基于MZ集成调制器无光滤波产生高质量毫米波信号的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于结合了光纤通信高带宽、低损耗、抗电磁干扰和无线通信可移动、灵活接入的优点,ROF技术被认为是未来工作在毫米波段的宽带无线接入网的一种良好解决方案。近十几年来,ROF技术一直是国内外学者的热点研究课题。在ROF系统中,以合理的成本产生高质量的毫米波信号是一项关键技术。与传统的电学方法相比,光学方法是一种更好的选择。
     目前,人们提出的产生毫米波信号的光学方法主要有三种,光外差、频率上变换、外调制器的非线性调制。三种方法中,基于外调制器的非线性调制的方法对应的系统结构更为简单,成本更低,且可以产生高纯度、低相位噪声的毫米波信号。在该方法中,为了进一步降低系统的复杂度和成本,尤其是WDM-ROF系统,基于MZ调制器的非线性调制实现无光滤波高质量毫米波信号的产生是一种理想的方案。此外,色散是影响ROF系统传输性能的重要因素。一方面,色散致走离效应会导致码间干扰。另一方面,它会导致产生的毫米波信号的功率随传输距离呈周期性衰落。
     MZ集成调制器是由两个或两个以上的MZ子调制器构成的。与单个MZ调制器相比,通过设置MZ集成调制器的相关参数,可以在无光滤波的情况下实现高倍频因子的高质量毫米波信号的产生。为了更好的利用MZ集成调制器实现无光滤波的高质量毫米波信号产生,深入理解MZ集成调制器的调制特性非常重要。通过详细推导双电极MZ调制器主要调制技术的实现原理和简要介绍两种MZ集成调制器的结构和调制特性,为基于MZ集成调制器无光滤波产生高质量毫米波信号奠定了良好的理论基础。
     基于MZ调制器的非线性调制特性,利用MZ集成调制器,结合理论分析,本文提出了无光滤波的一种四倍频、两种六倍频和一种八倍频共四种产生高质量毫米波信号的新方案,并对所提方案进行了仿真和实验验证。同时,利用解析方法和数值仿真,对MZ调制器的偏置漂移、调制深度或调制电压、MZ子调制器间驱动信号的非理想相位差、MZ子调制器或MZ集成调制器的非理想消光比等关键因素对产生的光毫米波和毫米波信号质量的影响进行了深入分析,对产生的光毫米波信号的传输性能进行了一定的研究,对相应方案中的不同情况下光毫米波或毫米波信号质量进行了比较,并对已有的基于级联MZ集成调制器产生八倍频毫米波信号的方案进行了进一步研究。另外,利用解析方法对光纤光栅中的调制不稳定性的特性进行了深入分析和讨论。
     本文的主要研究工作和创新点如下:
     1)、提出了一种基于由两个MZ子调制器构成的MZ集成调制器无光滤波产生四倍频信号的新方案,并定义了衡量产生的光毫米波信号和毫米波信号质量的两个参量:光学边带抑制比—OSSR和射频杂散抑制比—RFSSR。仿真结果表明,在MZ子调制器消光比为30dB且无任何光滤波器和电滤波器的情况下,可以产生高质量的光毫米波信号和四倍频毫米波信号。基于推导得到的解析表达式,对影响产生光毫米波信号质量即OSSR的因素:偏置漂移、MZ子调制器的非理想消光比、MZ子调制器的调制深度进行了分析和讨论。实验中,我们得到的高质量的光毫米波信号和毫米波信号:OSSR超过了35dB,背靠背和经过40km光纤传输后对应的RFSRR分别为30.0dB和24.6dB。与背靠背情况下相比,经过40km光纤传输后,产生的四倍频毫米波信号的线宽未出现明显变化。
     2)、首次提出了一种基于由两个MZ子调制器构成的MZ集成调制器无光滤波产生六倍频信号的方案。仿真结果表明,在MZ子调制器的消光比为30dB且无任何光滤波器和电滤波器的情况下,可以产生高质量的光毫米波和毫米波信号。利用VPI仿真软件,深入分析和讨论了MZ集成调制器的非理想驱动电压、MZ子调制器间射频驱动信号的非理想相位差对OSSR和RFSSR的影响,并对产生的光毫米波信号的在光纤中的传输性能进行了研究。同时,对该方案中的两种情况对应的系统传输性能进行了比较。实验中,我们得到的高质量的光毫米波信号和毫米波信号:OSSR高于29dB,背靠背和经过40km传输后对应的RFSSR都超过了19dB。与背靠背情况下相比,经过40km光纤传输后,产生的六倍频毫米波信号的线宽未出现明显变化。
     3)、提出了一种基于由三个MZ子调制器构成的MZ集成调制器无光滤波产生六倍频信号的新方案。仿真结果表明,在MZ子调制器的消光比为30dB且无任何光滤波器和电滤波器的情况下,可以产生高质量的光毫米波和毫米波信号。基于推导得到的解析结果,深入研究了MZ集成调制器的非理想消光比和两MZ子调制器间驱动信号的非理想相位差对OSSR的影响,并对方案中两种情况下的OSSR进行了比较。实验中,我们得到的高质量的光毫米波信号和毫米波信号:OSSR约为31.0dB,背靠背和经过40km传输后对应的RFSSR都超过了20dB;与背靠背情况下相比,经过40km光纤传输后,产生的六倍频毫米波信号的线宽未出现明显变化。
     4)、提出了一种基于两个由两个MZ子调制器构成的MZ集成调制器级联产生八倍频毫米波信号的新方案。仿真结果表明,在MZ子调制器具有非理想消光且无任何光滤波器和电滤波器的情况下,该方案可以产生高质量的光毫米波信号和高纯度的毫米波信号。同时,对该方案中两种情况下的OSSR与RFSSR进行了比较。
     5)、首次利用解析方法对光纤光栅中的调制不稳定性进行了研究。对决定光纤光栅中调制不稳定性特性的色散方程进行了解析求解,在此基础上,深入分析和讨论了光纤光栅中调制不稳定性的特点。
Due to the integration of the advantages of the extremely low loss, immune to electromagnetic interference and large available bandwidth of fiber communication and the mobile feature and flexible access of wireless communication, Radio over fiber (ROF) technology is regarded as a promising and attractive solution on the wireless access networks operating at the millimeter-wave (mm-wave) band. Over the past decade, ROF has been a research hotspot for the scholars both at home and abroad. In ROF system, the cost-effective and high quality generation of mm-wave is a key technology. Compared with the conventional electrical method, optical method is a preferable option for mm-wave generation.
     So far, three optical techniques have been proposed to implement the generation of mm-wave, namely, optical heterodyne, frequency up-conversion and nonlinear modulation of external optical modulator. Among these techniques, the last one has shown great potential for high purity and low phase noise mm-wave signal generation with low cost and simple configuration. For this technique, mm-wave generation without optical filter is an ideal scheme to further reduce the complexity and cost of system, especially for WDM-ROF system. In addition, fiber dispersion is an important influence factor for the transmission performance in ROF system. On one hand, fiber dispersion will lead to code interference because of walkoff effects. On the other hand, it also can lead to the periodical fading variation of the power of the generated mm-wave signal with transmision distance.
