生的柴油机排气微粒后处理技术的研究:[大连理工大学博士学位论文].大连:大连理工大学,2002,6-25
    [138]高镜惠.柴油机红外再生微粒捕集器电路控制系统研究与开发:[大连理工大学硕士学位论文].大连:大连理工大学,2004,5-20
    [139]刘瑞祥,高希彦,杨德胜,等.柴油机微粒陶瓷过滤器红外加热再生的优化.内燃机学报.2004,22(6):481-485
    [140]杨德胜,高希彦,王宪成,等.柴油机微粒陶瓷过滤器红外再生的试验研究.内燃机学报,2003,21(2):193-196
    [141]Garner C.P. and Dent J.C., Microwave assisted regeneration of diesel particulate traps, SAE Paper 890174
    [142]Nixdorf R.D., Green J.B., M.story J., et al. Microwave-regenerated diesel exhaust particulate filter. SAE Paper 2001-01-0930
    [143]宁智,张广龙,刘军民,等.柴油机排气微粒过滤器微波再生试验研究(1).内燃机学报.1997,15(1):28-33
    [144]宁智,资新运,姚广涛,等.柴油机排气微粒过滤器微波再生试验研究(2).内燃机学报.1998,16(4):28-33.492-496
    [145]资新运,宁智.柴油机排气微粒过滤体微波加热再生过程的优化.清华大学学报(自然科学版).2001,41(2):110-113
    [146]Gautam M., Popuri S., Rankin B., et al. Development of a microwave-assisted regeneration system for a ceramic diesel particulate system. SAE Paper.1999-01-3565
    [147]高希彦,王宪成,许晓光,等.柴油机排放微粒后处理技术试验研究.大连理工大学学报,2002.12,40(增刊):55-60
    [148]Rinie Van Helden, Frank Willems, Marc van Aken, et al. Engine demonstration of microwave assisted particulate trap regeneration. SAE Paper 2005-01-2141
    [149]宁慧,路勇.柴油机排气微粒过滤器微波再生系统的理论分析.哈尔滨工程大学学报.1998,19(1):16-22
    [150]宁智.柴油机微粒金属丝网过滤体特性及反吹再生的初步研究.机械工程学报.2003,39(7):123-127
    [151]宁智.柴油机微粒金属丝网过滤体反吹再生系统性能的研究.机械工程学报.2004,40(8):170-173
    [152]资新运,宁智,欧阳明高,等.柴油车微粒捕捉器逆向喷气再生的关键技术.内燃机工程,2002,23(6):70-73
    [153]张春润,姜大海,资新运,等.柴油机排气微粒捕捉器燃气再生技术的研究.内燃机学报,2002,20(5):391-394
    [154]姜大海,张春润,资新运,等.柴油机排气微粒捕捉器燃气再生技术研究.车用发动机,2002,140(4):51-53
    [155]Zelenka P, Telford C.采用辅助燃烧再生的载重汽车用颗粒过滤系统的开发.国外内燃机.2003,(3):50-54
    [156]李新.基于喷油助燃再生的柴油车颗粒物后处理技术研究:[武汉理工大学博士学位论文].武汉:武汉理工大学,2009,1-106
    [157]Hans Houben, Rolf Miebach. The Optimized Deutz Service Diesel Particulate Filter System DPFS Ⅱ. SAE Paper 942264
    [158]Hiroshi Okazoe, Kenji Shimizu, Yoshito Watanabe, et al. Development of a Full-Flow Burner Regeneration Type Diesel Particulate Filter Using SIC Honeycomb. SAE Paper 960130
    [159]Zelenka P,TelfordC,Dave Pye,et al.Development of a Full-Flow Burner DPF System for Heavy-Duty Diesel Engines.SAE Paper 2002-01-2787
    [160]Dong Sun Park, Jae Up Kim, BeomYong Hyeon, et al. Considerations on the Temperature Distribution and Gradient In the Filter during the Regeneration Process in Burner Type Particulate Trap System. SAE Paper 961978
    [161]Dong Sun Park, Jae Up Kim, Hoon Cho, et al. Considerations on the Temperature Distribution and Gradient In the Filter during the Regeneration Process in Burner Type Particulate Trap System. SAE Paper 980188
    [162]D.S.Park, J.U.Kim,E.S.Kim. A Burner-Type Trap for Particulate Matter from a Diesel Engine. Combustion and Flame,1998, (114):585-590
    [163]Justin Yao.On-Board Diesel Particulate Filter Development(Project Review).1999,10
    [164]ARELLANO, Leonel. Burner Assembly for Particulate Trap Regeneration. US:107433.2006
    [165]JEONG, Sang Hyun. Burner for Regeneration of Diesel Particulate Filter. US:137695.2006
    [166]季雨,张华,方显忠.车用柴油机排气微粒后处理器的开发.内燃机学报,1991,9(1):61-70
    [167]季雨,肖宗成,张华.重型车用柴油机排气微粒过滤器的开发.汽车技术,1990,4(3):16-25
    [168]李新,资新运,姚广涛,等.柴油机排气微粒捕集器燃烧器再生技术研究.内燃机学报,2008,26(6):538-542
    [169]J.Adler, J.W.Enig. Combust&Flame.1964,(8):97-85
    [170]Koltsakis G., Stamatelos A. Modeling Thermal Regeneration of Wall-Flow Diesel Particulate Traps. Reactors,Kinetics and Catalysis,1996, 42:1662-1672
    [171]Koltsakis G., Stamatelos A. Modes of Catalytic Regeneration in Diesel Particulate Filters. Industrial &Engineering Chemistry Research,1997, 36:4155-4165.
