旋转式机电热换能器及其对水媒质磁化作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转式机电热换能器,是一种新型电磁加热装置。它将机、电、热系统和以水为媒质的热交换系统有机地组合在一起,利用磁滞、涡流和二次感应电流综合加热。其与电动机、风机、水轮机等动力机械装置配套使用,能实现电能、风能、水能等多种清洁能源的综合利用。除输出热能外,换能器中的旋转电磁场还会对水媒质产生磁化作用,将其软化,达到除垢和抑垢的效果。对换能器热功率和换热的计算方法和变化规律、旋转电磁效应对水媒质的磁化作用机理等进行研究,将深入揭示其工作机理,形成工程计算方法,为换能器的广泛应用奠定基础。本文从传统电机损耗与温升反问题角度出发,对旋转式机电热换能器进行了理论分析和实验研究,主要研究内容如下:
     首先,建立换能器的三维电磁场方程组,结合物理意义给出其边界条件,运用分离变量法得到方程的解析解。在方程解析解的基础上,推导出换能器端部系数的计算式,在此基础上改进了基于二维有限元法的热功率算法。优化了热功率的实验方法,以一台样机为例验证改进后热功率算法的准确性。这些研究将为换能器热功率的深入研究提供基础。
     其次,推导热功率与极对数、气隙长度、铁心长度、定子内径等结构参数的解析表达式,并分析这些结构参数对热功率的影响。提出定子热功率透入深度的概念,给出其具体计算公式,分析透入深度随转速的变化规律,并归纳出其在换能器热功率设计中的作用。而后利用改进的热功率算法和透入深度的概念,分析不同转速时,闭口槽、开口槽、半开口槽和铜套四种不同定子结构的换能器热功率密度的变化规律。计算不同定子结构时,热功率在定子侧和转子侧的分布情况。实际研制了两台不同定子结构的样机,对其热功率进行测试,并与原有样机进行比较,验证理论分析的正确性。
     再次,建立换能器二维换热模型,提出热功率-换热耦合算法,利用此算法分析换热过程。提出功率调整率的指标来评价换能器的换热性能,并分析了实际热功率和水流温升特性。针对原有换热结构的弊端,提出一种新的换热结构,实际分析了气隙长度、铁心长度、透入深度、转子侧热功率等因素对功率调整率的影响。研制了换热测试平台,进行了相关换热测试。理论分析和实验结果证明该换热结构与原有结构相比,换热性能大为提高。
     实验研究结果表明,换能器内部的旋转电磁场使水媒质的物理化学特性发生变化。为揭示其变化规律和机理,本文进行了相关理论和实验研究。用分子动力模拟的方法计算了磁场作用下水分子间氢键的变化情况。而后设计磁场发生装置,分别用恒定磁场和交变磁场处理不同浓度的NaCl溶液,测试其电导率的变化规律,并结合实验结果探讨磁场对电解质溶液电导率作用的机理。用一定浓度的CaCl_2和Na_2CO_3溶液反应生成晶体,并用恒定磁场和交变磁场分别处理其中一种溶液,利用X射线衍射光谱和扫描电镜分析磁场作用前后CaCO_3晶体的变化,并结合实验结果探讨了磁场对CaCO_3晶体的影响机理。
     本文提出了换能器热功率和换热的计算方法,分析了其热功率和换热的变化规律,优化了原有的设计,研究了旋转电磁效应对水媒质的作用。为旋转式机电热换能器的深入研究和广泛应用提供了理论和实验基础。
The rotational electric–mechanical-thermal transducer is a novel electromagnetic heating device. By properly combining the system of electricity, magnetism and heat with heat transfer system using water as medium, it produces heat utilizing hysteresis, eddy currents and secondary induced current. Assisted with propulsion units, such as motors, blowers and hydroturbines etc., multi-purpose utilization of electric energy, wind energy and hydropower can be achieved. Except for outputting heat, the rotational electromagnetic field in the transducer can also soften the water flowing by so that to reduce scale. Research on the calculation method and variation regularity of its thermal power and heat transfer, and principle of rotational electromagnetic effect on water medium, will deelply explain its working principle, form the engineering calculation method, and establish the foundation of its wide application. Based on the inverse problem of loss and temperature rise in traditional electrical machines, this paper provides theoretical analysis and experimental researches on the transducer, the main content is approached as followings.