     Integrated MZM is composed of two or more sub-MZMs. Compared with single MZM, high multiplication factor and high quality mm-wave signal can be generated without optical filter if the parameters of integrated MZM are properly adjusted. In order to utilizing integrated MZM for quality mm-wave signal generation without optical filter, it is crucial to deeply understand the modulation chanracteristics of integrated MZM. The implementation principle of the main modulation techniques for the dual-electrodes MZM is derived in detail, and the structure and modulation characteristic of the two integrated MZMs are introduced in brief, which establishes the good theoretical foundation for mm-wave signal generation without optical filter based on the integrated MZM
     In this dissertation, Utilizing the integrated Mach-zehnder modulator (MZM) and combining the theoretical analysis, four novel schemes for mm-wave signal generation without optical filter are proposed based on the nonlinear modulation of MZM, including one frequency quadrupling scheme and two frequency sextupling schemes and one frequency octupling scheme, and the feasibility of the proposed novel schemes are verified by simulation and experiment. At the same time, the influence of key factors such as bias drifting, modulation depth or modulation voltage, nonideal phase difference of RF driven signal applied to two sub-MZMs of the integrated MZM, imperfect extinction ratio of sub-MZM or integrated MZM on the quality of the generated optical mm-wave and mm-wave signal is thoroughly discussed and analyzed, and the transmission performance of the generated optical mm-wave distributed over fiber is also investigated and the performance of different cases of the related schemes is also compared. Furthermore, the pervious: octupling scheme is further investigated. In addition, the characteristics of modulation instability (MI) in a fiber grating are thoroughly discussed and analyzed with analytical method.
     The main research works and novelties of this dissertation are as follows:
     1). A novel frequency quadrupling scheme for mm-wave signal generation without optical filter based on an integrated MZM composed of two sub-MZMs is proposed, and two parameters, namely optical sidebands suppression ratio (OSSR) and radio frequency spurious suppression ratio (RFSSR) are defined to evaluate the quality of the generated optical mm-wave and mm-wave signal. The simulation results show high quality optical mm-wave and mm-wave signal can be generated without any optical and electrical filter when an integrated MZM composed of two sub-MZMs with extinction ratio of 30dB is utilized. Based on the analytical expression from the derivation, the influence of bias drifting, imperfect extinction ratio and modulation depth of sub-MZMs is discussed and analyzed. In experiment, high-quality optical mm-wave signal and mm-wave signal are obtained. The OSSR higher than 35dB is achieved. RFSSR with 30.0dB and 24.6dB is achieved for BTB and after transmission over 40km fiber, respectively. No obvious linewidth variation of the generated frequency quadrupling mm-wave signal is demonstrated after transmission over 40km of fiber.
     2). A frequency sextupling scheme for mm-wave signal generation without optical filter based on an integrated MZM composed of two sub-MZMs is firstly proposed, to our best knowledge. The simulation results show high quality optical mm-wave and mm-wave signal can be generated without any optical and electrical filter when an integrated MZM composed of two sub-MZMs with extinction ratio of 30dB is utilized. Utilizing VPI software, the influence of nonideal RF modulation voltage and nonideal phase difference of RF driven signal applied to sub-MZM of the integrated MZM is discussed and analyzed, and the performance of the generated optical mm-wave signal after transmission over fiber is investigated. Furthermore, the performance of two cases for the proposed scheme is also compared. In experiment, high-quality optical mm-wave signal and mm-wave signal are obtained. The OSSR higher than 29dB is achieved. RFSSR both exceeds 19 dB for BTB and after transmission over 40km fiber. No obvious linewidth variation of the generated frequency sextupling mm-wave signal is demonstrated after transmission over 40km fiber.
     3). Another frequency sextupling scheme for mm-wave signal generation without optical filter based on an integrated MZM composed of three sub-MZMs is proposed. The simulation results show high quality optical mm-wave and mm-wave signal can be generated without any optical or electrical filter when an integrated MZM composed of three sub-MZMs with extinction ratio of 30dB is utilized. Based on the analytical expression from the derivation, the influence of nonideal phase difference of RF driven signal applied to sub-MZM of the integrated MZM, imperfect extinction ratio of integrated MZM on OSSR is discussed and analyzed, and OSSR of two cases of the proposed scheme is also compared. In experiment, high-quality optical mm-wave signal and mm-wave signal are obtained. The OSSR about 31dB is achieved. RFSSR both exceeds 20dB for BTB and after transmission over 40km fiber. After transmission over 40km fiber, no obvious linewidth variation of the generated frequency sextupling mm-wave signal is demonstrated.
     4). A novel frequency octupling scheme based on two cascaded integrated MZM composed of two sub-MZMs is proposed. The simulation results show high quality optical mm-wave and mm-wave signal can be generated without any optical or electrical filter when an integrated MZM composed sub-MZMs with imperfect extinction ratio is utilized. Moreover, OSSR and RFSSR of two cases are also compared based on simulation results.
     5). MI in a fiber grating is investigated firstly by analytical method, to best our knowledge. The dispersion relation that determines the characteristics of MI in a fiber grating is solved exactly, and the characteristics of MI in a fiber grating is thoroughly discussed and analyzed based on the analytical solution.
引文
[1]周炯磐,庞沁华,续大我等,通信原理,北京:北京邮电大学,2005。
    [2]纪越峰等编著,现代通信技术,北京:北京邮电大学,2002年。
    [3]Jia Z. S., Yu J. J., Ellinas G, et al., Key enabling technologies for optical-wireless networks:Optical millimeter-wave generation, Wavelength reuse, and Architecture, Journal of Lightwave Technology, Vol.25, No.11, November 2007:3452-3471.
    [4]黄善国,顾畹仪,张永军等,IP数据光网络技术及应用,北京:北京邮电出版社,2006。
    [5]陈雪,无源光网络,北京:北京邮电大学出版社,2006。
    [6]尹长川,罗涛,乐光新,多载波无线通信技术,北京:北京邮电大学出版社,2004。
    [7]吴伟陵,牛凯,移动通信原理(第二版),北京:电子工业出版社,2009。
    [8]李伟林,张杰,顾畹仪,ROF-OFDM原理与关键技术,中兴通信技术,第3期,2009年6月:40-44。
    [9]张奇,林如俭,修明磊,60 GHz ROF系统功率设计及分配,光通信研究,第2期,2007年:14-17。
    [10]Gavrilovich C. D., Broadband Communication on the Highways of Tomorrow, IEEE Communications Magazine, Vol.39, No.4, April 2001:146-154.
    [11]Nirmalathas A., Lim C., Novak D., et. al, Progress in millimeter-wave fiber-radio access networks, Annals of Telecommunications, Vol.56, No.1-2, January 2001:27-38.
    [12]齐永兴,高泽华,刘元安,光无线技术在2G和3G移动系统中的应用,北京邮电大学学报,第27卷增刊,2004年3月:5-9。
    [13]黄嘉明,陈舜儿,刘伟平等,RoF技术分析及其应用,光纤与电缆及其应用技术,第2期,2007年:32-35。
    [14]曹培炎,RoF技术在无线接入网络中的应用,光通信技术,第10期,2005年:32-35。
    [15]余建国,徐力,郭华志等,ROF在无线宽带移动通信中的应用,光通信研究,第1期,2007年:15-17。
    [16]Nathan J. G., Maria M., Arokiaswami A., et. al, Radio-over-fiber transport for the support of wireless broadband services, Journal of Optical Networking, Vol.8, No.2, February 2009:156-158.
    [17]刘明,吴椿烽,张慧等,RoF技术在光通信领域中的研究与应用,光通信技术,第6期,2009年:44-46。
    [18]Ogawa H., Polifko D., and Banba S., Millimeter-Wave Fiber Optics Systems for Personal Radio Communication, IEEE Transactions on Microwave Theory and Techniques. Vol.40, No.12, December 1992:2285-2293.
    [19]潘英华,林如俭,修明磊,60GHz毫米波ROF系统的光源研究,光通信技术,第11期,2006年:4142。
    [20]Lim C., Nirmalathas A., Bakaul M., et. al, Mitigation strategy for transmission impairments in millimeterwave radio-over-fiber networks, Journal of Optical Networking, Vol.8, No.2, February 2009:201-214.
    [21]方祖捷,叶青,刘峰等,毫米波副载波光纤通信技术的研究进展,中国激光,第33卷第4期,2006年4月:481-488。
    [22]Goldberg L., Taylor H. F., Weller J. F., et. al, Microwave signal generation with injection-locked laser diodes, Electronics Letters, Vol.19, No.13, June 1983:491-493.