    [172]Bissett E.J. Mathematical Model of the Thermal Regeneration of a Wall-Flow Monolith Diesel Particulate Filter. Chemical Engineering Science,1984,39:1233-1244
    [173]Bissett E J., Shadman F. Thermal Regeneration of Diesel Particulate Monolithic Filters. AIChE Journal,1985,31:753-758
    [174]孙占辉.反应性化学物质热自燃化学动力学及其热危险性评价方法:[中国科学技术大学博士学位论文].合肥:中国科学技术大学.2004,1-22
    [175]Haishan Zheng, Jason M.Keith. Ignition Analysis of Wall-Flow Monolith Diesel Particulate Filters. Catalysis today,2004, (98):403-412
    [176]龚金科,梅本付,王劲,等.车用柴油机微粒捕集器热再生的一维数值模拟.车用发动机,2005,(5):45-60
    [177]瓦西里耶娃(俄罗斯)著,李大潜译..奇异摄动方程的渐近展开.2005
    [178]Frank-Kamenetskii, D.A.Acta Physicochimica U.R.S.S..1942, (16):357-365
    [179]张有康,甘蓉.压力传感器测量中不确定度的评定.中国测试技术,2005,31(5):25-71
    [180]费业泰,于连栋.论全系统动态测试精度理论研究.合肥工业大学学报(自然科学版),2000,23(1):7-9
    [181]金泰义.精度理论与应用.安徽:中国科学技术大学出版社,2005
    [182]MasoudiM, Heibel A, Then PM. Predicting Pressure Drop of Diesel Particulatel Filters Theory and Experiment.SAE Paper2000-01-0184
    [183]张春润,邵玉平,资新运,等.壁流式过滤体的流动阻力分析及再生效率研究.车用发动机,2005,(5):65-67
    [184]罗涛,索建军.柴油机微粒捕集器再生时机判断方法研究.中国高新技术企业,2009(21):50-51
    [185]AVL BOOST User's Guide Version 4.0.4. AVL LIST GmbH,2004
    [186]周广猛,郝志刚,刘瑞林,等.基于MATLAB的发动机万有特性曲线绘制方法.内燃机与动力装置,2009,(2):34-36
    [187]易芳.采用MATLAB的线性回归分析.兵工自动化,2004,23(2):68-69
    [188]龚金科,左青松,鄂加强,等.微粒捕集器喷油再生过程柴油消耗量最优控制.中南大学学报(自然科学版),已录用
    [189]鄂加强.铜精炼过程优化建模与智能控制.长沙:湖南大学出版社,2006,70-90
    [190]陈瑞平,李程,关键.柴油机微粒过滤器再生控制系统.烟台大学学报(自然科学与工程版),2008,21(1):75-78
    [191]宋璇.柴油机微粒过滤器控制系统研究:[山东理工大学硕士学位论文].山东:山东理工大学.2006,21-34
    [192]王浩.车载柴油机过滤器自动控制系统开发:[大连理工大学硕士学位论文].大连:大连理工大学.2008,16-42
    [193]李程.基于单片机和GPRS的柴油机颗粒物排放处理系统:[烟台大学硕士学位论文].山东:烟台大学.2005,17-45
    [194]顾能华.高压开关柜温升自动巡检仪的设计.机电工程2009,(9):71-74
    [195]资新运,郭猛超,张伟,等.采用燃烧器+氧化催化器的柴油机微粒捕集器复合再生控制策略的研究.汽车工程,2010,32(1):31-38
    [196]刘云卿.壁流式柴油机微粒捕集器捕集及微波再生机理研究:[湖南大学博士学位论文].长沙:湖南大学,2009,1-186
    [197]龚金科,吁璇,伏军,等.柴油机喷油助燃再生系统微粒捕集器油气匹配研究.农业机械学报,2010,41(4):1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700