     Firstly, the three dimensional electromagnetic field equations of transducer is established, and the boundary condition is given considering its physical property, and the analytical solution is obtained by separation of variables. The expression of end coefficient is deduced so that the thermal power algonithm based on 2D finite element method of transducer is improved. The experimental method of thermal power is optimized, and its accuracy is tested based on a prototype. The further researches on transducer heat power is based on the works mentioned above.
     Further, the analytical expression of thermal power with pole pairs, air gap length, steel core length and stator inner diameter etc. is put forward. Proposed the concept of the penetration depth of thermal power density on the stator, given the specific formula of it, analyzed the discipline of the penetration depth variation with different speed, and found the effect of the penetration depth in the tranducer thermal power design. Then used the improved algorithm of thermal power and the concept of the penetration depth, analysed the discipline of thermal power density with different speed, closed slot, open slot, half-open slot and copper in the stator structure. Calculate the distribution of the thermal power density in both of stator and rotor sides with different stator structures. Actually we developed two prototypes with different stator structures, and tested its thermal power, and compared with the original prototype, to verify the theoretical analysis is correct.
     Established the tranducer 2D heat transfer model, give a coupled algorithm of thermal power and heat transfer. Using this algorithm, analyzed the procedure of the transducer heat transfer. The indicator of power regulation is proposed, to evaluate the heat transfer performance of the transducer, and the actual thermal power density and the characteristics of the water flow temperature rise are analyzed. As there are some foibles of the original heat transfer structures of the tranducer, a new heat transfer structure is given up, and analyzed the influence of the power regulation with the air gap length, core length, penetration depth and the rotor thermal power. A heat tranfer test platform is developed for the relevant heat transfer test. Theoretical analysis and experimental results indicate that the heat transfer structure, compared with the original structure, its heat transfer performance greatly improved.
     Experimental results show that the rotational electromagnetic field in the transducer changes the physical and chemical performances of water. To reveal its principle, this paper made related theoretical and experimental research. Molecular dynamic simulation is used to compute the changes of hydrogen bond between water molecules when exposing to magnetic field. Then a magnetic field generating device is designed, the constant and alternating magnetic field is used separately to process the NaCl solutions with different concentrations, the variation of conductivity is tested and the magnetic field effects on the principle of conductivity of electrolyte solution based on the experimental results are discussed. CaCO3 crystals are produced with solutions of CaCl2 and Na2CO3 of a certain concentration, each solution is treated with constant and alternating magnetic field. The X-ray diffraction spectrum of the crystal is tested and its composition changes are analyzed,and the magnetic field effects principle on the CaCO3 crystals based on the experimental results are discussed.
     This paper proposes the method to calculate the thermal power and heat transfer of the transducer, analyzes its variation of thermal power and heat transfer, optimizes the original design of the transducer, and investigate the effect alternation electromagnetic field on water medium. The research provides the theoretical and experimental foundation for the further research and the widespread application of the transducer.