    [23]Goldberg L., Yurek A. M., Taylor H. F., et. al,35GHz Microwave signal generation with injection-locked laser diode, Electronics Letters, Vol.21, No.18, August 1985:814-815.
    [24]Williams J., Goldberg L., Esman R. D., et. al,6-34GHz offset phase-locking of Nd:YAG 1319nm nonplanar ring lasers, Electronics Letters, Vol.25, No.18, August 1989:1242-1243.
    [25]Ramos R. T. and Seeds A. J., Fast heterodyne optical phase-lock loop using double quantum well laser diodes, Electronics Letters, Vol.28, No.1, January 1992:82-83.
    [26]Gliese U., Nielsen T. N., Bruun M., et. al, A Wideband Heterodyne Optical Phase-Locked Loop for Generation of 3-18GHz Microwave Carriers, IEEE Photonics Technology Letters, Vol.4, No.8, August 1992:936-938.
    [27]Wake D., Lima C. R., and Davies P. A., Optical Generation of Millimeter- Wave Signals for Fiber-Radio Systems Using a Dual-Mode DFB Semiconductor Laser, IEEE Transactions on Microwave Theory and Techniques, Vol.43, No.9, September 1995:2270-2276
    [28]Novak D., Ahmed Z., Waterhouse R. B., et. al, Signal Generation Using Pulsed Semiconductor Lasers for Application in Millimeter-WaveWireless Links, IEEE Transactions on Microwave Theory and Techniques, Vol.43, No.9, September 1995:2257-2262.
    [29]Ahmed Z., Novak D., Waterhouse R. B., et. al,37-GHz Fiber-Wireless System for Distribution of Broad-Band Signals, IEEE Transactions on Microwave Theory and Techniques, Vol.45, No.8, August 1997:1431-1433.
    [30]Noel L., Wake D., Moodie D. G., et. al, Novel Techniques for High-Capacity 60-GHz Fiber-Radio Transmission Systems, IEEE Transactions on Microwave Theory and Techniques, Vol.45, No.8, August 1997:1416-1423.
    [31]Timofeev F. N., Bennett S., Griffin R., et. al, High spectral purity millimeter-wave modulated optical signal generation using fiber grating lasers, Electronics Letters, Vol.34, No.7, April 1998:668-669.
    [32]Braun R. P., Grosskopf G., Rohde D., et. al, Low-Phase-Noise Millimeter-Wave Generation at 64 GHz and Data Transmission Using Optical Sideband Injection Locking, IEEE Photonics Technology Letters, Vol.10, No.5, May 1998:728-730.
    [33]Davidson A. C., Wise F. W., and Compton R. C., Low Phase Noise 33-40-GHz Signal Generation Using Multilaser Phase-Locked Loops, IEEE Photonics Technology Letters, Vol.10, No.9, September 1998:1304-1306.
    [34]Kuri T., and Kitayama K. I., Long-Term Stabilized Millimeter-Wave Generation Using a High-Power Mode-Locked Laser Diode Module, IEEE Transactions on Microwave Theory and Techniques, Vol.47, No.5, May 1999:570-572.
    [35]Johansson L. A. and Seeds A. J., Millimeter-Wave Modulated Optical Signal Generation with High Spectral Purity and Wide-Locking Bandwidth Using a Fiber-Integrated Optical Injection Phase-Lock Loop, IEEE Photonics Technology Letters, Vol.12, No.6, June 2000:690-692.
    [36]Al-Mumin M., Mao W., Li Y.,et. al,40 GHz millimetre-wave link based on two section gain-coupled DFB lasers, Electronics Letters, Vol.37, No.14, July 2001:915-916.
    [37]Bhattacharya M., Sarkar B. and Chattopadhyay T., Optical Generation of Millimeter and Submillimeter-Waves Through Optical Side-Band Injection Locking of Semiconductor Lasers, IEEE Photonics Technology Letters, Vol.14, No.11, November 2002:1611-1613.
    [38]Johansson L. A. and Seeds A. J., Generation and Transmission of Millimeter-Wave Data-Modulated Optical Signals Using an Optical Injection Phase-Lock Loop, Journal of Lightwave Technology, Vol. 21, No.2, February 2003:511-520.
    [39]Bhattacharya M., Saw A. K. and Chattopadhyay T., Millimeter-Wave Generation Through Phase-Locking of Two Modulation Sidebands of a Pair of Laser Diodes, IEEE Photonics Technology Letters, Vol.16, No.2, February 2004:596-598.
    [40]Sun C. K., Orazi R. J. and Pappert S. A., Efficient Microwave Frequency Conversion Using Photonic Link Signal Mixing, IEEE Photonics Technology Letters, Vol.8, No.1, January 1996:154-156.
    [41]Sun C. K., Orazi R. J., Pappert S. A., et. al, A Photonic-Link Millimeter-Wave Mixer Using Cascaded Optical Modulators and Harmonic Carrier Generation, IEEE Photonics Technology Letters, Vol.8, No. 9, September 1996:1166-1168.
    [42]Yao X. S., Brillouin Selective Sideband Amplification of Microwave Photonic Signals, IEEE Photonics Technology Letters, Vol.10, No.1, January 1998:138-140.
    [43]Marti J., Ramos F., Polo V., et. al, Millimetre-wave generation and harmonic upconversion through PM-IM conversion in chirped fibre gratings, Electronics Letters, Vol.35, No.15, July 1999:1265-1266.
    [44]Seo Y. K., Choi C. S., and Choi W. Y, All-Optical Signal Up-Conversion for Radio-on-Fiber Applications Using Cross-Gain Modulation in Semiconductor Optical Amplifiers, IEEE Photonics Technology Letters, Vol.14, No.10, October 2002:1448-1450.
    [45]Song H. J., Lee J. S., Song J. I., et. al, Signal Up-Conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter, IEEE Photonics Technology Letters, Vol.16, No.2, February 2004:593-595.
    [46]Song H. J., Lee J. S. and Song J. I., All-optical frequency upconversion of radio over fibre signal with optical heterodyne detection, Electronics Letters, Vol.40, No.5, March 2004:330-331.
    [47]Lee J. S., Song H. J., Kim W. B., et. al, All-optical harmonic frequency upconversion of radio over fibre signal using cross-phase modulation in semiconductor optical amplifier, Electronics Letters, Vol. 40,No.19, September 2004:1211-1213.
    [48]Song H. J., Lee J. S., and Song J. I., Error-Free Simultaneous All-Optical Upconversion of WDM Radio-Over-Fiber Signals, IEEE Photonics Technology Letters, Vol.17, No.8, August 2005: 1731-1733.
    [49]Yao J. P., Maury G., Guennec Y. L., et. al, All-Optical Subcarrier Frequency Conversion Using an Electrooptic Phase Modulator, IEEE Photonics Technology Letters, Vol.17, No.11, November 2005: 2427-2429.
    [50]Guennec Y. L., Maury G., Yao J. P., et. al, New Optical Microwave Up-Conversion Solution in Radio-Over-Fiber Networks for 60-GHz Wireless Applications, Journal of Lightwave Technology, Vol. 24, No.3, March 2006:1277-1282.
    [51]Kim H. J. and Song J. I., An all-optical frequency up-converter utilizing four-wave mixing in a semiconductor optical amplifier for sub-carrier multiplexed radio-over fiber applications, Optics Express, Vol.15, No.6, March 2007:3384-3389.
    [52]Park C. S., Lee C. G. and Park C. S., Photonic Frequency Upconversion Based on Stimulated Brillouin Scattering, IEEE Photonics Technology Letters, Vol.19, No.10, May 2007:777-779.
    [53]Park C. S., Lee C. G. and Park C. S., Photonic Frequency Upconversion by SBS-Based Frequency Tripling, Journal of Lightwave Technology, Vol.25, No.7, July 2007:1711-1718.
    [54]Kim W. K., Jeong W. J., Jeong W. J., et. al, Integrated optical modulator for signal upconversion over radio-on-fiber link, Optics Express, Vol.17, No.4, February 2009:2638-2645.
    [55]Qi G H., Yao J. P., Seregelyi J., et al., Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator, Journal of Lightwave Technology, Vol.23, No.9, September 2005:2687-2695.
    [56]O'Reilly J. J., Lane P. M., Heidemann R., et. al, Optical generation of very narrowlinewidth millimeter wave signals, Electronics Letters, Vol.28, No.25, December 1992:2309-2310.
    [57]Schmuck H., Heidemann R. and Hofstetter R., Distribution of 60GHz signals to more than 1000 base stations, Electronics Letters, Vol.30, No.17, January 1994:59-60.
    [58]O'Reilly J. J. and Lane P. M, Remote Delivery of Video Services Using mm-Waves and Optics. Journal of Lightwave Technology, Vol.12, No.2, February 1994:369-375.
    [59]O'Reilly J. J. and Lane P. M., Fibre-supported optical generation and delivery of 60GHz signals, Electronics Letters, Vol.30 No.76, August 1994:1329-1330.
    [60]Shen P., Comes N. J., Dovies P.A., et. al, High-Purity Millimetre-Wave Photonic Local Oscillator Generation and Delivery, International Topical Meeting on Microwave Photonics, September 2003: 189-192.
    [61]Kondo J., Aoki K., Iwata Y., et. al,76-GHz Millimeter-Wave Generation Using MZ LiNbO3 Modulator with Drive Voltage of 7Vp-p and 19GHz Signal Input, International Topic Meeting on Microwave Photonics, October 2005:1-4.
    [62]Qi G H., Yao J. P., Seregelyi J., et al., Generation and distribution of a wide-band continuously tunable millimeter-wave with an optical external modulation technique, IEEE Transactions on Microwave Theory and Techniques, Vol.53, No.10, October 2005:3090-3097.
    [63]Yu J. J., Jia Z. S., Wang T., et. al, Centralized Lightwave Radio-Over-Fiber System With Photonic Frequency Quadrupling for High-Frequency Millimeter-Wave Generation, IEEE Photonics Technology Letters, Vol.19, No.19, October 2007:1499-1451.
    [64]Mohamed M., Zhang X., Hraimel B., et al., Frequency sixupler for millimeter-wave over fiber systems, Optics Express, Vol.16, No.14, July 2008:10141-10151.
    [65]Chi H., Yao J. P., Frequency Quadrupling and Upconversion in a Radio Over Fiber Link, Journal of Lightwave Technology, Vol.26, No.15, August 2008:2706-2711.
    [66]Li W. Z., and Yao J. P., Microwave Generation Based on Optical Domain Microwave Frequency Octupling, IEEE Photonics TechNology Letters, Vol.22, No.1, January 2010:24-26.
    [67]Jianjun Yu, Ming-Fang Huang, Zhensheng Jia, Arshad Chowdhury, Hung-Chang Chien, Ze Dong, Wei Jian, and Gee-Kung Chang, Arbitrary-frequency Optical Millimeter-wave Generation for Radio over Fiber Systems, in Optical Fiber Communication Conference (OFC), San Diego, California, March 21, 2010.
    [68]Pan Shilong, Yao Jianping, Tunable Subterahertz Wave generation based on photonic frequency sextupling using a polarization modulator and a wavelength-fixed notch filter, IEEE Transactions on Microwave Theory and Techniques, Vol.58, No.7, July,2010,1967-1975.
    [69]Li Wangzhe, Yao Jianping, Investigation of photonically assisted microwave frequency multiplication based on external modulation, IEEE Transactions on Microwave Theory and Techniques, Vol.58, No. 11, November 2010,3259-3268.
    [70]Smith G. H., Novak D. and Ahmed Z., Technique for optical SSB generation to overcome dispersion penalties in fiber radio system, Electronics Letters, Vol.33, No.1, January 1997:74-75.
    [71]Smith G. H., Novak D. and Ahmed Z., Overcome chromatic-dispersion effects in fiber-wireless systems incorporating external modulators, IEEE Transactions Microwave Theory and Techniques, Vol. 45, No.8, August 1997:1410-1415.
    [72]Guennec Y. L., Maury G., and Cabon B., Improvement of Dispersion Resistance in Analog Radio-on-Fiber Upconversion Links, Journal of Lightwave Technology, Vol.21, No.10, October 2003: 2211-2216.
    [73]Herrera J., Ramos F. and Marti J., Compensation for dispersion-induced carrier suppression effect in Microwave/millimetre-wave optical links using optical phase conjugation in semiconductor optical amplifiers, Electronics Letters, Vol.42, No.4, February 2006:238-239.
    [74]Attygalle M., Lim C., Pendock G. J., et al., Transmission improvement in fiber wireless links using fiber Bragg gratings, IEEE Photonics Technology Letters, Vol.17,No.1, July 2005:190-192.
    [75]Lim C., Attygalle M., Nirmalathas A., et. al, Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links, IEEE Transactions on Microwave Theory and Techniques, Vol.54, No.5, May 2006:2181-2187.
    [76]Wu C. Q. and Zhang X. P., Impact of Nonlinear Distortion in Radio Over Fiber Systems With Single-Sideband and Tandem Single-Sideband Subcarrier Modulations, Journal of Lightwave Technology, Vol.24, No.5, May 2006:2076-2090.
    [77]Lim C., Nirmalathas A., Lee K. L., et. al, Intermodulation Distortion Improvement for Fiber-Radio Applications Incorporating OSSB+C Modulation in an Optical Integrated-Access Environment, Journal of Lightwave Technology, Vol.25, No.6, June 2007:1602-1613.
    [78]Cho T. S. and Kim K., Effect of Third-Order Intermodulation on Radio-Over-Fiber Systems by a Dual-Electrode Mach-Zehnder Modulator With ODSB and OSSB Signals, Journal of Lightwave Technology, Vol.24, No.5, May 2006:2052-2058.
    [79]Bakaul M., Nirmalathas A., Lim C., et. al, Hybrid Multiplexing of Multiband Optical Access TechNologies Towards an Integrated DWDM Network, IEEE Photonics Technology Letters, Vol.18, No.21, November 2006,2311-2313.
    [80]Vegas O. J. J., Kuri T., SoNo T., Reconfigurable 2.5Gb/s Baseband and 60GHz (155Mb/s) Millimeter-Waveband Radio-Over-Fiber (Interleaving) Access Network, Journal of Lightwave Technology, Vol.26, No.15, August 2008:2506-2512.
    [81]Jia Z. S., Yu J. J. and Chang G. K., A full-duplex radio-over-fiber system based on optical carrier suppression and reuse, IEEE Photonics Technology Letters, Vol.18, No.16, August 2006:1726-1728.
    [82]Vawter G. A., Mar, A., Hietala, V, et. al, All optical millimeter-wave electrical signal generation using an integrated mode-locked semiconductor ring laser and photodiode, IEEE Photonics Technology Letters, Vol.9, No.12, December 1997:1634-1636.
    [83]Stohr A., Heinzelmann R., Hagedorn K., et. al, Integrated 460 GHz photonic transmitter module, Electronics Letters, Vol.37, No.22, October 2001:1347-1348.
    [84]Leng J. S., Lai Y. C., Zhang W., et. al, A New Method for Microwave Generation and Data Transmission Using DFB Laser Based on Fiber Bragg Gratings, IEEE Photonics Technology Letters, Vol.18, No.16, August 2006:1729-1731.
    [85]Shen Y. C., Zhang X. M., Shen G. F., et. al, Microwave photonic signals conversion using stimulated Brillouin scattering, Optics Communications, Vol.249, No.1-3, May 2005:109-115.
    [86]Chen L., Yu J. G., Wen S. C., et. al, A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System, Journal of Lightwave Technology, Vol.27, No.14, July 2009:2786-2794.