引文
1倪维斗.我国的能源问题及对策.宁波大学学报(人文科学版). 2009, 22(1): 7~8
    2李茂东,杜玉辉,赵军明.工业锅炉除垢技术现状与展望.清洗世界. 2006, 22(11): 33~36
    3贾文.海水淡化技术与市场.东方电气评论. 2009, 23(9): 35~36
    4程树康,崔淑梅,李芙.动态电磁感应加热方式初探——电机与电器温升反问题的研究.微电机. 2005, 38(1): 68
    5郭奎建. 2005年特种设备综合统计分析.中国锅炉压力容器安全. 2006, 22(5): 34~38
    6乌斌.浅议新型供热方式及电热锅炉优缺点.宁夏电力. 2007, (3): 45
    7刘玉柱.浅谈电热锅炉技术.呼伦贝尔学院学报. 2002, 10(7): 100~101
    8 Dmitry Yu. Kononov. Study of Interrelaitons Between Electric Power Systems and Large Consumers in Russia. Electric Utility Deregulation and Restructuring and Power Technologies. 2000, 1(1): 403~406
    9 Van Loock, W. M. Electromagnetic Heating Applications Faced with EMC Regulations in Europe. 1999 International Symposium on Electromagnetic Compatibility, May 17~21, 1999: 353 ~ 356
    10 Bassily. M. Ashraf, Colver. M. Gerald. Cost Optimization of a Conical Electric heater. International Journal of Energy Research. 2005, 29(4): 359~376
    11 S. Y. Hsiao, P. S. Wei, Z.P. Wang. Three-dimensional Temperature Field in a Line-heater Embedded by a Spiral Electric Resistor. Applied Thermal Engineering. 2006, 26(8~9): 916~926
    12 I. Sezai, L.B.Y. Aldabbaqh, U. Atikol, H. Hacisevki. Performance Improvement by Using Dual Heaters in a Storage-type Domestic Electric Water-heater. Applied Energy. 2005, 81(3): 291~305
    13刘福海.发展电热锅炉的可行性探讨.电站系统工程. 2002,18(3): 23
    14王富勇.浅谈电热锅炉技术及其应用和发展.电站辅机. 2003, (3): 38~42
    15李祥元.再谈电热锅炉用管状电热元件.工业锅炉. 2005, (5): 45~47
    16李勇,解凯.蓄热电锅炉技术应用分析.河北电力技术. 2009, 28(2): 41~42
    17 R. E. Haimbaugh. Practical Induction Heat Treating. ASM International Publication. 2001
    18 Y.Kurose, E.Hiraki, I.Hirota, H.Yamashita, H.Omori, M.Nakaoka. LoadResonant and Quasi Resonant Hybrid Mode ZVS-PWM High Frequency Inverter for Induction Heated Foam Metal Fluid Heater. The Fifth International Conference on Power Electronics and Drive Systems, PEDS 2003. 2003: 899~903
    19 Hao Terai, Hideki Sadakata, Hideki Omori, Hidekazu Yamashita, Mutsuo Nakaoka. High Frequency Soft Switching Inverter for Fluid-Heating Appliance Using Induction Eddy Current-based Involuted Type Heat Exchanger. 2002 IEEE 33rd Annual Power Electronics Specialists Conference, Pesc02. 2002: 1874~1878
    20 R. Araneo, F. Dughiero, M. Fabbri, M. Forzan, A. Geri, A.Morandi, S.Lupi, P. L. Ribani, and G. Veca. Electromagnetic and Thermal Analysis of the Induction Heating of Aluminium Billets Rotating in DC Magnetic Field. Processing International Symposium. Heating by Electromagnetic Sources, Padua, Italy. 2007: 487~496
    21 N. Magnusson. Prospects for Rotating Billet Superconducting Induction Heating. Processing International Symposium. Heating by Electromagnetic Sources, Padua, Italy. 2007: 479~486
    22 M. Fabbri, A. Morandi, and P. L. Ribani. DC Induction Heating of Aluminum Billets Using Superconducting Magnets. COMPEL. 2008, 27(1): 480~490
    23 Massimo Fabbri, Michele Forzan, Sergio Lupi, Antonio Morandi, Pier Luigi Ribani. Experimental and Numerical Analysis of DC Induction Heating of Aluminum Billets. IEEE Transactions on Magnetics. 2009, 45(1): 192~200
    24 Takashi Watanabe, Takashi Todaka, Masato Enokizono. Analysis of a New Induction Heating Device by Using Permanent Magnets. Ieee Transactions On Magnetics, 2005, 41(5): 1884~1887
    25程树康,裴宇龙,张鹏.旋转电机第三功能初探.电工技术学报. 2007, 22(7): 12-16
    26程树康,崔淑梅,张千帆,郑萍,侯云鹏.电磁致热器.中国发明专利. ZL01122280.8, 2001
    27裴宇龙.基于旋转电磁理论的机电热换能器及其相关参数的研究.哈尔滨工业大学博士论文. 2009: 17~19 53~57 32~33 71
    28裴宇龙,柴凤,程树康.旋转电磁致热器热网络模型及其温升计算.微电机. 2010, 43(3): 1-4
    29程树康,李立毅,寇宝泉,张千帆,柴凤.电磁自热器.中国发明专利. ZL02132793.9
    30程树康,李志源,宋立伟,吴红星,裴宇龙,胡金锁,安晨辉.无焰电磁加热装置.中国发明专利. 200410044061.4
    31程树康,吴红星,王铁成,裴宇龙,代颖.食品加热器.中国发明专利. 200510010136.1
    32孙宁.基于旋转电磁理论的食品加热器的研究.哈尔滨工业大学硕士论文. 2007: 10~11
    33程树康.孙宁.交流调速电机在食品加热器中的应用研究.微电机. 2008, 41(4): 16-19
    34 Pei Yulong, Chai Feng, Yu Yanjun. Analysis of Novel Rotating Electromagnetic Heater Based on the Concept of the Third Function of Rotational Motor. The
    11th International Conference on Electrical Machines and Systems, ICEMS2008. Wuhan, China, Oct.17th~20th, 2008.