    [87]Lin C. T., Chen J., Peng P. C., et. al, Hybrid Optical Access Network Integrating Fiber-to-the-Home and Radio-Over-Fiber Systems, IEEE Photonics Technology Letters, Vol.19, No.8, April 2007: 610-612.
    [88]Chen L., Wen H., and Wen S. C., A Radio-Over-Fiber System With a Novel Scheme for Millimeter-Wave Generation and Wavelength Reuse for Up-Link Connection, IEEE Photonics Technology Letters, Vol.18, No.19, October 2006:2056-2058
    [89]Chang Q. J., Ye T., Su Y. K., Generation of optical carrier suppressed-differential phase shift keying (OCS-DPSK) format using one dual-parallel Mach-Zehnder modulator in radio over fiber systems, Optics Express, Vol.16, No.14, July 2008:10421-10426.
    [90]Chen L., Shao Y. F., Lei X. Y., et. al, A Novel Radio-Over-Fiber System With Wavelength Reuse for Upstream Data Connection, IEEE Photonics Technology Letters, Vol.19, No.6, March 2007:387-389.
    [91]Chang Q. J., Tian Y., Gao J. M., et. al, Transmission of Optical Carrier Suppressed-Optical Differential (Quadrature) Phase-Shift Keying (OCS-OD(Q)PSK) Signals in Radio Over Fiber Systems, Journal of Lightwave Technology, Vol.26, No.15, August 2008:2611-261.
    [92]Li M., Chen H. W., Yin F. F., DWDM-Based Frequency-Interleaved Optical Distributing System Merging Wired and Wireless Services, IEEE Photonics Technology Letters, Vol.21, No.15, August 2009:1048-1050.
    [93]Zhao Y., Zheng X. P., Wen H., et. al, Simplified optical millimeter-wave generation configuration by frequency quadrupling using two cascaded Mach-Zehnder modulators, Optics Letters, Vol.34, No.21, November 2009:3250-3252.
    [94]Li J., Ning T. G., Pei L., et. al, Millimeter-wave radio-over-fiber system based on two-step heterodyne technique, Optics Letters, Vol.34, No.20, October 2009:3136-3138.
    [95]Ye Q., Liu F., Qu R. H., et. al, Generation of millimeter-wave in optical more pulse carrier by using a apodized Morie fiber grating, Optics Communications, Vol.266, No.2, October 2006: 532-535.
    [96]Yu X. B., Zheng X. P., Zhang H. Y, Polarization state rotation filter for optical generation of continuously tunable millimeter-wave signal employing an external intensity modulator, Optical Fiber Technology, Vol.13, No.1, January 2007:56-61.
    [97]Zhang J., Chen H. W., Chen M. H., et al., Photonic generation of a millimeter-wave signal based on sextuple-frequency multiplication, Optics Letters, Vol.32, No.9, May 2007:1020-1022.
    [98]Zhang J., Chen H. W., Chen M. H., et al., A photonics microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression, IEEE Photonics Technology Letters, Vol.19, No.14, July 2007:1057-1059.
    [99]Tianliang Wang, Minghua Chen, Hongwei Chen, Jian Zhang, and Shizhong Xie Millimeter-Wave Signal Generation Using Two Cascaded Optical Modulators and FWM Effect in Semiconductor Optical Amplifier, IEEE Photonics Technology Letters, Vol.19,No.16,August 15,2007,1191-1193.
    [100]Lin C. T., Shih P. T., Chen J., et al., Optical millimeter-wave signal generation using frequency quadrupling technique and No optical filtering, IEEE Photonics Technology Letters, Vol.20, No.12, June 2008:1027-1029.
    [101]Ma J. X., Xin X. J., Yu J. J., et. al, Optical millimeter wave generated by octupling the frequency of the local oscillator, Journal of Optical Networking, Vol.7, No.10, October 2008:837-844.
    [102]Chen B., Zheng S. L., Chi H., et. al, An Optical Millimeter-Wave Generation Technique Based on Phase Modulation and Brillouin-AssistedNotch-Filtering, IEEE Photonics Technology Letters, Vol.20, No.24, December 2008:2057-2059.
    [103]Xu L., Li C., Chow C. W., et. al, Optical mm-Wave Signal Generation by Frequency Quadrupling Using an Optical Modulator and a Silicon Microresonator Filter, IEEE Photonics Technology Letters, Vol.21, No.4, February 2009:209-211.
    [104]Lin C. T., Shih P. T., Jiang W. J., et. al, A continuously tunable and filterless optical millimeter-wave generation via frequency octupling, Optics Express, Vol.17, No.22, October 2009: 19749-19756.
    [105]Shih Po-Tsung, Chen Jason (Jyehong), Lin Chun-Ting, Jiang Wen-Jr, Huang Han-Sheng, Peng Peng-Chun, and Chi Sien, Optical Millimeter-Wave Signal Generation Via Frequency 12-Tupling, Journal of Lightwave Technology, Vol.28, No.1, January 1,2010,71-77.
    [1]Nirmalathas A., Lim C., Novak D., et. al, Progress in millimeter-wave fiber-radio access networks, Annals of Telecommunications, Vol.56, No.1-2, January 2001:27-38.
    [2]徐坤,林金桐,大都市网络的解决方案——ROF技术,现代电信科技,2006年9月第9期:2-5。
    [3]曹培炎,RoF技术在无线接入网络中的应用,光通信技术,2005年第10期:32-35。
    [4]余建国,徐力,郭华志等,ROF在无线宽带移动通信中的应用,光通信研究,2007年第1期:15-17。
    [5]Fumihide Kojima and Masayuki Fujise, Multimedia Lane and Station Structure for Road-to-Vehicle Communication System using ROF Techniques, The 11 th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Vol.2, September 2000:969-973
    [6]黄嘉明,陈舜儿,刘伟平等,RoF技术分析及其应用,光纤与电缆及其应用技术,2007年第2期:32-35。
    [7]Bart Lannoo, Didier Colle, Mario Pickavet, et. al, Radio-over-Fiber-Based Solution to Provide Broadband Internet Access to Train Passengers, IEEE Communications Magazine, Vol.45, No.2, February 2007:56-62.
    [8]Opati D., Croatia GSDC, Radio over Fiber Technology for Wireless Access, http://www.ericsson.com/hr/etk/dogadjanja/mipro_2009/12_1112_F.pdf
    [9]刘明,吴椿烽,张慧等,RoF技术在光通信领域中的研究与应用,光通信技术,2009年第6期:43-46。
    [10]Qi G. H., Yao J. P., Seregelyi J., et al., Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator, Journal of Lightwave Technology, Vol.23, No.9, September 2005:2687-2695.
    [11]Jia Z. S., Yu J. J., Ellinas G., et al., Key enabling technologies for optical-wireless networks:Optical millimeter-wave generation, Wavelength reuse, and Architecture, Journal of Lightwave Technology, Vol.25, No.11, November 2007:3452-3471.
    [12]Goldberg L., Taylor H. F., Weller J. F., et. al, Microwave signal generation with injection-locked laser diodes, Electronics Letters, Vol.19, No.13, June 1983:491-493.
    [13]Gliese U., Nielsen T. N., Bruun M., et. al, A Wideband Heterodyne Optical Phase-Locked Loop for Generation of 3-18GHz Microwave Carriers, IEEE Photonics Technology Letters, Vol.4, No.8, August 1992:936-938.
    [14]Johansson L. A. and Seeds A. J., Generation and Transmission of Millimeter-Wave Data-Modulated Optical Signals Using an Optical Injection Phase-Lock Loop, Journal of Lightwave Technology, Vol. 21, No.2, February 2003:511-520.
    [15]Novak D., Ahmed Z., Waterhouse R. B., et. al, Signal Generation Using Pulsed Semiconductor Lasers for Application in Millimeter-WaveWireless Links, IEEE Transactions on Microwave Theory and Techniques,Vol.43, No.9, September 1995:2257-2262.