    35张鹏.基于旋转电磁效应的水循环系统抑垢缓蚀机理研究.哈尔滨工业大学博士论文. 2008: 39~43
    36 Peng ZHANG, Bin GUO, Yong-ping JIN, Shu-kang CHENG. Corrosion characteristics of copper in magnetized sea water. Transactions of Nonferrous Metals Society of China. 2007, 17: 189-193
    37 Bin GUO, Peng ZHANG, Yongping JIN, Shukang CHENG. Effect ofalternating magnetic field on corrosion rate and products compositions of copper. RARE METALS. 2008, 27(3):176-179
    38 Bin GUO, Peng ZHANG, Shu-kang CHENG. Research on hydrokinetics characteristics of rotating pipe fluid in the crossed electric and magnetic field. Journal of Harbin Institute of Technology (New series). 2007, 14(1): 5-8
    39张鹏,郭斌,程树康,宫海龙.旋转电磁加热技术及其腐蚀结垢研究.电工技术学报. 2007, 22(Suppl.2): 195-198
    40 V. A. Boichenko, L. G. Sapogin. Theory of Magnetic Water Treatment. Journal of Engineering Physics and Thermophysics. 1977, 33(2): 980~984
    41王军,陈卫东,贾绍义,胡瑞杰,柴诚敬.磁化技术在化工领域中的应用.化学工业与工程. 2000,17(3): 177~183
    42 De Reuver J L. Magnetic wastewater treatment in the US chemical industry. Filtration and Separation. 1994, 31(6): 2
    43 KOLM H H. The Large-Scale Manipulation of Small Particles. IEEE Trans on Magnetics. 1975, 11 (5): 1567
    44 S. Kobe, G. Drazic, P.J. McGuiness, J. Strazisar. The Influence of the Magnetic Field on the Crystallisation Form of Calcium Carbonate and the Testing of a Magnetic Water-treatment device. Journal of Magnetism and Magnetic Materials. 2001, 23(6): 71~76
    45 Watson J H P. Application and Improvements in High Gradient Magnetic Separation. J Filtration & Separation. 1979, (1): 121
    46贾亮,李真,贾绍义.磁化技术在工业水处理中的应用.化学工业与工程2006,23(1): 59~64
    47罗大兵.水的磁法处理技术——赴挪威考察见闻.工业水处理, 1999, 19(2): 43~44.
    48 Matthias Franzreb, Wolfgang H HOELL. Phosphate removal by High-gradient Magnetic Filtration Using Remanant Magnets. IEEE Transactions on Applied Superconductivity. 2000, 10(1): 923~926
    49 Ozaki H, Kurinobu S, Watanabe.T. A New Wastewater Treatment System Recovering Magnetically Immobilized Microorganisms Under Strong Magnetic Field. Water Science and Technology :Water Supply. 2004,4 (1): 47~54
    50陈庆生,陈松林.水的磁化处理研究和在冷却水系统中应用.工业水处理. 2003,23(6): 69~70
    51何兴华,唐本政,苏斌.强磁防垢除垢系列磁水器装置研制.核工业西南物理研究院年报. 1999, (1): 114~116
    52王龙贵.粉煤灰中磁珠的回收及用于含磷废水的处理.粉煤灰综合利用. 1999, (1):21 ~ 22
    53黄自力,胡岳华.“磁种-高梯度磁分离”污水除磷技术的研究.环境污染治理技术与设备. 2003, 4 (5): 70~73
    54孙水裕,张俊浩,刘炳基.磁种凝聚-磁分离技术处理含Ni2 +电镀废水的研究.环境工程. 2002,20(4): 17~19.
    55柴诚敬,贾绍义,李宗堂,陈卫东.磁化技术在化工分离领域中的应用.化学工业与工程. 1999, 16(4): 245~248
    56罗玉芬.磁化器在锅炉水质处理上的应用设计.机械工程师. 2005, (5): 155
    57张玉轩.磁化技术在炼化企业水处理中的应用.石油化工腐蚀与防护. 2005, 22(5): 32~34
    58 Mei Sheng Xia, Cai Hong Hu, Hong Mei Zhang. Effects of Tourmaline Addition on the Dehydrogenase Acticity of Rhodopseudomonas Palustris. Process Biochemistry. 2006, 41: 221~225
    59 J S Baker, S J Judd. Magnetic Amelioration of Scale Formation. Wat. Res. 1996, 30 (2): 247~260
    60 C.E.Gruber, D.D.Carda. Performance Analysis of Permanent Magnet Type Water Treatment Devices. WSA Research Report, Water Quality Association, 1981
    61 Kozic V, Krope J, Ticar I, Kiker E. Laboratory Measurements on MagneticWater Treatment Device. The 27th Annual Conference of the IEEE Industrial Electronics Society (IECON01), USA, 2001: 2190~2193
    62 Alice Vegiri. Dynamic Response of Liquid Water to an External Static Electric Field at T=250 K. Journal of Molecular Liquids. 2004, 112(1~2): 107~116
    63 Clifford E. Dykstra. External Electric Field Effects on the Water Trimer. Chemical Physics Letters. 1999, 299(6): 132~136
    64刘翠芬.超声波防垢器的原理及其应用.河南化工. 2003, (12) : 28~29
    65蒋裕平.磁化水除尘的研究.科学技术与工程. 2004, 4(6): 494~498
    66 Koichi Kitazawa, Yasuhiro Ikezoe, Hiromichi Uetake,Noriyuki Hirota Magnetic field effects on water, air and powders. Physica B: Condensed Matter. 2001, 294~295 709~714
    67朱永辉,成善生,吕其生,姜涛.磁化水的检测及评价.理化检验-化学分册. 2001, 37(6): 279
    68朱元保,颜流水,曹祉祥,文陵飞,陈宗璋.磁化水的物理化学性能.湖南大学学报(自然科学版). 1999, 26(1): 21~25.