    [16]Kim H. J. and Song J. I., An all-optical frequency up-converter utilizing four-wave mixing in a semiconductor optical amplifier for sub-carrier multiplexed radio-over fiber applications, Optics Express, Vol.15, No.6, March 2007:3384-3389.
    [17]Yu J. J., Gu J. X., Liu X., et. al, Seamless Integration of an 8×2.5 Gb/s WDM-PON and Radio-Over-Fiber Using All-Optical Up-Conversion Based on Raman-Assisted FWM, IEEE Photonics Technology Letters, Vol.17, No.9,2005:1986-1988.
    [18]Seo Y. K., Choi C. S., and Choi W. Y., All-Optical Signal Up-Conversion for Radio-on-Fiber Applications Using Cross-Gain Modulation in Semiconductor Optical Amplifiers, IEEE Photonics Technology Letters, Vol.14, No.10, October 2002:1448-1450.
    [19]Song H. J., Lee J. S., Song J. I., Signal Up-Conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter, IEEE Photonics Technology Letters, Vol.16, No.2, February 2004:593-595.
    [20]Jia Z. S., Yu J. J., and Chang G. K., All-Optical 16×2.5Gb/s WDM Signal Simultaneous Up-Conversion Based on XPM in an NOLM in ROF Systems, IEEE Photonics Technology Letters, Vol.17, No.12, December 2005:2724-2726.
    [21]Yao X. Steve, Brillouin Selective Sideband Amplification of Microwave Photonic Signals, IEEE Photonics Technology Letters, Vol.10, No.1, January 1998:138-140.
    [22]Park C. S., Lee C. G. and Park C. S., Photonic Frequency Upconversion Based on Stimulated Brillouin Scattering, IEEE Photonics Technology Letters, Vol.19, No.10, May 2007:777-779.
    [23]Walker N. G., Wake D. and Smith I. C., Efficient Millimeter-Wave Signal Generation Through FM-IM Conversion In Dispersive Optical Fiber Links, Electronics Letters, Vol.28, No.21, October 1992: 2027-2028.
    [24]Marti J., Ramos F., Polo V, et. al, Millimetre-wave generation and harmonic upconversion through PM-IM conversion in chirped fibre gratings, Electronics Letters, Vol.35, No.15, July 1999:1265-1266.
    [25]Yao J. P., Maury G., Guennec Y. L., et. al, All-Optical Subcarrier Frequency Conversion Using an Electrooptic Phase Modulator, IEEE Photonics Technology Letters, Vol.17, No.11, November 2005: 2427-2429.
    [26]Ou H., Chen B., Fu H., et. al, Microwave-photonic doubling utilising phase modulator and fibre Bragg grating, Electronics Letters, Vol.44, No.2, January 2008:131-132
    [27]Qi G. H., Yao J. P., Seregelyi J., et al., Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator, Journal of Lightwave Technology, Vol.23, No.9, September 2005:2687-2695.
    [28]Zhang J., Chen H. W., Chen M. H., et al., A photonics microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression, IEEE Photonics Technology Letters, Vol.19, No.14, July 2007:1057-1059.
    [29]Lin C. T., Shih P. T., Chen J., et al., Optical millimeter-wave signal generation using frequency quadrupling technique and No optical filtering, IEEE Photonics Technology Letters, Vol.20, No.12, June 2008:1027-1029.
    [30]Lin C. T., Shih P. T., Jiang W. J., et. al, A continuously tunable and filterless optical millimeter-wave generation via frequency octupling, Optics Express, Vol.17, No.22, October 2009: 19749-19756.
    [31]Schmuck H., Comparison of optical millimetre-wave system concepts with regard to chromatic dispersion, Electronics Letter, Vol.31, No.21, October 1995:1848-1849.
    [32]Smith G. H., Novak D. and Ahmed Z., Technique for optical SSB generation to overcome dispersion penalties in fiber radio system, Electronics Letters, Vol.33, No.1, January 1997:74-75
    [33]Schmuck H., Heidemann R. and Hofstetter R., Distribution of 60GHz signals to more than 1000 base stations, Electronics Letters, Vol.30, No.17, January 1994:59-60.
    [34]Park J., Sorin W.V. and Lau K.Y., Elimination of the fibre chromatic dispersion penalty on 1550nm millimetre-wave optical transmission, Electronics Letters, Vol.33, No.6, March 1997:512-513.
    [35]Yonenaga K., and Takachio N., A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems, IEEE Photonics Technology Letters,1993,5, (18), pp.949-951
    [36]Smith G. H., Novak D. and Ahmed Z., Chromatic Dispersion in Fiber-Optic microwave an millimeter-Wave Links, IEEE Transactions on Microwave Theory and Techniques, Vol.44, No.10, October 1996:1716-1723.
    [37]Marti J., Fuster J. M., and Laming R. I., Experimental reduction of chromatic dispersion effects in lightwave microwave/millimeter-wave transmission using tapered linearly chirped fiber gratings, Electronics Letters, Vol.33 No,13, June 1997:1170-1171.
    [38]Marti J. and Ramos F., Compensation for dispersion-induced nonlinear distortion in subcarrier systems using optical-phase conjugation, Electronics Letters, Vol.33, No.9,, April 1997:792-794.
    [39]Ma J. X., Yu C. X., Zhou Z., et. al, Optical mm-wave generation by using external modulator based on optical carrier suppression, Optics Communications, Vol.268, No.1, December 2006:51-57.
    [40]Ma J. X., Yu J. J., Yu C. X., et. al, The influence of fiber dispersion on the code form of the optical mm-wave signal generated by single sideband intensity-modulation, Optics Communications, Vol. 271, No.2, March 2007:396-403.
    [41]Ma J. X., Yu J. J., Yu C. X., et. al, Transmission performance of the optical mm-wave generated by double-sideband intensity-modulation, Optics Communications, Vol.280, No.2, December 2007: 317-326
    [42]Liu Xiangling, Liu Zengji, Li Jiandong, Shang Tao, Zhao Jiangong, Generation of optical carrier suppression millimeter-wave signal using one dual-parallel MZM to overcome chromatic dispersion, Optics Communications, Vol.283,No.16, August 2010:3129-3135.
    [43]Lim C., Attygalle M., Nirmalathas A., et. al, Analysis of optical Carrier-to-Sideband Ratio for improving transmission performance in Fiber-Radio links, IEEE Transactions on Microwave Theory and Techniques, Vol.54, No.5, May 2006:2181-2187.
    [44]Attygalle M., Lim C., Pendock G. J., et al., Transmission improvement in fiber wireless links using fiber Bragg gratings, IEEE Photonics Technology Letters, Vol.17,No.1, July 2005:190-192.
    [1]Le Nguyen Binh, Lithium niobate optical modulators:Devices and applications, Journal of Crystal Growth, Vol.288, No.1, February 2006:180-187.
    [2]Yu J. J., Jia Z. S., Yi L. L., et. al, Optical Millimeter-Wave Generation or Up-Conversion Using External Modulators, IEEE Photonics Technology Letters, Vol.18, No.1, January,2006:265-267.
    [3]Shih P. T., Lin C. T., Jiang, W. J., et. al, WDM up-conversion employing frequency quadrupling in optical modulator, Optics express, Vol.17, No.3, February 2009:1726-1733
    [4]Chang Q. J., Tian Y., Gao J. M., et. al, Transmission of Optical Carrier Suppressed-Optical Differential (Quadrature) Phase-Shift Keying (OCS-OD(Q)PSK) Signals in Radio Over Fiber Systems, Journal of Lightwave Technology, Vol.26, No.15, August 2008:2611-261.
    [5]Corral J. L., Marti J., and Fuster J. M., General Expressions for IM/DD Dispersive Analog Optical Links With External Modulation or Optical Up-Conversion in a Mach-Zehnder Electrooptical Modulator, IEEE Transactions on Microwave Theory and Techniques, Vol.49, No.10, October 2001: 2285-2293.
    [6]Kim W. K., Kwon S. W., Jeong W. J., et. al, Integrated optical modulator for signal upconversion over radio-on-fiber link, Optics Express, Vol.17, No.4, February 2009:2638-2645.
    [7]Kawanishi T., Sakamoto T., and Izutsu M., High-Speed Control of Lightwave Amplitude, Phase, and Frequency by Use of Electrooptic Effect, IEEE Journal of Selected Topics In Quantum Electronics, Vol.13, No.1, January/February 2007:79-91.
    [8]顾畹仪,WDM超长距离光传输技术,北京:北京邮电大学出版社,2006。
    [9]甘小勇,高速铌酸锂波导电光调制器关键技术研究,电子科技大学博士论文,2004年。
    [10]Lin C. T., Chen J., Dai S. P., et. al, Impact of Nonlinear Transfer Function andImperfect Splitting Ratio of MZM on Optical Up-Conversion Employing Double Sideband With Carrier Suppression Modulation, Journal of Lightwave Technology, Vol.26, No.15, August 2008:2449-2459.
    [11]Ma J. X., Xin X. J., Yu J. J., et. al, Optical millimeter wave generated by octupling the frequency of the local oscillator, Journal of Optical Networking, Vol.7, No.10, October 2008:837-844.
    [12]Ma J. X., Yu J. J., Jia Z. S., Optical mm-wave generation based on phase modulator and with optical filtering, IEEE Microwave and optical Technology Letters, Vol.49,No.8, August 2007:1787-1793.
    [13]Ou H., Chen B., Fu H., et. al, Microwave-photonic doubling utilising phase modulator and fibre Bragg grating, Electronics Letters, Vol.44 No.2, January 2008:131-132.
    [14]Ma J. X., Yu C. X., Zhou Z., et. al, Optical mm-wave generation by using external modulator based on optical carrier suppression, Vol.268, No.1, December 2006:51-57.
    [15]Shen P., Comes N. J., Dovies P.A., et. al, High-Purity Millimetre-Wave Photonic Local Oscillator Generation and Delivery, International Topical Meeting on Microwave Photonics, September 2003: 189-192.
    [16]Qi G. H., Yao J. P., Seregelyi J., et al., Generation and distribution of a wide-band continuously tunable millimeter-wave with an optical external modulation technique, IEEE Transactions on Microwave Theory and Techniques, Vol.53, No.10, October 2005:3090-3097.
    [17]O'Reilly J. J. and Lane P. M., Fibre-supported optical generation and delivery of 60GHz signals, Electronics Letters, Vol.30 No.76, August 1994:1329-1330.
    [18]Qi G. H., Yao J. P., Seregelyi J., et al., Generation and distribution of a wide-band continuously tunable millimeter-wave with an optical external modulation technique, IEEE Transactions on Microwave Theory and Techniques, Vol.53, No.10, October 2005:3090-3097.
    [19]Kondo J., Aoki K., Iwata Y., et. al,76-GHz Millimeter-Wave Generation Using MZ LiNbO3 Modulator with Drive Voltage of 7Vp-p and 19GHz Signal Input, International Topic Meeting on Microwave Photonics, October 2005:1-4.
    [20]Yu X. B., Zheng X. P., Zhang H. Y., Polarization state rotation filter for optical generation of continuously tunable millimeter-wave signal employing an external intensity modulator, Optical Fiber Technology, Vol.13, No.1, January 2007:56-61.
    [21]Xu L., Li C., Chow C. W., et. al, Optical mm-Wave Signal Generation by Frequency Quadrupling Using an Optical Modulator and a Silicon Microresonator Filter, IEEE Photonics Technology Letters, Vol.21, No.4, February 2009:209-211.
    [22]Zhang J., Chen H. W., Chen M. H., et al., A photonics microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression, IEEE Photonics Technology Letters, Vol.19, No.14, July 2007:1057-1059.
    [23]Chi H., Yao J. P., Frequency Quadrupling and Upconversion in a Radio Over Fiber Link, Journal of Lightwave Technology, Vol.26, No.15, August 2008:2706-2711.
    [24]Lin C. T., Shih P. T., Chen J., et al., Optical millimeter-wave signal generation using frequency quadrupling technique and No optical filtering, IEEE Photonics Technology Letters, Vol.20, No.12, June 2008:1027-1029.
    [25]Zhang J., Chen H. W., Chen M. H., et al., Photonic generation of a millimeter-wave signal based on sextuple-frequency multiplication, Optics Letters, Vol.32, No.9, May 2007:1020-1022.
    [26]Mohamed M., Zhang X., Hraimel B., et al., Frequency sixupler for millimeter-wave over fiber systems, Optics Express, Vol.16, No.14, July 2008:10141-10151.
    [27]Wangzhe Li, Jianping Yao, Investigation of photonically assisted microwave frequency multiplication based on external modulation, IEEE Transactions on Microwave Theory and Techniques, Vol.58, No. 11, November 2010,3259-3268.
    [28]Shilong Pan, Jianping Yao, Tunable Subterahertz Wave generation based on photonic frequency sextupling using a polarization modulator and a wavelength-fixed notch filter, IEEE Transactions on Microwave Theory and Techniques, Vol.58, No.7, July,2010,1967-1975.
    [29]Peiming Shi, Song Yu, Zekun Li, Jing Shen, Yaojun Qiao, and Wanyi Gu, A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator, Optics Communications, Optics Communications, Vol.283, No.19, October 2010, 3667-3672.
    [30]Penning Shi, Song Yu, Zekun Li, Shanguo Huang, Jing Shen, Yaojun Qiao, Jie Zhang and Wanyi Gu, A frequency sextupling scheme for high-quality optical millimeter-wave signal generation without optical filter, Optical Fiber Technology, Vol.17, No.3, May 2011:236-241.
    [1]Lin C. T., Shih P. T., Chen J., et al., Optical millimeter-wave signal generation using frequency quadrupling technique and No optical filtering, IEEE Photonics Technology Letters, Vol.20, No.12, June 2008:1027-1029.
    [2]Zhang J., Chen H. W., Chen M. H., et al., A photonics microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression, IEEE Photonics Technology Letters, Vol.19, No.14, July 2007:1057-1059.
    [3]Yu X. B., Zheng X. P., Zhang H. Y., Polarization state rotation filter for optical generation of continuously tunable millimeter-wave signal employing an external intensity modulator, Optical Fiber Technology, Vol.13, No.1, January 2007:56-61.
    [4]Xu L., Li Chao, Chow C. W., et. al, Optical mm-Wave Signal Generation by Frequency Quadrupling Using an Optical Modulator and a Silicon Microresonator Filter, IEEE Photonics Technology Letters, Vol.21, No.4, February 2009:209-211.
    [5]Chi H., Yao J. P., Frequency Quadrupling and Upconversion in a Radio Over Fiber Link, Journal of Lightwave Technology, Vol.26, No.15, August 2008:2706-2711.
    [6]Ou H., Chen B., Fu H., et. al, Microwave-photonic doubling utilising phase modulator and fibre Bragg grating, Electronics Letters, Vol.44 No.2, January 2008:131-132.
    [7]Ma J. X., Yu J. J., Jia Z. S., Optical mm-wave generation based on phase modulator and with optical filtering, Microwave and optical Technology Letters, Vol.49, No.8, August 2007:1787-1793
    [8]Ma J. X., Yu C. X., Zhou Z., et. al, Optical mm-wave generation by using external modulator based on optical carrier suppression, Optics Communications, Vol.268, No.1, December 2006:51-57.
    [9]Yu J. J., Jia Z. S., Yi L. L., et. al, Optical Millimeter-Wave Generation or Up-Conversion Using External Modulators, IEEE Photonics Technology Letters, Vol.18, No.1, January,2006:265-267.