    69 Pang Xiao-Feng, Deng Bo. The changes of macroscopic features and microscopic structures of water under influence of magnetic field. Physica B. 2008, 403: 3571~3577
    70 Joshi K. Metal. Jour Indian Chem Soc. 1996, 43 (9): 620 ~622
    71 Manabu Sueda, Akio Katsuki et al. Effects of High Magnetic Field on Water Surface Phenomena. J. Phys. Chem. C. 2007, 111: 14389~14393
    72 S. A. Ghauri, M. S. Ansari. Increase of water viscosity under the influence of magnetic field. J. Appl. Phys. 2006, 100: 066101-1~066101-2
    73 E.J.L. Toledo et al. Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models. Journal of Molecular Structure. 2008, 888: 409~415
    74 B. Gonet. Influence of Constant Magnetic Fields on Certain Physicochemical Properties of Water. Bioelectromagnetics. 1985, 6: 169~ 175
    75 M.C. Amiri, A.A. Dadkhah. On reduction in the surface tension of water due to magnetic treatment. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2006, 278: 252~255
    76 E.Viswat, L.K. F.Hermans, J.J. M.Beenakker. Experiments on the Influence of Magnetic Fields on the Viscosity of Water and a Water-NaCl Solution. Physical Fluids. 1982, 25: 1794~1796
    77 Z.Eshaghi, M.Gholizadeh. The effect of magnetic field on the stability of (18-crown-6) complexes with potassium ion Talanta. 2004, 64: 558~561
    78 M. Fujiwara, K. Mitsuda, Y. Tanimoto. Movement and Diffusion ofParamagnetic Ions in a Magnetic Field. J. Phys. Chem. B 2006, 110: 13965~13969
    79 R. Ohata, N. Tomita, Y. Ikada. Effect of a static magnetic field on ion transport in a cellulose membrane. Journal of Colloid and Interface Science. 2004, 270: 413~416
    80 L. Holysz et al. Effects of a static magnetic field on water and electrolyte solutions. Journal of Colloid and Interface Science. 2007, 316: 996~1002
    81张宝铭,刘有昌.水的磁化处理研究.工业水处理. 1994, 14(3): 10~11
    82谢绮芬.磁水器的防垢机理及设计.水处理技术. 1985, 11(2): 49~52
    83 Gehr R, Zhai Z A, Wang B L. Reduction of Soluble Mineral Concentrations in CaSO4 Saturated Water Using a Magnetic Field. Wat. Res. 1995, 29 (3): 993~940
    84 Misheck G. Mwabaa, Junjie Gua, Mohammad R. Golriz。Effects of magnetic field on calcium sulfate crystal morphology. Journal of Crystal Growth. 2007, 303: 381–386
    85 Higashitani K. Effects of Magnetic Field On Formation of CaCO3 Particles. Coll. Int . Sci. 1993, 156: 90~95
    86林艺辉,方健,李杰.磁场对碳酸钙析晶过程影响的定量研究.工业水处理. 2002, 22(6): 16~18
    87柴天禹.高频电场处理水的试验研究.水处理技术. 1997 ,23 (4): 222~225.
    88储召华,刘有昌. Ca2+、Mg2+总浓度对磁化水抑垢效果的影响.哈尔滨师范大学自然科学学报. 1998, 14(3): 67~70
    89那景丽,储召华,郝桂霞. OH-型碱度对磁化水抑垢率的影响.哈尔滨师范大学自然科学学报. 1999, 15(1): 70~71
    90刘有昌,孙晓君.磁化水抑垢机理的研究.哈尔滨工业大学学报. 2000, 32(1): 86~94
    91 Parsons S A, Wang B L, Judd S T, et al. Magnetic Treatment of Calcium Carbonate Scale Effect of pH Control. Wat . Res. 1997, 31 (2): 339~342
    92谢文惠,黄玉惠.磁场处理水溶液过程中的化学反应.北京大学学报(自然科学学报). 1987, (6): 34~39
    93 R E Herzong. Magnetic Water Treatment : The Effect of Iron On Calcium Carbonate Nucleation and Growth. Langmuir. 1989, 5: 861~867
    94 Pach L Duncans R R. Effects of a Magnetic Field on the Precipitation of Calcium Carbonate. Journal of Materials Science Letters. 1996, 15: 613~615
    95 Deren E. Le tratitement des depots calcaires dans I’eau par le procede CEPI L’Eau ,L’Industrie. Les Nuisances. 1985, (91): 49~52
    96 Wang Y, Babchin A J, Chernyi L T. Rapid Onset of Calcium Carbonate Crystallization Under the Influence of a Magnetic Field. Wat. Res. 1997, 31(2): 346~350
    97 Grimes S M. Magnetic Field Effect On Crystal. Tube Int. 1988, (3): 111~118
    98 E. Dalas, P.G. Koutsoukos. The Effect of Magnetic Fields on Calcium Carbonate Scale Formation. Journal of Crystal Growth. 1989, 96: 802~806
    99 Donaldson J D, Grimes S. Lifting the Scales From Our Pipes. New Scientist. 1988, 117 (18): 43~46
    100 Clifford Y.Tai, Chi-KaoWu,Meng-ChunChang。Effect of magnetic field on the crystallization of CaCO3 using permanent magnets。Chemical Engineering Science. 2008, 63: 5606~5612
    101 Nelson Saksono, Misri Gozan, Setijo Bismo, Elsa Krisanti, Roekmijati Widaningrum, and Seung Koo Song.2008.Effects of magnetic field on calcium carbonate precipitation Ironic and particle mechanism. Korean J. Chem. Eng. 2008, 25(5): 1145~1150
    102 Hans E. Lundager Madsen. Crystallization of calcium carbonate in magnetic field in ordinary and heavy water. Journal of Crystal Growth. 2004, 267: 251~255
    103 Alimi Fathi, Tlili Mohameda et al. Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate. Water Research. 2006, 40: 1941~1950
    104唐任远.现代永磁电机理论与设计.机械工业出版社. 1997: 74~75
    105 Jussi Huppunen.High-Speed Solid-Rotor Induction Machine Electromagnetic Calculation and Design. Lappeenranta Doctoral Thesis of Lappeenranta University of Technology. 2004: 35~41
    106陈世坤.电机设计.机械工业出版社. 2002: 44
    107 Z.Q. Zhu, K. Ng, N. Schofield, D. Howe. Improved Analytical Modeling of Rotor Eddy Current loss in Brushless Machines Equipped with Surface Mounted Permanent Magnets. IEE Proceedings of Electric Power Applications. 2004, 151(6): 641~650
    108 J.D.Edwards, B.V.Jayawant, W.R.C.Dawson, D.T.Wright. Permanent-magnet Linear Eddy-current Brake with a Non-magnetic Reaction Plate. IEE Proceedings of Electric Power Applications. 1999, 46(6): 627~631
    109 D. Ishak, Z. Q. Zhu, D. Howe. Eddy Current Loss in the Rotor Magnets of Permanent-magnets Brushless Machines Having a Fractional Number of SlotsPer Pole. IEEE Transactions on Magnetics. 2005, 41(9): 2462~2469
    110 Kais Atallah, Jiabin Wang,David Howe. Torque-Ripple Minimization in Modular Permanent-Magnet Brushless Machines. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. 2003, 39(6): 1689~1690
    111魏永田,孟大伟,温嘉斌.电机内热交换.机械工业出版社. 1998: 148~149
    112殷开良.分子动力学模拟的若干基础应用和理论.浙江大学博士论文. 2006: 6~7
    113樊康旗,贾建援.经典分子动力学模拟的主要技术. MEMS器件与技术. 2005, (3): 135~137
    114杨小震,分子模拟与高分子材料.科学出版社. 2004: 58-59
    115 S. Murad. The role of magnetic fields on the membrane-based separation of aqueous electrolyte solutions. Chemical Physics Letters. 2006, 417: 465~470
    116 K.-T. Chang, Cheng-I Weng. An investigation into the structure of aqueous NaCl electrolyte solutions under magnetic fields. Computational Materials Science. 2008, 43: 1048~1055
    117黄子卿.电解质溶液理论导论.科学出版社. 1983: 27
    118 E. Benard, J. J. J. Chen, A. P. Doherty. Drag enhancement of aqueous electrolyte solutions in turbulent pipe flow. Asia-Pacific Journal of Chemical Engineering. 2007,3(2): 225-229.
    119李以圭,陆九芳.电解质溶液理论.清华大学出版社. 2005: 41~43
    120邹继斌等.磁路与磁场.哈尔滨工业大学出版社. 1998: 19~21
    121 Anisa Elhamili, Magnus Wetterhall, Angel Puerta. The effect of sample salt additives on capillary electrophoresis analysis of intact proteins using surface modified capillaries. Journal of Chromatography A. 2009,(1216)17: 3613-3620.
    122 X. Zhang, Q. Xia, N. Gu. Preparation of All-Trans Retinoic Acid Nanosuspensions Using a Modified Precipitation Method. Drug Development and Industrial Pharmacy. 2006, 32: 857~863
    123何涌,雷新荣.结晶化学.化学工业出版社. 2008: 168~169
    124仲维卓,华素坤.晶体生长形态学.科学出版社. 1999: 126~127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700