    [10]Shen P., Comes N. J., Dovies P.A., et. al, High-Purity Millimetre-Wave Photonic Local Oscillator Generation and Delivery, International Topical Meeting on Microwave Photonics, September 2003: 189-192.
    [11]Qi G. H., Yao J. P., Seregelyi J., et al., Generation and distribution of a wide-band continuously tunable millimeter-wave with an optical external modulation technique, IEEE Transactions on Microwave Theory and Techniques, Vol.53, No.10, October 2005:3090-3097.
    [12]O'Reilly J. J. and Lane P. M., Fibre-supported optical generation and delivery of 60GHz signals, Electronics Letters, Vol.30 No.76, August 1994:1329-1330.
    [13]Qi G. H., Yao J. P., Seregelyi J., et al., Generation and distribution of a wide-band continuously tunable millimeter-wave with an optical external modulation technique, IEEE Transactions on Microwave Theory and Techniques, Vol.53, No.10, October 2005:3090-3097.
    [14]Kondo J., Aoki K., Iwata Y., et. al,76-GHz Millimeter-Wave Generation Using MZ LiNbO3 Modulator with Drive Voltage of 7Vp-p and 19GHz Signal Input, International Topic Meeting on Microwave Photonics, October 2005:1-4.
    [15]Ma J. X., Xin X. J., Yu J. J., et. al, Optical millimeter wave generated by octupling the frequency of the local oscillator, Journal of Optical Networking, Vol.7, No.10, October 2008:837-844.
    [16]Li W. Z., and Yao J. P., Microwave Generation Based on Optical Domain Microwave Frequency Octupling, IEEE Photonics Technology Letters, Vol.22, No.1, January 2010:24-26.
    [17]Lin C. T., Shih P. T., Jiang W. J., et. al, A continuously tunable and filterless optical millimeter-wave generation via frequency octupling, Optics Express, Vol.17, No.22, October 2009:19749-19756.
    [1]Giles C. R., Lightwave Applications of Fiber Bragg Gratings, Journal of Lightwave Technology, Vol. 15, No.8, August 1997:1391-1394.
    [2]Hill K. O. and Meltz G., Fiber Bragg Grating Technology Fundamentals and Overview, Journal of Lightwave Technology, Vol.15, No.8, August 1997:1263-1276.
    [3]Ouellette F., Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides, Optics Letters, Vol.12, No.10, October 1987:847-849.
    [4]Duck G and Ohn M. M., Distributed Bragg grating sensing with a direct group-delay measurement technique, Optics Letters, Vol.25, No.2, January 2000:90-92.
    [5]Taverner D., Broderick N. G. R., Richardson D. J., et. al, All-optical AND gate based on coupled gap-soliton formation in a fiber Bragg grating, Optics Letters, Vol.23, No.4, February 1998:259-261.
    [6]Taverner D., Broderick N. G. R., Richardson D. J., et. al, Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating, Optics Letters, Vol.23, No.5, March 1998:328-330.
    [7]黄章勇,光纤通信用新型光无源器件,北京:北京邮电大学出版社,2003年。
    [8]Marti J., Ramos F., Polo V., et. al, Millimetre-wave generation and harmonic(?)upconversion through PM-IM conversion in chirped fibre gratings, Electronics Letters, Vol.35, No.15, July 1999:1265-1266.
    [9]Park J., Sorin W. V. and Lau K. Y., Elimination of the fibre chromatic dispersion penalty on 1550nm millimetre-wave optical transmission, Electronics Letters, March 1997, Vol.33 No.6:512-513.
    [10]Marti J., Fuster J. M. and Laming R. I., Experimental reduction of chromatic dispersion effects in lightwave microwave/millimetre-wave transmissions using tapered linearly chirped fibre gratings, Electronics Letters, Vol.33 No,13, June 1997:1170-1171.
    [11]Ou H., Chen B., Fu H., et. al, Microwave-photonic doubling utilising phase modulator and fibre Bragg grating, Electronics Letters, Vol.44 No.2, January 2008:131-132.
    [12]Qi G. H., Yao J. P., Seregelyi J., et al., Generation and distribution of a wide-band continuously tunable millimeter-wave with an optical external modulation technique, IEEE Transactions on Microwave Theory and Techniques, Vol.53, No.10, October 2005:3090-3097.
    [13]Qi G .H., Yao J. P., Seregelyi J., et al., Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator, Journal of Lightwave Technology, Vol.23, No.9, September 2005:2687-2695.
    [14]Attygalle M., Lim C., Pendock G. J., et al., Transmission improvement in fiber wireless links using fiber Bragg gratings, IEEE Photonics Technology Letters, Vol.17,No.1, July 2005:190-192.
    [15]贾东方,余震虹等泽,非线性光纤原理及应用,北京:电子工业出版社,2002.
    [16]Greer E. J., Patrick D. M., Wigley P. G. J., et. al, Generation of 2THz repetition rate pulse trians through induced Modulation Instability, Electronics Letters, Vol.25, No.18, August 1989:1246-1248.
    [17]Seve E., Dinda P. Tchofo, Millot G., et. al, Modulational instability and critical regime in a highly birefringent fiber, Physical Review A, Vol.54, No.4, October 1996:3519-3534.
    [18]Millot G., Seve E. and Wabnitz S., et. al, Dark-soliton-like pulse-train generation from induced modulational polarization instability in a birefringent fiber, Optics Letters, Vol.23, No.7, April 1998: 51-53.
    [19]Chemikov S. V., Taylor J. R., Mamyshev P. V., et. al, Generation of Soliton Pulse Train in Optical Fiber Using Two CW Singlemode Diode Lasers, Electronics Letters, Vol.28 No.10, May 1992: 931-932.
    [20]Chen J. S. Y., Wong G. K. L., Murdoch S. G., et. al, Cross-phase modulation instability in photonic crystal fibers, Optics Letters, Vol.31, No.7, April 2006:873-875.
    [21]Kruhlak R. J., Wong G. K. L., Chen J. S. Y., et. al, Polarization modulation instability in photonic crystal fibers, Optics Letters, Vol.31, No.10, May 2006:1379-1381.
    [22]Eggleton B. J., De Sterke C. M., R. E. Slusher,et. al, Distributed feedback pulse generator based on nonlinear fiber grating, Electronics Letters,Vol.32, No.25, December 1996:2341-2342.
    [23]Mok J. T., De Sterke C. M. and Eggleton B. J., Delay-tunable gap-soliton-based slow-light system, Optics Express, Vol.14, No.25, December 2006:11987-11986.
    [24]Mok J. T., Ibsen M., De Sterke C. M., et. al, Dispersionless slow light with 5-pulse-width delay in fibre Bragg grating, Electronics Letters, Vol.43 No.25, December 2007:1418-1419.
    [25]Eggleton B. J., De Sterke C. M., Aceves A. B., et. al, Modulational instability and tunable multiple soliton generation in apodized fiber gratings, Optics Communications, Vol.149, No.4-6,15 April 1998: 267-271
    [26]De Sterke C. M., Theory of modulational instability in fiber Bragg gratings, Journal of the Optcial Society of America B, Vol.15, No.11, November 1998:2660-2668.
    [27]Shi P. M., Yu S., Liu T., et. al, Analytical investigation of modulation instability in a fiber Bragg grating, Optics Letters, Vol.34, No.9, May 2009:1339-1341.
    [28]Agrawal G. P., Applications of nonlinear fiber optics, San Diego:Academic Press,2001.
    [29]Mok Joe T., Littler Ian C. M., Tsoy Eduard, et. al, Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings, Optics Letters, Vol.30, No.18, September 2005: 2457-2459.
    [30]Porsezian K., Senthilnathan K., and Devipriya S., Modulational Instability in Fiber Bragg Grating With Non-Kerr Nonlinearity, Journal of Quantum Electronics, Vol.16, No.7, July 2005:694-697.
    [31]Zwillinger D., Standard Mathematical Tables and Formulae,30th Edition, Florida:CRC Press, Boca Raton,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700